1
|
Chen L, Ni Q, Zhou Y, Liu Y. Gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with TBHP. Org Biomol Chem 2025; 23:3177-3182. [PMID: 40045851 DOI: 10.1039/d5ob00026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with tert-butyl hydroperoxide (TBHP) has been successfully developed to access 1-peroxidized 1H-isochromene derivatives in moderate to good yields. The use of one of the resultant 1-peroxidized 1H-isochromenes (3a) for the construction of phenyl(8-phenylbicyclo[4.2.0]octa-1(6),2,4,7-tetraen-7-yl)methanone (4), phenyl(3-phenyl-1,3-dihydroisobenzofuran-1-yl)methanone (5) and 2-(2-benzoylphenyl)-1-phenylethan-1-one (6) has also been investigated, respectively.
Collapse
Affiliation(s)
- Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
2
|
Ke Y, Gall BK, Dewey NS, Rotavera B, Ferreira EM. Multigram Synthesis of a Combustion-Relevant δ-Ketohydroperoxide through Sulfonylhydrazine Substitution. Chemistry 2022; 28:e202202266. [PMID: 35945143 PMCID: PMC9643622 DOI: 10.1002/chem.202202266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/11/2023]
Abstract
A synthesis of a δ-ketohydroperoxide is described, addressing potential functional-group compatibilities in these elusive species relevant to combustion and atmospheric chemistries. The hydroperoxide is installed via sulfonylhydrazine substitution, which was found to be more effective than displacement of secondary halides. As part of this protocol, it was observed that 1,2-dimethoxyethane is an advantageous medium for the reaction, avoiding the formation of a tetrahydrofuran hydroperoxide side product. This discovery facilitated the multigram synthesis (6 steps, 41 % yield overall) and discrete characterization of the target δ-ketohydroperoxide.
Collapse
Affiliation(s)
- Yan‐Ting Ke
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Nicholas S. Dewey
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Brandon Rotavera
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
- College of EngineeringUniversity of GeorgiaAthensGeorgia30602United States
| | - Eric M. Ferreira
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| |
Collapse
|
3
|
Lardani D, Marti R, Quintavalla A, Lombardo M, Trombini C. Multidecagram Scale Synthesis of an Endoperoxide, Precursor of Anti-malarial and Anti-leishmanial Agents, via Free-Radical [2 + 2 + 2] Annulation with Molecular Oxygen. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Davide Lardani
- Institut ChemTech, HES-SO, Hochschule für Technik und Architektur, Boulevard de Pérolles 80, CH-1700 Freiburg, Switzerland
| | - Roger Marti
- Institut ChemTech, HES-SO, Hochschule für Technik und Architektur, Boulevard de Pérolles 80, CH-1700 Freiburg, Switzerland
| | - Arianna Quintavalla
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Lombardo
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Claudio Trombini
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
4
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
5
|
Ortalli M, Varani S, Rosso C, Quintavalla A, Lombardo M, Trombini C. Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. Eur J Med Chem 2019; 170:126-140. [PMID: 30878827 DOI: 10.1016/j.ejmech.2019.02.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 01/28/2023]
Abstract
The treatment of human leishmaniasis is currently based on few compounds that are highly toxic, expensive and have a high rate of treatment failure. A number of recent studies on new drugs focuses on natural or semi-synthetic compounds. Among them, the endoperoxide artemisinin, extracted from Artemisia annua, and some of its derivatives have shown leishmanicidal activity. In the present work, a series of structurally simple, fully synthetic 1,2-dioxanes were evaluated for in vitro antileishmanial activity against promastigotes of Leishmania donovani; the cytotoxicity for mammalian cells was also assessed. The six most promising compounds in terms of activity and selectivity were further investigated for their antileishmanial activity on the promastigote forms of L. tropica, L. major and L. infantum and against L. donovani amastigotes. The good performance in terms of potency and selectivity makes these six hits promising candidates for a preliminary lead optimization as antileishmanial agents.
Collapse
Affiliation(s)
- M Ortalli
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy
| | - S Varani
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy; Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - C Rosso
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - A Quintavalla
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - M Lombardo
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - C Trombini
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
6
|
Xia Q, Wang Q, Yan C, Dong J, Song H, Li L, Liu Y, Wang Q, Liu X, Song H. Merging Photoredox with Brønsted Acid Catalysis: The Cross-Dehydrogenative C−O Coupling for sp3
C−H Bond Peroxidation. Chemistry 2017; 23:10871-10877. [DOI: 10.1002/chem.201701755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Xia
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Changcun Yan
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ling Li
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| | - Xiangming Liu
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry; Research Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
7
|
Jana A, Grela K. Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides. Org Lett 2017; 19:520-523. [PMID: 28094973 DOI: 10.1021/acs.orglett.6b03688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anupam Jana
- Faculty of Chemistry, Biological
and Chemical Research Centre, University of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty of Chemistry, Biological
and Chemical Research Centre, University of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Chavan SR, Gavale KS, Kamble KM, Pingale SS, Dhavale DD. gem-Disubstituent Effect in Rate Acceleration of Intramolecular Alkyne-Azide Cycloaddition Reaction. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Arzumanyan AV, Terent’ev AO, Novikov RA, Lakhtin VG, Grigoriev MS, Nikishin GI. Reduction of Organosilicon Peroxides: Ring Contraction and Cyclodimerization. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashot V. Arzumanyan
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- A.
N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova ul, Moscow 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Roman A. Novikov
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Valentin G. Lakhtin
- State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 38 Shosse
Entuziastov, 111123 Moscow, Russian Federation
| | - Michail S. Grigoriev
- A.
N. Frumkin Institute of Physical Chemistry and Electrochemistry, Radiochemistry
Department, Russian Academy of Sciences, 40 Obruchev st., 117342 Moscow, Russian Federation
| | - Gennady I. Nikishin
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Maity S, Parhi B, Ghorai P. Enantio- and Diastereoselective Synthesis ofexo-Peroxyacetals: An Organocatalyzed Peroxyhemiacetalization/oxa-Michael Addition Cascade. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sanjay Maity
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Biswajit Parhi
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| |
Collapse
|
11
|
Maity S, Parhi B, Ghorai P. Enantio- and Diastereoselective Synthesis ofexo-Peroxyacetals: An Organocatalyzed Peroxyhemiacetalization/oxa-Michael Addition Cascade. Angew Chem Int Ed Engl 2016; 55:7723-7. [DOI: 10.1002/anie.201511165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Sanjay Maity
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Biswajit Parhi
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| | - Prasanta Ghorai
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal By-pass Road, Bhauri Bhopal- 462066 India
| |
Collapse
|
12
|
Meyer AG, Smith JA, Hyland C, Williams CC, Bissember AC, Nicholls TP. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/b978-0-08-100755-6.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|