1
|
Luo W, Jiang H, Luo W, Liu C, Zhou J. Halogen Radical-Enabled Dearomatization of N-Arylpropiolamides via Photoinduced Sequential Halogenation/Spirocyclization/Oxidation Process. J Org Chem 2024; 89:18689-18697. [PMID: 39630607 DOI: 10.1021/acs.joc.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here we report a strategy that eliminates the need for photocatalysts and external additives, which provides an operable and mild method for halogen radical-enabled dearomatization of N-arylpropiolamides under an oxygen atmosphere at room temperature. The method is applicable to a wide range of substrates, extending beyond the limited scope of p-methoxyl N-phenylpropynamides. Furthermore, several functional synthetic intermediates and anticancer bioactive molecules were successfully derived from 3-halogenated azaspiro[4.5]trienones.
Collapse
Affiliation(s)
- Wenkun Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huiling Jiang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Weiwei Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
2
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Fu SS, Yuan QQ, Ma L, Zhang ZM, Lu TB, Guo S. Oxidation of N-Alkyl(iso)quinolinium Salts Over TEMPO@Metal-Organic Framework Heterogeneous Photocatalyst †. CHEMSUSCHEM 2023; 16:e202202163. [PMID: 36545816 DOI: 10.1002/cssc.202202163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Quinolones and isoquinolones are of particular importance to pharmaceutical industry due to their diverse biological activities. However, their synthetic protocols were limited by high toxicity, high energy consumption, poor functional group tolerance and noble metal catalyst. This study concerns the development of a series of TEMPO@PCN-222 (TEMPO: 2,2,6,6-tetramethylpiperidinyl-1-oxy; PCN: porous coordination network) composite photocatalysts by coordinating different amount of 4-carboxy-TEMPO with the secondary building units of PCN-222. Upon visible-light irradiation, photogenerated holes in the highest occupied molecular orbital of PCN-222 can smoothly transfer to TEMPO, which can significantly boost the photosynthesis of bioactive (iso)quinolones from readily available N-alkyl(iso)quinolinium salts. TEMPO@PCN-222 exhibits an outstanding catalytic stability and substrate tolerance with a 1-methyl-2-quinolinone yield of 86.7 %, over four times that with PCN-222 (21.4 %). This work provides a new route to construct composite photocatalysts from abundant starting materials for efficient photosynthesis of high value-added chemicals.
Collapse
Affiliation(s)
- Shan-Shan Fu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Qiang-Qiang Yuan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Lihua Ma
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Ming Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Song Guo
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
4
|
Mai J, Huang Z, Lv S, Chen Q, Chen R, Xie F, Wang J, Li B. Visible light-induced cascade N-alkylation/amidation reaction of quinazolin-4(3 H)-ones and related N-heterocycles. Org Biomol Chem 2023; 21:2423-2428. [PMID: 36866685 DOI: 10.1039/d2ob02226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
An efficient and visible light-promoted cascade N-alkylation/amidation of quinazolin-4(3H)-ones with benzyl halides and allyl halides has been described for the first time to provide a convenient access to quinazoline-2,4(1H,3H)-diones. This cascade N-alkylation/amidation reaction shows good functional group tolerance and could also be applied to N-heterocycles such as benzo[d]thiazoles, benzo[d]imidazoles, and quinazolines. Control experiments show that K2CO3 plays an important role in this transformation.
Collapse
Affiliation(s)
- Jiexiong Mai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Quan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Rongrong Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| |
Collapse
|
5
|
Tang X, Ding S, Song L, Van der Eycken EV. Transition Metal-Catalyzed C-H Activation/Annulation Approaches to Isoindolo[2,1-b]isoquinolin-5(7H)-ones. CHEM REC 2023; 23:e202200255. [PMID: 36646518 DOI: 10.1002/tcr.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Indexed: 01/18/2023]
Abstract
The isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold is widely present in lots of bioactive natural products. Diverse types of strategies have been developed to construct this scaffold. Recently, transition metal-catalyzed C-H activation/annulation is emerging as a powerful and straightforward method to construct diverse polyheterocycles with high atom- and step-economy. It also has been employed for the synthesis of the isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold. This review provides an introduction to recent advances for the preparation of isoindolo[2,1-b]isoquinolin-5(7H)-ones by using transition metal-catalyzed C-H activation/annulation. It will help researchers to find hidden opportunities and accelerate the discovery of novel transformations based on C-H activation/annulation.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Songtao Ding
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia
| |
Collapse
|
6
|
Oudeyer S, Levacher V, Beucher H, Brière JF. Recent Advances in Catalytic and Technology-Driven Radical Addition to N, N-Disubstituted Iminium Species. Molecules 2023; 28:molecules28031071. [PMID: 36770738 PMCID: PMC9921492 DOI: 10.3390/molecules28031071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Recently, radical chemistry has grown exponentially in the toolbox of organic synthetic chemists. Upon the (re)introduction of modern catalytic and technology-driven strategies, the implementation of highly reactive radical species is currently facilitated while expanding the scope of numerous synthetic methodologies. In this context, this review intends to cover the recent advances in radical-based transformations of N,N-disubstituted iminium substrates that encompass unique reactivities with respect to imines or protonated iminium salts. In particular, we have focused on the literature concerning the dipole type substrates, such as nitrones or azomethine imines, together with the chemistry of N+-X- (X = O, NR) azaarenium dipoles, which proved to be very versatile platforms in that field of research. The N-alkylazaarenium salts were been considered, which demonstrated specific reactivity profiles in radical chemistry.
Collapse
|
7
|
Capel E, Luis-Barrera J, Sorazu A, Uria U, Prieto L, Reyes E, Carrillo L, Vicario JL. Transannular Approach to 2,3-Dihydropyrrolo[1,2- b]isoquinolin-5(1 H)-ones through Brønsted Acid-Catalyzed Amidohalogenation. J Org Chem 2022; 87:10062-10072. [PMID: 35880953 PMCID: PMC9361296 DOI: 10.1021/acs.joc.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A transannular approach has been developed for the construction
of pyrrolo[1,2-b]isoquinolinones starting from benzo-fused
nine-membered enelactams. This process takes place in the presence
of a halogenating agent and under Brønsted acid catalysis and
proceeds via a transannular amidohalogenation, followed by elimination.
The reaction has been found to be wide in scope, enabling the formation
of a variety of tricyclic products in good overall yield, regardless
of the substitution pattern in the initial lactam substrate. The reaction
has also been applied to the total synthesis of a reported topoisomerase
I inhibitor and to the formal synthesis of rosettacin. Further extension
of this methodology allows the preparation of 10-iodopyrrolo[1,2-b]isoquinolinones by using an excess of halogenating agent
and these compounds can be further manipulated through standard Suzuki
coupling chemistry into a variety of 10-aryl-substituted pyrrolo[1,2-b]isoquinolinones.
Collapse
Affiliation(s)
- Estefanía Capel
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Luis-Barrera
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ana Sorazu
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraím Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
8
|
Facile synthesis of 1-substituted 4-H phthalazine, a versatile scaffold for chemically diverse phthalazines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Slathia N, Gupta A, Kapoor K. I2/ TBHP Reagent System: A Modern Paradigm for Organic Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kamal Kapoor
- University of Jammu Department of Chemistry Department of Chemistry 180006 Jammu INDIA
| |
Collapse
|
10
|
Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Amador‐Sánchez YA, López‐Mendoza P, Mijangos MV, Miranda LD. Synthesis of Tetrahydro‐4
H
‐pyrido[1,2‐
b
]isoquinolin‐4‐ones from Ugi 4‐CR‐Derived Dihydroisoquinoline‐Xanthates**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoarhy A. Amador‐Sánchez
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| | - Pedro López‐Mendoza
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| | - Marco V. Mijangos
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| | - Luis D. Miranda
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| |
Collapse
|
12
|
Kong L, Meng J, Tian W, Liu J, Hu X, Jiang ZH, Zhang W, Li Y, Bai LP. I 2-Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS OMEGA 2022; 7:1380-1394. [PMID: 35036799 PMCID: PMC8757360 DOI: 10.1021/acsomega.1c06017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 μM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 μM.
Collapse
Affiliation(s)
- Lingkai Kong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Jieru Meng
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wenyue Tian
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Jiazheng Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Xueping Hu
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wei Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Yanzhong Li
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Li-Ping Bai
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| |
Collapse
|
13
|
Song L, Manno R, Ranjan P, Sebastian V, Irusta S, Mallada R, Van Meervelt L, Santamaria J, Van der Eycken EV. Preparation of Cu cluster catalysts by simultaneous cooling-microwave heating: application in radical cascade annulation. NANOSCALE ADVANCES 2021; 3:1087-1095. [PMID: 36133300 PMCID: PMC9417637 DOI: 10.1039/d0na00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/09/2021] [Indexed: 06/16/2023]
Abstract
One of the hallmarks of microwave irradiation is its selective heating mechanism. In the past 30 years, alternative designs of chemical reactors have been introduced, where the microwave (MW) absorber occupies a limited reactor volume but the surrounding environment is MW transparent. This advantage results in a different heating profile or even the possibility to quickly cool down the system. Simultaneous cooling-microwave heating has been largely adopted for organic chemical transformations. However, to the best of our knowledge there are no reports of its application in the field of nanocluster synthesis. In this work, we propose an innovative one-pot procedure for the synthesis of Cu nanoclusters. The cluster nucleation was selectively MW-activated inside the pores of a highly ordered mesoporous substrate. Once the nucleation event occurred, the crystallization reaction was instantaneously quenched, precluding the growth events and favoring the production of Cu clusters with a homogenous size distribution. Herein, we demonstrated that Cu nanoclusters could be successfully adopted for radical cascade annulations of N-alkoxybenzamides, resulting in various tricyclic and tetracyclic isoquinolones, which are widely present in lots of natural products and bioactive compounds. Compared to reported homogeneous methods, supported Cu nanoclusters provide a better platform for a green, sustainable and efficient heterogeneous approach for the synthesis of tricyclic and tetracyclic isoquinolones, avoiding a variety of toxic waste/byproducts and metal contamination in the final products.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roberta Manno
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
| | - Prabhat Ranjan
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Reyes Mallada
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jesús Santamaria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical & Environmental Engineering, Edificio I+D+i Campus Rio Ebro, C/MarianoEsquillor s/n 50018 Zaragoza Spain
- Networking Research Center CIBER-BBN 28029 Madrid Spain
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
14
|
Bansode AH, Suryavanshi G. Visible‐Light‐Induced Controlled Oxidation of
N
‐Substituted 1,2,3,4‐Tetrahydroisoquinolines for the Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐ones and Isoquinolin‐1(2
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
15
|
Mandrekar KS, Tilve SG. Molecular iodine mediated oxidative cleavage of the C–N bond of aryl and heteroaryl (dimethylamino)methyl groups into aldehydes. NEW J CHEM 2021. [DOI: 10.1039/d0nj05832g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient iodine mediated conversion of aryl or heteroaryl (dimethylamino)methyl compunds to aryl or heteroaryl aldehydes is achieved via cleavage of C-N bond.
Collapse
|
16
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
17
|
Zhuge J, Jiang Z, Jiang W, Histand G, Lin D. Iodine-catalyzed oxidative functionalization of purines with (thio)ethers or methylarenes for the synthesis of purin-8-one analogues. Org Biomol Chem 2021; 19:5121-5126. [PMID: 34018534 DOI: 10.1039/d1ob00118c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient oxidative functionalization of purine-like substrates with (thio)ethers or methylarenes under mild conditions is described. Using I2 as the catalyst, and TBHP as the oxidant, this protocol provides a valuable synthetic tool for the assembly of a wide range of 9-alkyl(benzyl)purin-8-one derivatives with high atom- and step-economy and exceptional functional group tolerance.
Collapse
Affiliation(s)
- Juanping Zhuge
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ziyang Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gary Histand
- International School of Advanced Materials, South China University of Technology, Guangzhou 510640, China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
18
|
Zhou H, Liu Y, Xia H, Xu J, Wang T, Xu S. Direct Transformation of Alkylarenes into
N
‐(Pyridine‐2‐yl)amides by C(sp
3
)–C(sp
3
) Bond Cleavage. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Haipin Zhou
- College of Materials & Chemical Engineering Chuzhou University 1 West Huifeng Road 239000, Anhui Chouzhou China
| | - Yanpeng Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang 210009 Nanjing China
| | - Haidong Xia
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang 210009 Nanjing China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang 210009 Nanjing China
| | - Tingfang Wang
- School of Medicine Shanghai University 99 Shangda Road 200444 Shanghai China
| | - Shengtao Xu
- College of Materials & Chemical Engineering Chuzhou University 1 West Huifeng Road 239000, Anhui Chouzhou China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang 210009 Nanjing China
| |
Collapse
|
19
|
Tian G, Song L, Li Z, Robeyns K, Van Meervelt L, Van der Eycken EV. A Gold(I)-Catalyzed Hydroamination/Cycloisomerization Cascade: Concise Synthesis of (±)-seco-Antofine and (±)-Septicine. Org Lett 2020; 22:8441-8445. [DOI: 10.1021/acs.orglett.0c03062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Koen Robeyns
- IMCN, Molecules Solids and Reactivity division (MOST), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
20
|
Choi S, Oh H, Sim J, Yu E, Shin S, Park CM. Metal-Free Synthesis of Indolopyrans and 2,3-Dihydrofurans Based on Tandem Oxidative Cycloaddition. Org Lett 2020; 22:5528-5534. [PMID: 32628496 DOI: 10.1021/acs.orglett.0c01896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of versatile scaffold indolopyrans based on C-C radical-radical cross-coupling under metal-free conditions is described. The reaction involving single electron transfer between coupling partners followed by cage collapse allows highly selective cross-coupling while employing only equimolar amounts of coupling partners. Moreover, the mechanistic manifold was expanded for the functionalization of enamines to give the stereoselective synthesis of 2,3-dihydrofurans. This iodine-mediated oxidative coupling features mild conditions and fast reaction kinetics.
Collapse
Affiliation(s)
- Subin Choi
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Hyeonji Oh
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Jeongwoo Sim
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Seunghoon Shin
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| |
Collapse
|
21
|
Yang Y, Xu C, Teng F, Li J. Dearomatization‐Enabled Visible‐Light‐Induced 1,2‐Alkylsulfonylation of Alkenes Using Sodium Sulfinates and Pyridinium Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuan Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha 410081 People's Republic of China
| | - Chong‐Hui Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 People's Republic of China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 People's Republic of China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha 410081 People's Republic of China
| |
Collapse
|
22
|
Liu X, Wang Y, Song D, Wang Y, Cao H. Electrochemical regioselective selenylation/oxidation of N-alkylisoquinolinium salts via double C(sp2)–H bond functionalization. Chem Commun (Camb) 2020; 56:15325-15328. [DOI: 10.1039/d0cc06778d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and environmentally friendly electrochemical regioselective selenylation/oxidation of N-alkylisoquinolinium salts via double C(sp2)–H bond functionalization has been developed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Yajun Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Dan Song
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| |
Collapse
|
23
|
Fu SS, Ren XY, Guo S, Lan G, Zhang ZM, Lu TB, Lin W. Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. iScience 2019; 23:100793. [PMID: 31958757 PMCID: PMC6992937 DOI: 10.1016/j.isci.2019.100793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Quinolones and isoquinolones are of interest to pharmaceutical industry owing to their potent biological activities. Herein, we first encapsulated sub-nm Pt nanoclusters into Zr-porphyrin frameworks to afford an efficient photocatalyst Pt0.9@PCN-221. This catalyst can dramatically promote electron-hole separation and 1O2 generation to achieve synergistic effect first in the metal-organic framework (MOF) system, leading to the highest activity in photosynthesis of (iso)quinolones in >90.0% yields without any electronic sacrificial agents. Impressively, Pt0.9@PCN-221 was reused 10 times without loss of activity and can catalyze gram-scale synthesis of 1-methyl-5-nitroisoquinolinone at an activity of 175.8 g·gcat−1, 22 times higher than that of PCN-221. Systematic investigations reveal the contribution of synergistic effect of photogenerated electron, photogenerated hole, and 1O2 generation for efficient photo-oxidation, thus highlighting a new strategy to integrate multiple functional components into MOFs to synergistically catalyze complex photoreactions for exploring biologically active heterocyclic molecules. A state-of-the-art photocatalyst for preparation of bioactive (iso)quinolones Synergistic catalysis of photogenerated e−/h+ and 1O2 Sub-nm Pt0.9@PCN-221 with a high efficiency of e−-h+ separation and 1O2 generation
Collapse
Affiliation(s)
- Shan-Shan Fu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiu-Ying Ren
- College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Guangxu Lan
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Saini HK, Dhiman S, Nandwana NK, Krishnan R, Kumar A. Copper and palladium-catalyzed sequential reactions: one-pot synthesis of isoindolo[2,1-b]isoquinolin-7(5H)-ones. Org Biomol Chem 2019; 17:4281-4290. [PMID: 30969295 DOI: 10.1039/c9ob00440h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A highly efficient protocol has been developed for the synthesis of diversely substituted isoindolo[2,1-b]isoquinolin-7(5H)-ones through sequential Cu(ii)-catalyzed Sonogashira coupling, intramolecular hydroamidation followed by palladium-catalyzed ligand-free Heck reaction. Good to excellent yields (41-94%) were observed with excellent substrate scope and functional group tolerance. The developed method represents a practical strategy for the construction of bioactive isoindolo[2,1-b]isoquinolin-7(5H)-ones.
Collapse
Affiliation(s)
- Hitesh Kumar Saini
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India.
| | | | | | | | | |
Collapse
|
25
|
Luo WK, Xu CL, Yang L. I2/TBHP mediated multiple C H bonds functionalization of azaarenes with methylarenes to synthesize iodoisoquinolinones via iodination/N-benzylation/amidation sequence. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Park H, Bae J, Son S, Jang H. Multifunctionalization of Indoles: Synthesis of 3‐Iodo‐2‐sulfonyl Indoles. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hyowon Park
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| | - Junryeol Bae
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| | - Soobin Son
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| | - Hye‐Young Jang
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| |
Collapse
|
27
|
Shantharjun B, Rajeswari R, Vani D, Unnava R, Sridhar B, Reddy KR. Metal‐Free, One‐Pot Oxidative Triple Functionalization of Azaarenes with Methyl Arenes Mediated by Molecular Iodine/TBHP: Synthesis of N‐Benzylated Iodo(iso)quinolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bangarigalla Shantharjun
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| | - Radhakrishnan Rajeswari
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
| | - Damera Vani
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| | - Ramanjaneyulu Unnava
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
| | - Balasubramanian Sridhar
- X-ray Crystallography DivisionCSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad- 500007 India
| | - Kallu Rajender Reddy
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| |
Collapse
|
28
|
|
29
|
Xie H, Xing Q, Shan Z, Xiao F, Deng G. Nickel‐Catalyzed Annulation of
o
‐Haloarylamidines with Aryl Acetylenes: Synthesis of Isoquinolone and 1‐Aminoisoquinoline Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Qiaoyan Xing
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhifei Shan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
30
|
Song L, Zhang X, Tian G, Robeyns K, Van Meervelt L, Harvey JN, Van der Eycken EV. Intramolecular cascade annulation triggered by C H activation via rhodium hydride intermediate. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Fang Z, Wang Y, Wang Y. Synthesis of 4-Iodoisoquinolin-1(2 H)-ones by a Dirhodium(II)-Catalyzed 1,4-Bisfunctionalization of Isoquinolinium Iodide Salts. Org Lett 2019; 21:434-438. [PMID: 30615466 DOI: 10.1021/acs.orglett.8b03614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Rh2(II,II)-catalyzed reaction has been developed under mild conditions. This synthetic method proceeds through iodination/oxidation of readily available isoquinolinium iodide salts under aerobic conditions with good to excellent yields. 4-Iodoisoquinolin-1(2 H)-ones are important building blocks for biologically and medicinally important compounds. The developed methodology was applied to the gram-scale synthesis of a key intermediate in the synthesis of the CRTH2 antagonist CRA-680.
Collapse
Affiliation(s)
- Zaixiang Fang
- College of Chemistry , Sichuan University , Chengdu 610064 , P.R. China
| | - Yi Wang
- College of Chemistry , Sichuan University , Chengdu 610064 , P.R. China
| | - Yuanhua Wang
- College of Chemistry , Sichuan University , Chengdu 610064 , P.R. China
| |
Collapse
|
32
|
Liu Y, Lu L, Zhou H, Xu F, Ma C, Huang Z, Xu J, Xu S. Chemodivergent synthesis of N-(pyridin-2-yl)amides and 3-bromoimidazo[1,2-a]pyridines from α-bromoketones and 2-aminopyridines. RSC Adv 2019; 9:34671-34676. [PMID: 35529989 PMCID: PMC9073897 DOI: 10.1039/c9ra06724h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
N-(Pyridin-2-yl)amides and 3-bromoimidazo[1,2-a]pyridines were synthesized respectively from α-bromoketones and 2-aminopyridine under different reaction conditions.
Collapse
Affiliation(s)
- Yanpeng Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Chemistry
| | - Lixue Lu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Haipin Zhou
- College of Materials & Chemical Engineering
- Chuzhou University
- Chuzhou 239000
- China
| | - Feijie Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
33
|
Fang HL, Sun Q, Ye R, Sun J, Han Y, Yan CG. Copper-catalyzed selective difunctionalization of N-heteroarenes through a halogen atom transfer radical process. NEW J CHEM 2019. [DOI: 10.1039/c9nj03471d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly regioselective Cu-catalyzed difunctionalization of quinolinium and benzothiazolim salts was developed with ether and halide (X = Br, Cl) as the halogen source under mild conditions.
Collapse
Affiliation(s)
- Hui-Lin Fang
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Qiu Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Rong Ye
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Ying Han
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
34
|
Liu Y, Sun H, Huang Z, Ma C, Lin A, Yao H, Xu J, Xu S. Metal-Free Synthesis of N-(Pyridine-2-yl)amides from Ketones via Selective Oxidative Cleavage of C(O)–C(Alkyl) Bond in Water. J Org Chem 2018; 83:14307-14313. [DOI: 10.1021/acs.joc.8b01956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yanpeng Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P. R. China
| | - Honghao Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
35
|
Parvatkar PT, Manetsch R, Banik BK. Metal-Free Cross-Dehydrogenative Coupling (CDC): Molecular Iodine as a Versatile Catalyst/Reagent for CDC Reactions. Chem Asian J 2018; 14:6-30. [DOI: 10.1002/asia.201801237] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Prakash T. Parvatkar
- Department of Chemistry and Chemical Biology; Northeastern University, 102 Hurtig Hall; 360 Huntington Avenue Boston MA 02115 USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology; Northeastern University, 102 Hurtig Hall; 360 Huntington Avenue Boston MA 02115 USA
- Department of Pharmaceutical Sciences; Northeastern University, 102 Hurtig Hall; 360 Huntington Avenue Boston MA 02115 USA
| | - Bimal K. Banik
- Community Health System of South Texas; 3135 South Sugar Road Edinburg TX 78539 USA
| |
Collapse
|
36
|
Rhodium(III)-catalyzed intermolecular cascade annulation through C-H activation: Concise synthesis of rosettacin. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
38
|
Rong GQ, Zhao JQ, Zhang XM, Xu XY, Yuan WC, Zhou MQ. One-pot access to indolylchromeno[2,3-b]indoles via iodine-mediated Friedel-Crafts alkylation/oxidative coupling reaction of indoles and salicylaldehydes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Liu X, Zhou Y, Yang Z, Li Q, Zhao L, Liu P. Iodine-Catalyzed C–H Amidation and Imination at the 2α-Position of 2,3-Disubstituted Indoles with Chloramine Salts. J Org Chem 2018; 83:4665-4673. [DOI: 10.1021/acs.joc.8b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaozu Liu
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yuxiang Zhou
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Zhongqin Yang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qin Li
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang Zhao
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Peijun Liu
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
40
|
Sun Q, Zhang YY, Sun J, Han Y, Jia X, Yan CG. Construction of C(sp2)–X (X = Br, Cl) Bonds through a Copper-Catalyzed Atom-Transfer Radical Process: Application for the 1,4-Difunctionalization of Isoquinolinium Salts. Org Lett 2018; 20:987-990. [DOI: 10.1021/acs.orglett.7b03751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qiu Sun
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuan-Yuan Zhang
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jing Sun
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ying Han
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
41
|
Raji Reddy C, Mallesh K. Rh(III)-Catalyzed Cascade Annulations To Access Isoindolo[2,1-b]isoquinolin-5(7H)-ones via C–H Activation: Synthesis of Rosettacin. Org Lett 2017; 20:150-153. [DOI: 10.1021/acs.orglett.7b03509] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chada Raji Reddy
- Division
of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Kathe Mallesh
- Division
of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
42
|
Gao B, Chen K, Bi X, Wang J. Intramolecular functionalization of C(sp 3 ) H bonds adjacent to an amide nitrogen atom: Metal-free synthesis of 2-hydroxy-benzoxazinone derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Jin Y, Ou L, Yang H, Fu H. Visible-Light-Mediated Aerobic Oxidation of N-Alkylpyridinium Salts under Organic Photocatalysis. J Am Chem Soc 2017; 139:14237-14243. [DOI: 10.1021/jacs.7b07883] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yunhe Jin
- Key Laboratory of Bioorganic Phosphorus
Chemistry and Chemical Biology (Ministry of Education), Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus
Chemistry and Chemical Biology (Ministry of Education), Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Key Laboratory of Bioorganic Phosphorus
Chemistry and Chemical Biology (Ministry of Education), Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus
Chemistry and Chemical Biology (Ministry of Education), Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Xu Y, Li B, Zhang X, Fan X. Metal-Free Synthesis of 2-Aminobenzothiazoles via Iodine-Catalyzed and Oxygen-Promoted Cascade Reactions of Isothiocyanatobenzenes with Amines. J Org Chem 2017; 82:9637-9646. [PMID: 28812346 DOI: 10.1021/acs.joc.7b01683] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, a highly efficient and sustainable synthesis of 2-aminobenzothiazoles through the cascade reactions of isothiocyanatobenzenes with primary or secondary amines by using iodine as a catalyst and oxygen as an oxidant is presented. Mechanistically, the formation of the title compounds involves the in situ formation of the required benzothiourea intermediate followed by its intramolecular cross dehydrogenative coupling of a C(sp2)-H bond and a S-H bond. To our knowledge, this should be the first example in which 2-aminobenzothiazoles are efficiently prepared from simple and cheap isothiocyanates and amines under metal-free conditions by using iodine as a catalyst and molecular oxygen as an oxidant with water as the byproduct. Compared with literature protocols, this method eliminates the use of ortho-halo-substituted precursors, expensive transition-metal catalysts, and hazardous oxidants.
Collapse
Affiliation(s)
- Yuanshuang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, China
| | - Xinying Zhang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, China
| | - Xuesen Fan
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, China
| |
Collapse
|
45
|
Bakulina O, Ivanov A, Suslonov V, Dar'in D, Krasavin M. A speedy route to sterically encumbered, benzene-fused derivatives of privileged, naturally occurring hexahydropyrrolo[1,2- b]isoquinoline. Beilstein J Org Chem 2017; 13:1413-1424. [PMID: 28781707 PMCID: PMC5530605 DOI: 10.3762/bjoc.13.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022] Open
Abstract
A series of 15 benzene-fused hexahydropyrrolo[1,2-b]isoquinolonic acids with substantial degree of steric encumbrance has been prepared via a novel variant of the Castagnoli–Cushman reaction of homophthalic anhydride (HPA) and various indolenines. The employment of a special kind of a cyclic imine component reaction allowed, for the first time, isolating a Mannich-type adduct between HPA and an imine component which has been postulated but never obtained in similar reactions.
Collapse
Affiliation(s)
- Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504, Russia
| | - Alexander Ivanov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504, Russia
| | - Vitalii Suslonov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504, Russia
| |
Collapse
|
46
|
Long J, Cao X, Zhu L, Qiu R, Au CT, Yin SF, Iwasaki T, Kambe N. Intramolecular, Site-Selective, Iodine-Mediated, Amination of Unactivated (sp3)C–H Bonds for the Synthesis of Indoline Derivatives. Org Lett 2017; 19:2793-2796. [DOI: 10.1021/acs.orglett.7b00846] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinguo Long
- State
Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry
and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Cao
- State
Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry
and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Longzhi Zhu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry
and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry
and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chak-Tong Au
- College
of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtang, China
| | - Shuang-Feng Yin
- State
Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry
and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Takanori Iwasaki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuaki Kambe
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
A facile and environmental friendly strategy for the synthesis of N-methoxyquinolin-2(1H)-ones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Kaur J, Islam N, Kumar A, Chimni SS. Experimental and DFT Studies of Organocatalytic Microwave-Assisted Reaction of Isatin Derivatives with Dinitrotoluenes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jasneet Kaur
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; Amritsar 143005 India
| | - Nasarul Islam
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; Amritsar 143005 India
| | - Akshay Kumar
- Department of Chemistry; DAV University; Jalandhar 144012 India
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; Amritsar 143005 India
| |
Collapse
|
49
|
Wei W, Cui H, Yang D, Liu X, He C, Dai S, Wang H. Metal-free molecular iodine-catalyzed direct sulfonylation of pyrazolones with sodium sulfinates leading to sulfonated pyrazoles at room temperature. Org Chem Front 2017. [DOI: 10.1039/c6qo00403b] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and highly efficient iodine-catalyzed sulfonylation of pyrazolones with sodium sulfinates has been developed under mild and metal-free conditions.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Huanhuan Cui
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Daoshan Yang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Xiaoxia Liu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Chenglong He
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Shicui Dai
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Hua Wang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| |
Collapse
|
50
|
Zhu D, Luo WK, Yang L, Ma DY. Iodine-catalyzed oxidative multiple C–H bond functionalization of isoquinolines with methylarenes: an efficient synthesis of isoquinoline-1,3,4(2H)-triones. Org Biomol Chem 2017; 15:7112-7116. [DOI: 10.1039/c7ob01539a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An iodine-catalyzed multiple C–H bond functionalization of isoquinolines with methylarenes via a successive benzylic sp3 C–H iodination/N-benzylation/amidation/double sp2 C–H oxidation sequence to yield isoquinoline-1,3,4(2H)-triones is developed for the first time.
Collapse
Affiliation(s)
- Di Zhu
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- College of Chemistry
- Xiangtan University
- Hunan
- PR China
| | - Wen-Kun Luo
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- College of Chemistry
- Xiangtan University
- Hunan
- PR China
| | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education
- College of Chemistry
- Xiangtan University
- Hunan
- PR China
| | - Da-You Ma
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Hunan
- PR China
| |
Collapse
|