1
|
Liu W, Lan H, Xia H, Xiao XQ, Yang KF, Ni Z, Bai Y, Shen Q, Shao X. Deuteriodifluoromethyl Sulfonium Ylides: Easily Accessible Reagents for Electrophilic Deuteriodifluoromethylation of O-Nucleophiles. Org Lett 2025; 27:3379-3384. [PMID: 40129362 DOI: 10.1021/acs.orglett.5c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A class of sulfonium ylide-based reagents for electrophilic deuteriodifluoromethylation is reported. Thus, a wide array of ubiquitous O-nucleophiles such as sulfonic acid, alcohol, carboxyl acid, and phosphoric acid are deuteriodifluoromethylated, providing a straightforward approach to access the OCF2D-functionalizazed scaffolds that are otherwise challenging to synthesize using conventional methods. This base-free protocol also displays broad functional group compatibility and is amenable to effective late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Wenting Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Huilin Lan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Hongli Xia
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ke-Fang Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
2
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Niu HL, Luo PX, Zhang SL. Difluorocarbene-Promoted O-O Bond Activation of Peroxy Acids for Electrophilic Carboxylation of Boronic Acids. Chem Asian J 2024; 19:e202400613. [PMID: 39018086 DOI: 10.1002/asia.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
In this study, a difluorocarbene-promoted O-O bond activation of peroxy acids is developed through the insertion of difluorocarbene into O-H bond. This activation strategy in synergy with O-B coordination with boronic acids/ester greatly polarizes the O-O bond for in-situ generation of carboxylium species that reacts with the nucleophilic part of boronic acids in a concerted way to produce carboxylic esters. Good efficiency and functional group tolerance are demonstrated. Application of this method to the functionalization of a boronic acid drug used as HSL enzyme inhibitor produces smoothly the ester derivative. This difluorocarbene-mediated O-O bond activation strategy is conceptually different from traditional radical type methods, and is also complementary to conventional esterification methods with a distinct retro-synthetic disconnection.
Collapse
Affiliation(s)
- Hao-Lin Niu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| | - Peng-Xi Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800, Jiangsu Province, Wuxi, 214122, China
| |
Collapse
|
4
|
Chen X, Liu Y, Zhang S, Li Y, Zhou XY, Yu X, Feng X, Yamamoto Y, Bao M. A Difluoromethylation Reagent: Access to Difluoromethyl Arenes through Palladium Catalysis. Org Lett 2024; 26:6024-6029. [PMID: 38984734 DOI: 10.1021/acs.orglett.4c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A new radical difluoromethylation was developed by using inexpensive and readily available difluoroacetic anhydride and N-phenyl-4-methylbenzenesulfonamide for the first time. The reaction of arylboronic acids with the new difluoromethylation reagent, N-phenyl-N-tosyldifluoroacetamide, proceeded smoothly in the presence of palladium catalyst to provide difluoromethylarenes in satisfactory to excellent yields. The electronic property (electron-donating or electron-withdrawing) of the substituent linked to the aromatic ring did not considerably influence the reactivity of arylboronic acid. Various groups, including the synthetically useful functional groups Cl, CN, and NO2, were tolerated well under the current reaction conditions.
Collapse
Affiliation(s)
- Xia Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yining Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Chi BK, Gavin SJ, Ahern BN, Peperni N, Monfette S, Weix DJ. Sulfone Electrophiles in Cross-Electrophile Coupling: Nickel-Catalyzed Difluoromethylation of Aryl Bromides. ACS Catal 2024; 14:11087-11100. [PMID: 39391026 PMCID: PMC11463998 DOI: 10.1021/acscatal.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fluoroalkyl fragments have played a critical role in the design of pharmaceutical and agrochemical molecules in recent years due to the enhanced biological properties of fluorinated molecules compared to their non-fluorinated analogues. Despite the potential advantages conferred by incorporating a difluoromethyl group in organic compounds, industrial adoption of difluoromethylation methods lags behind fluorination and trifluoromethylation. This is due in part to challenges in applying common difluoromethyl sources towards industrial applications. We report here the nickel-catalyzed cross-electrophile coupling of (hetero)aryl bromides with difluoromethyl 2-pyridyl sulfone, a sustainably sourced, crystalline difluoromethylation reagent. The scope of this reaction is demonstrated with 24 examples (67 ± 16% average yield) including a diverse array of heteroaryl bromides and precursors to difluoromethyl-containing preclinical pharmaceuticals. This reaction can be applied to small-scale parallel synthesis and benchtop scale-up under mild conditions. As sulfone reagents are uncommon electrophiles in cross-electrophile coupling, the mechanism of this process was investigated. Studies confirmed the formation of •CF2H instead of difluorocarbene. A series of modified difluoromethyl sulfones revealed that sulfone reactivity does not correlate exclusively with reduction potential and that coordination of cations or nickel to the pyridyl group is essential to reactivity, setting out parameters for matching the reactivity of sulfones in cross-electrophile coupling.
Collapse
Affiliation(s)
- Benjamin K. Chi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samantha J. Gavin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nikita Peperni
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
7
|
Cao M, Zuo D, Wang D, Li Y, Zhao J, Tan J, Li P. Palladium-Catalyzed Iodine Assisted Carbonylation of Indoles with ClCF 2CO 2Na and Alcohols. J Org Chem 2024; 89:5871-5877. [PMID: 38595315 DOI: 10.1021/acs.joc.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A palladium-catalyzed iodine-assisted carbonylation reaction of indoles with readily available ClCF2CO2Na and alcohols has been developed. This protocol provides a practical and efficient approach to highly regioselective indole-3-carboxylates via a preiodination strategy of indoles. Different from classic carbonylation using toxic and difficult-to-handle carbon monoxide, this operationally simple and scalable reaction employed difluorocarbene as the carbonyl surrogate.
Collapse
Affiliation(s)
- Mengting Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dandan Zuo
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yafei Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
8
|
Yao J, Shao L, Kang X, Zhu M, Huo X, Wang X. Direct α-Arylation of Benzo[ b]furans Catalyzed by a Pd 3 Cluster. J Org Chem 2024; 89:1719-1726. [PMID: 38204281 DOI: 10.1021/acs.joc.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lili Shao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
9
|
Hu C, Wang L, Wu Y, Zheng Y, Fu Y, Du Z. Synthesis of N-substituted phthalimides via Pd-catalyzed [4+1] cycloaddition reaction. Chem Commun (Camb) 2023. [PMID: 38014497 DOI: 10.1039/d3cc04534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A novel Pd-catalyzed assembly of N-substituted phthalimides by merging of [4+1] cycloaddition and difluorocarbene transfer carbonylation from 2-iodo-N-phenylbenzamides and difluorocarbene precursors is disclosed. Difluorocarbene acts as a carbonyl source and simultaneously forms one C-C bond, one C-N bond and one CO bond to produce N-substituted phthalimides in high yields.
Collapse
Affiliation(s)
- Chengxian Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Lu Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yonglong Zheng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
10
|
Babbar A, Yamini P, Saleem M, Yadagiri D. Transition metal-catalyzed reactivity of carbenes with boronic acid derivatives for arylation (alkylation) and beyond. Org Biomol Chem 2023; 21:7062-7078. [PMID: 37610724 DOI: 10.1039/d3ob00904a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This comprehensive review article discussed the reactivity of carbenes with boronic acid derivatives for the one-pot synthesis of diarylmethanes, difluoromethylated arenes, aryl and alkyl boron compounds, arylacetic acid derivatives, furan derivatives, and many other compounds. We have summarized the arylation, vinylation, and alkylation of carbenes utilizing various transition metals, viz. palladium, rhodium, copper, and platinum, for the construction of carbon-carbon bonds, carbon-boron bonds, and beyond through the cross-coupling strategy. The reason for the increasing popularity of these novel methodologies is their application in the synthesis and late-stage functionalization of biologically active compounds and natural products. Notably, organoboron compounds are exemplified as versatile synthetic intermediates for constructing various bonds.
Collapse
Affiliation(s)
- Akanksha Babbar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, IIT Roorkee, 247667, Uttarakhand, India.
| | - Pokhriyal Yamini
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, IIT Roorkee, 247667, Uttarakhand, India.
| | - Mohammad Saleem
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, IIT Roorkee, 247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, IIT Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
11
|
Zhang XY, Sun SP, Sang YQ, Xue XS, Min QQ, Zhang X. Reductive Catalytic Difluorocarbene Transfer via Palladium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306501. [PMID: 37365143 DOI: 10.1002/anie.202306501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2 H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0 (Ln )]=CF2 ) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2 Pd(Ln )X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Ping Sun
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue-Qian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
12
|
Zeng X, Li Y, Min QQ, Xue XS, Zhang X. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nat Chem 2023:10.1038/s41557-023-01236-8. [PMID: 37308708 DOI: 10.1038/s41557-023-01236-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
The use of metal catalysts to produce and control the reactivity of carbenes has long offered a powerful approach to organic synthesis; however, difluorocarbene transfer catalysed by metal is an outlier and remains a substantial challenge. In that context, copper difluorocarbene chemistry has been elusive so far. Here we report the design, synthesis, characterization and reactivity of isolable copper(I) difluorocarbene complexes, which enable the development of a copper-catalysed difluorocarbene transfer reaction. The method offers a strategy for the modular synthesis of organofluorine compounds from simple and readily available components. This strategy facilitates a modular difluoroalkylation by coupling difluorocarbene with two inexpensive feedstocks, silyl enol ethers and allyl/propargyl bromides, in a one-pot reaction via copper catalysis, providing a diversity of difluoromethylene-containing products without laborious multistep synthesis. The approach enables access to various fluorinated skeletons of medicinal interest. Mechanistic and computational studies consistently reveal a mechanism involving nucleophilic addition to an electrophilic copper(I) difluorocarbene.
Collapse
Affiliation(s)
- Xin Zeng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Fuchibe K, Ichikawa J. Generation of difluorocarbenes and introduction of fluorinated one carbon units into carbonyl and related compounds. Chem Commun (Camb) 2023; 59:2532-2540. [PMID: 36723345 DOI: 10.1039/d2cc03950h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Difluorocarbene is a simple and versatile one-carbon unit for synthesizing acyclic and cyclic organofluorine compounds. However, the use of difluorocarbene in organic synthesis has been relatively limited because of the harsh conditions required for its generation, the toxicity of the precursors, and undesired dimerization. This feature article provides an account of (i) the generation of free and metal difluorocarbenes from trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)acetate (TFDA) or BrCF2CO2Li/Na and (ii) their application to the facile synthesis of valuable organofluorine compounds. The difluorocarbenes thus generated react with (thio)carbonyl compounds and silyl dienol ethers to provide a wide variety of products such as (a) difluoromethyl (thio)ethers, (b) fluorinated thiophenes, (c) fluorinated thia/oxazoles, (d) fluorinated cyclopentanones and (e) difluoroalkenes.
Collapse
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
14
|
Yao J, Bai J, Kang X, Zhu M, Guo Y, Wang X. Non-directed C-H arylation of electron-deficient arenes by synergistic silver and Pd 3 cluster catalysis. NANOSCALE 2023; 15:3560-3565. [PMID: 36723135 DOI: 10.1039/d2nr05825a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal clusters have attracted great attention in catalysis due to their unique reactivity and electronic properties, especially for novel substrate binding and activation modes at the bridging coordination sites of metal clusters. Although palladium complexes have demonstrated outstanding catalytic performance in various transformations, the catalytic behaviors of polynuclear palladium clusters in many important synthetic methodologies remain much less explored so far. Herein, we disclose the use of an atomically defined tri-nuclear palladium (Pd3Cl) species as a catalyst precursor in Ag(I)-assisted direct C-H arylation with aryl iodides under mild conditions. This catalyst system leads to the formation of synthetically important biaryls in good yields with high site selectivities without the assistance of directing groups.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
15
|
Ishibashi Y, Fujita T, Ichikawa J. Two-Step Synthesis of 2-Trifluoromethylated and 2-Difluoromethylated Benzoheteroles Starting from HFO-1224yd( Z) and HFO-1233yd( Z). Org Lett 2022; 24:9306-9310. [PMID: 36508571 DOI: 10.1021/acs.orglett.2c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient two-step method for synthesizing 2-(trifluoromethyl)- and 2-(difluoromethyl)benzoheteroles bearing various substituents was developed. Commercially available HFO-1224yd(Z) or HFO-1233yd(Z) underwent the Suzuki-Miyaura coupling with arylboronic acids (acid esters) bearing a nucleophilic moiety at the ortho position to yield the corresponding β-fluoro-β-(trifluoromethyl)- or β-fluoro-β-(difluoromethyl)styrenes, respectively. Treatment of the obtained styrenes with potassium phosphate induced nucleophilic 5-endo-trig cyclization to provide the corresponding 2-trifluoromethylated or 2-difluoromethylated indoles and benzofurans, as well as benzothiophenes.
Collapse
Affiliation(s)
- Yuichiro Ishibashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
16
|
Zhao H, Leng XB, Zhang W, Shen Q. [Ph
4
P]
+
[Cu(CF
2
H)
2
]
−
: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022; 61:e202210151. [DOI: 10.1002/anie.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Xuebing B. Leng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston Massachusetts 02125 USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
17
|
Zhao H, Leng X, Zhang W, Shen Q. [Ph4P]+[Cu(CF2H)2]‐: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiwei Zhao
- SIOC: Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Xuebing Leng
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Wei Zhang
- University of Massachusetts Boston Chemistry UNITED STATES
| | - Qilong Shen
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemsitry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
18
|
Zuo D, Zhang T, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Regioselective [5 + 1] Annulation of Vinyl Aziridines/Epoxides with ClCF 2COONa. Org Lett 2022; 24:4630-4634. [PMID: 35731896 DOI: 10.1021/acs.orglett.2c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-catalyzed regioselective [5 + 1] annulation reactions of vinyl aziridines/epoxides with ClCF2COONa have been developed. Significantly, vinyl aziridines/epoxides act as heteroatom-containing five-atom synthons, and commercially available and cheap ClCF2COONa acts as the source of carbonyl serving as a difluorocarbene precursor. This protocol provides an efficient and practical method for the synthesis of δ-lactams and δ-lactones in good yields.
Collapse
Affiliation(s)
- Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tao Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
19
|
Gedde OR, Bonde A, Golbækdal PI, Skrydstrup T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF 2 H Generated ex Situ. Chemistry 2022; 28:e202200997. [PMID: 35388933 PMCID: PMC9321866 DOI: 10.1002/chem.202200997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D2 O to the DFIM-generating chamber.
Collapse
Affiliation(s)
- Oliver R. Gedde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Andreas Bonde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Peter I. Golbækdal
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| |
Collapse
|
20
|
Sap JBI, Meyer CF, Ford J, Straathof NJW, Dürr AB, Lelos MJ, Paisey SJ, Mollner TA, Hell SM, Trabanco AA, Genicot C, Am Ende CW, Paton RS, Tredwell M, Gouverneur V. [ 18F]Difluorocarbene for positron emission tomography. Nature 2022; 606:102-108. [PMID: 35344982 DOI: 10.1038/s41586-022-04669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
The advent of total-body positron emission tomography (PET) has vastly broadened the range of research and clinical applications of this powerful molecular imaging technology1. Such possibilities have accelerated progress in fluorine-18 (18F) radiochemistry with numerous methods available to 18F-label (hetero)arenes and alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity is mostly an unsolved problem, despite the indispensability of the difluoromethyl group for pharmaceutical drug discovery3. Here we report a general solution by introducing carbene chemistry to the field of nuclear imaging with a [18F]difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is carefully designed for facile accessibility, high molar activity and versatility. The issue of molar activity is solved using an assay examining the likelihood of isotopic dilution on variation of the electronics of the difluorocarbene precursor. Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions including O-H, S-H and N-H insertions, and cross-couplings that harness the reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes and aryl boronic acids that are easy to install. The impact is illustrated with the labelling of highly complex and functionalized biologically relevant molecules and radiotracers.
Collapse
Affiliation(s)
- Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Discovery Chemistry Janssen Research and Development, Toledo, Spain
| | - Joseph Ford
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
| | - Tim A Mollner
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
- School of Chemistry, Cardiff University, Cardiff, UK
| | | |
Collapse
|
21
|
Wang G, Li W, Liu T, Zhang Y, Wang B, Xue F, Jin W, Ma C, Xia Y, Liu C. Palladium-catalyzed intramolecular Heck dearomative gem-difluorovinylation of indoles. Chem Sci 2022; 13:11594-11599. [PMID: 36320398 PMCID: PMC9555723 DOI: 10.1039/d2sc03169h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
A palladium-catalyzed dearomative reaction of indoles has been developed through a domino Heck/gem-difluorovinylation sequence. By taking advantage of a difluorocarbene precursor (ClCF2COONa), the palladium difluorocarbene ([Pd]
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CF2) species was formed smoothly. Then, a migratory insertion/β-H elimination process enabled access to polycyclic indolines containing 1,1-difluoroethylene units in acceptable yields with a broad substrate scope, which also showed dearomative gem-difluorovinylation for the first time. Remarkably, the superb diversified transformations allowed the product to install various functional groups. Dearomative gem-difluorovinylation was reported for the first time and provided a new way to construct complex organofluorine compounds rapidly.![]()
Collapse
Affiliation(s)
- Gang Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Wenqi Li
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Tianxiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Caiyan Ma
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
22
|
Lei ZL, Huang DK, Liu Q, Chen HY, Gao YN, Liu JT, Liu ZJ. Decarboxylative aldol reaction of α,α-difluoro-β-keto acids and isatins: A facile synthesis of 3-difluoroalkyl-3-hydroxyoxindole derivatives. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Dai P, Li C, Li Y, Zhu Y, Teng P, Gu Y, Zhang W. Direct Difluoromethylation of Heterocycles through Photosensitized Electron Transfer. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY United Kingdom, UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
24
|
Zhou W, Pan WJ, Chen J, Zhang M, Lin JH, Cao W, Xiao JC. Transition-metal difluorocarbene complexes. Chem Commun (Camb) 2021; 57:9316-9329. [PMID: 34528952 DOI: 10.1039/d1cc04029d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although transition metal carbenes have found widespread applications and difluorocarbene has served as a versatile intermediate, it is still quite challenging to make use of transition-metal difluorocarbenes in synthetic chemistry due to their unpredictable reactivities. In this Highlight, we review recent developments in the transition-metal-catalyzed or -mediated transfer of difluorocarbene and the reactivies and conversions of transition-metal difluorocarbene complexes. We start with the MCF2 bonding, then provide the progress in the transfer of difluorocarbene, and finally briefly discuss the conversions of MCF2 into other metal complexes. The understanding of the interesting reactivities of MCF2 may help design the catalytic transfer of difluorocarbene for various reactions.
Collapse
Affiliation(s)
- Wei Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen-Jie Pan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Jie Chen
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Min Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Weiguo Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
25
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Vanden Broeck SMP, Nelson DJ, Collado A, Falivene L, Cavallo L, Cordes DB, Slawin AMZ, Van Hecke K, Nahra F, Cazin CSJ, Nolan SP. Synthesis of Gold(I)-Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)-Difluorocarbene Species. Chemistry 2021; 27:8461-8467. [PMID: 33822412 DOI: 10.1002/chem.202100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Readily prepared and bench-stable [Au(CF3 )(NHC)] compounds were synthesized by using new methods, starting from [Au(OH)(NHC)], [Au(Cl)(NHC)] or [Au(L)(NHC)]HF2 precursors (NHC=N-heterocyclic carbene). The mechanism of formation of these species was investigated. Consequently, a new and straightforward strategy for the mild and selective cleavage of a single carbon/fluorine bond from [Au(CF3 )(NHC)] complexes was attempted and found to be reversible in the presence of an additional nucleophilic fluoride source. This straightforward technique has led to the unprecedented spectroscopic observation of a gold(I)-NHC difluorocarbene species.
Collapse
Affiliation(s)
- Sofie M P Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - Alba Collado
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.,Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Falivene
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - Luigi Cavallo
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium.,Separation and Conversion Technology Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400, Mol, Belgium
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| |
Collapse
|
27
|
Wang Y, Wang S, Qiu P, Fang L, Wang K, Zhang Y, Zhang C, Zhao T. Asymmetric α-electrophilic difluoromethylation of β-keto esters by phase transfer catalysis. Org Biomol Chem 2021; 19:4788-4795. [PMID: 33982742 DOI: 10.1039/d1ob00511a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient and enantioselective α-electrophilic difluoromethylation of β-keto esters has been achieved by phase-transfer catalysis. This procedure is applicable to different kinds of β-keto esters with a series of cinchona-derived C-2' aryl-substituted phase-transfer catalysts. The reaction gives the corresponding products in good enantioselectivities (up to 83% ee) and yields (up to 92%) with high C/O regioselectivities (up to 98 : 2). Moreover, the C/O selectivity of β-keto esters could be easily reversed and controlled. This asymmetric difluoromethylation provided a novel and efficient way for introducing chiral C-CF2H groups.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Shuaifei Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Peiyong Qiu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Ke Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Yawei Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Conghui Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Ting Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| |
Collapse
|
28
|
Jia Y, Yuan Y, Huang J, Jiang ZX, Yang Z. Synthesis of Difluorinated Heterocyclics through Metal-Free [8+1] and [4+1] Cycloaddition of Difluorocarbene. Org Lett 2021; 23:2670-2675. [PMID: 33724045 DOI: 10.1021/acs.orglett.1c00577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With Ph3P+CF2COO- or TMSCF2Br as the difluorocarbene sources, a facile metal-free cycloaddition between heteroconjugated alkenes and difluorocarbene was developed for the highly convergent synthesis of novel difluorinated heterocyclics, including gem-difluorinated azetidines and 2,3-dihydrobenzofurans. The cycloaddition features high reactivity and regioselectivity, as well as good tolerance of various electron-donating or electron-withdrawing substituents on azaheptafulvenes and o-quinone methides.
Collapse
Affiliation(s)
- Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Yuan
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinfeng Huang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
29
|
Liu X, Sheng H, Zhou Y, Song Q. Pd-Catalyzed Assembly of Fluoren-9-ones by Merging of C–H Activation and Difluorocarbene Transfer. Org Lett 2021; 23:2543-2547. [DOI: 10.1021/acs.orglett.1c00467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaobing Liu
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
| | - Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
- Fujian University Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
30
|
Zhang M, Lin JH, Jin CM, Xiao JC. Difluorocarbene-based cyanodifluoromethylation of alkenes induced by a dual-functional Cu-catalyst. Chem Commun (Camb) 2021; 57:2649-2652. [PMID: 33587731 DOI: 10.1039/d1cc00160d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although cyanofluoroalkylation has received increasing attention, a toxic cyanation reagent is usually required. Herein, a Cu-catalyzed difluorocarbene-based cyanodifluoromethylation of alkenes with BrCF2CO2Et/NH4HCO3 under photocatalytic conditions is described. BrCF2CO2Et and NH4HCO3 serve as a carbon source and a nitrogen source of the nitrile group, respectively, avoiding the use of a stoichiometric toxic cyanation reagent. The Cu-complex plays a dual role. It is not only a photocatalyst, but also a coupling catalyst for the formation of a C-CN bond.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Chuan-Ming Jin
- Department of Chemistry and Chemical Engineering, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, Hubei, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
31
|
He G, Xiao X, Jin HZ, Lin JH, Zhong T, Zheng X, Xiao JC. Ph2S/selectfluor-promoted deoxydifluorination of aldehydes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
33
|
Belov DS, Mathivathanan L, Beazley MJ, Martin WB, Bukhryakov KV. Stereospecific Ring‐Opening Metathesis Polymerization of Norbornene Catalyzed by Iron Complexes. Angew Chem Int Ed Engl 2020; 60:2934-2938. [DOI: 10.1002/anie.202011150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry S. Belov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Melanie J. Beazley
- Department of Chemistry University of Central Florida 4111 Libra Dr. Orlando FL 32816 USA
| | - William Blake Martin
- Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| |
Collapse
|
34
|
Belov DS, Mathivathanan L, Beazley MJ, Martin WB, Bukhryakov KV. Stereospecific Ring‐Opening Metathesis Polymerization of Norbornene Catalyzed by Iron Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitry S. Belov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| | - Melanie J. Beazley
- Department of Chemistry University of Central Florida 4111 Libra Dr. Orlando FL 32816 USA
| | - William Blake Martin
- Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St. Miami FL 33199 USA
| |
Collapse
|
35
|
Difluoroalkylation of alkenes promoted by noncovalent interaction: A general method for the synthesis of difluoro-contained dihydrobenzofurans and indolins. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Xu Z, Zhang W, Lin J, Jin C, Xiao J. Pd‐Catalyzed
Transfer of Difluorocarbene for Three Component
Cross‐Coupling
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi‐Wei Xu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi Hubei 435002 China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jin‐Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chuan‐Ming Jin
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi Hubei 435002 China
| | - Ji‐Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
37
|
Lin JH, Xiao JC. Fluorinated Ylides/Carbenes and Related Intermediates from Phosphonium/Sulfonium Salts. Acc Chem Res 2020; 53:1498-1510. [PMID: 32786338 DOI: 10.1021/acs.accounts.0c00244] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the special effects of the fluorine element, including high electronegativity and small atomic radius, the incorporation of a fluorinated group into organic molecules may modify their physical, chemical, and biological properties. Fluorine-containing compounds have found widespread application in a variety of areas, and thus, the development of efficient reagents and methods for the incorporation of fluorinated groups has become a subject of significant interest.Described in this Account are our recent discoveries in the chemistry of fluorinated ylides/carbenes and related intermediates generated from phosphonium/sulfonium salts. Initially, we obtained the (triphenylphosphonio) difluoroacetate, Ph3P+CF2CO2- (PDFA), which was proposed as a reactive intermediate but had never been successfully synthesized. PDFA, shelf-stable and easy to prepare, is not only a mild ylide (Ph3P+CF2-) reagent, but also an efficient difluorocarbene source. It can directly generate difluorocarbene, via the first generation of ylide Ph3P+CF2-, simply under warming conditions without the need for any additive. Interestingly, difluorocarbene chemistry was then discovered by using PDFA as a reagent. Difluorocarbene can be oxidized to CF2═O, can react with elemental sulfur to afford CF2═S, and can be trapped by NaNH2 or NH3 to give CN-. The development of these processes into synthetic tools allowed us to achieve various reactions, including the challenging 18F-trifluoromethylthiolation and cyanodifluoromethylation. It was found that a substituent on the cation of a phosphonium salt can be directly transferred as a nucleophile despite the cation's high electrophilicity. This transfer process is like an "umpolung" of the cation, which may provide more opportunities for the synthetic utilities of phosphonium salts. The investigation of this transfer process led us to find that iodophosphonium salts, active intermediates which can be easily generated, may efficiently promote deoxygenative functionalizations of aldehydes and alcohols. Dehydroxylative substitution of alcohols by this protocol permits the use of unprotected amines with higher pKa values as nucleophiles, which is an attractive feature compared with the Mitsunobu reaction. On the basis of the ylide-to-carbene process (Ph3P+CF2- → :CF2), we further developed sulfonium salts as precursors of fluorinated ylides and fluorinated methyl carbenes. In particular, the studies on difluoromethylcarbene, remaining largely unexplored, may deserve more attention. The discoveries may find utility in the synthesis of biologically active fluorine-containing molecules.
Collapse
Affiliation(s)
- Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
38
|
Zhao H, Herbert S, Kinzel T, Zhang W, Shen Q. Two Ligands Transfer from Ag to Pd: En Route to (SIPr)Pd(CF 2H)(X) and Its Application in One-Pot C-H Borylation/Difluoromethylation. J Org Chem 2020; 85:3596-3604. [PMID: 31970986 DOI: 10.1021/acs.joc.9b03296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A process for the concurrent transfer of both the NHC ligand and the difluoromethyl group from [(SIPr)Ag(CF2H)] to PdX2 (X = Cl, OAc, and OPiv) for the preparation of [(SIPr)Pd(CF2H)X] complexes is described. These complexes were air-stable and easily underwent transmetalation with aryl pinacol boronate/reductive elimination to generate ArCF2H in high yields. Based on this discovery, the first one-pot C-H borylation and difluoromethylation process for the preparation of difluoromethylated (hetero)arenes was developed.
Collapse
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Simon Herbert
- Bayer AG, Research & Development, Pharmaceuticals, 178 Müllerstraße, Berlin 13342, Germany
| | - Tom Kinzel
- Open Innovation Center China, Bayer Center, Bayer Pharmaceuticals, Bei Dong San Han 27, Beijing 100020, P. R. China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
39
|
Lu H, Wang DY, Zhang A. Visible Light-Promoted Phosphine-Catalyzed Difluoroalkylation of Arenes and Heterocycles. J Org Chem 2019; 85:942-951. [DOI: 10.1021/acs.joc.9b02882] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Heng Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-yu Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Fu XP, Xue XS, Zhang XY, Xiao YL, Zhang S, Guo YL, Leng X, Houk KN, Zhang X. Controllable catalytic difluorocarbene transfer enables access to diversified fluoroalkylated arenes. Nat Chem 2019; 11:948-956. [DOI: 10.1038/s41557-019-0331-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
|
41
|
Zhao L, Huang Y, Wang Z, Zhu E, Mao T, Jia J, Gu J, Li XF, He CY. Organophosphine-Catalyzed Difluoroalkylation of Alkenes. Org Lett 2019; 21:6705-6709. [DOI: 10.1021/acs.orglett.9b02314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yang Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ze Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Erlin Zhu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ting Mao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiwei Gu
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Xiao-Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
42
|
Chiral copper-catalyzed enantioselective Michael difluoromethylation of arylidene meldrum's acids with (difluoromethyl)zinc reagents. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Fuchibe K, Watanabe S, Takao G, Ichikawa J. Synthesis of (difluoromethyl)naphthalenes using the ring construction strategy: C-C bond formation on the central carbon of 1,1-difluoroallenes via Pd-catalyzed insertion. Org Biomol Chem 2019; 17:5047-5054. [PMID: 31049538 DOI: 10.1039/c9ob00540d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insertion of 1,1-difluoroallenes was carried out to form a C-C bond exclusively on their central carbon. o-Bromophenyl-bearing 1,1-difluoroallenes underwent intramolecular insertion in the presence of a palladium catalyst. Regioselective C-C bond formation occurred to form a six-membered carbocycle, leading to pharmaceutically and agrochemically promising difluoromethylated naphthalenes.
Collapse
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Shumpei Watanabe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Go Takao
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
44
|
Xie Q, Zhu Z, Li L, Ni C, Hu J. A General Protocol for C−H Difluoromethylation of Carbon Acids with TMSCF
2
Br. Angew Chem Int Ed Engl 2019; 58:6405-6410. [DOI: 10.1002/anie.201900763] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Qiqiang Xie
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Ziyue Zhu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Lingchun Li
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
45
|
Nitta J, Motohashi H, Aikawa K, Mikami K. Palladium‐Catalyzed Negishi Cross‐Coupling Reaction of Difluoroiodomethane with Arylzinc Reagents. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junki Nitta
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Hirotaka Motohashi
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Kohsuke Aikawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Koichi Mikami
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| |
Collapse
|
46
|
A General Protocol for C−H Difluoromethylation of Carbon Acids with TMSCF
2
Br. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Motohashi H, Kato M, Mikami K. Ligand-Less Iron-Catalyzed Aromatic Cross-Coupling Difluoromethylation of Grignard Reagents with Difluoroiodomethane. J Org Chem 2019; 84:6483-6490. [DOI: 10.1021/acs.joc.9b00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hirotaka Motohashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Miki Kato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
48
|
|
49
|
|
50
|
Panferova LI, Levin VV, Struchkova MI, Dilman AD. Light-mediated copper-catalyzed phosphorus/halogen exchange in 1,1-difluoroalkylphosphonium salts. Chem Commun (Camb) 2019; 55:1314-1317. [DOI: 10.1039/c8cc09115c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phosphorus/halogen exchange in fluorinated phosphonium salts is promoted by light and catalyzed by copper(i) halides.
Collapse
Affiliation(s)
- Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | | | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|