1
|
Tosi E, Campagne JM, de Figueiredo RM. Amine Activation: "Inverse" Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds. J Org Chem 2022; 87:12148-12163. [PMID: 36069394 DOI: 10.1021/acs.joc.2c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper(II)/HOBt-catalyzed procedure for the synthesis of dipeptides and "general" amides has been developed using microwave irradiation to considerably hasten the reaction. As an alternative to using traditional carboxylic acid activation, the method relies on the use of N-acyl imidazoles as activated amino partners. By doing so, a nonconventional way to reach dipeptides and amides has been proposed through the challenging and less studied N → C direction synthesis. A series of dipeptides and "general" amides have been successfully synthesized, and the applicability of the method has been illustrated in gram-scale syntheses. The mild reaction conditions proposed are completely adequate for couplings in the presence of sensitive amino acids, affording the products without detectable racemization. Furthermore, experimental observations prompted us to propose a plausible reaction pathway for the couplings.
Collapse
Affiliation(s)
- Eleonora Tosi
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | |
Collapse
|
2
|
Holovach S, Melnykov KP, Skreminskiy A, Herasymchuk M, Tavlui O, Aloshyn D, Borysko P, Rozhenko AB, Ryabukhin SV, Volochnyuk DM, Grygorenko OO. Effect of gem-Difluorination on the Key Physicochemical Properties Relevant to Medicinal Chemistry: The Case of Functionalized Cycloalkanes. Chemistry 2022; 28:e202200331. [PMID: 35147261 DOI: 10.1002/chem.202200331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Physico-chemical properties important to drug discovery (pKa , LogP, and aqueous solubility), as well as metabolic stability, were studied for a series of functionalized gem-difluorinated cycloalkanes and compared to those of non-fluorinated and acyclic counterparts to evaluate the impact of the fluorination. It was found that the influence of the CF2 moiety on the acidity/basicity of the corresponding carboxylic acids and amines was defined by inductive the effect of the fluorine atoms and was nearly the same for acyclic and cyclic aliphatic compounds. Lipophilicity and aqueous solubility followed more complex trends and were affected by the position of the fluorine atoms, ring size, and even the nature of the functional group present; also, significant differences were found for the acyclic and cyclic series. Also, gem-difluorination either did not affect or slightly improved the metabolic stability of the corresponding model derivatives. The presented results can be used as a guide for rational drug design employing fluorine and establish the first chapter in a catalog of the key in vitro properties of fluorinated cycloalkanes.
Collapse
Affiliation(s)
- Sergey Holovach
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | | | - Maksym Herasymchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Olha Tavlui
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Danylo Aloshyn
- Bienta / Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Petro Borysko
- Bienta / Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Alexander B Rozhenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
3
|
White AM, Palombi IR, Malins LR. Umpolung strategies for the functionalization of peptides and proteins. Chem Sci 2022; 13:2809-2823. [PMID: 35382479 PMCID: PMC8905898 DOI: 10.1039/d1sc06133j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023] Open
Abstract
Umpolung strategies, defined as synthetic approaches which reverse commonly accepted reactivity patterns, are broadly recognized as enabling tools for small molecule synthesis and catalysis. However, methods which exploit this logic for peptide and protein functionalizations are comparatively rare, with the overwhelming majority of existing bioconjugation approaches relying on the well-established reactivity profiles of a handful of amino acids. This perspective serves to highlight a small but growing body of recent work that masterfully capitalizes on the concept of polarity reversal for the selective modification of proteinogenic functionalities. Current applications of umpolung chemistry in organic synthesis and chemical biology as well as the vast potential for further innovations in peptide and protein modification will be discussed.
Collapse
Affiliation(s)
- Andrew M White
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Isabella R Palombi
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
4
|
Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Qureshi U, Khan MI, Ashraf S, Hameed A, Hafizur RM, Rafique R, Khan KM, Ul-Haq Z. Identification of novel Epac2 antagonists through in silico and in vitro analyses. Eur J Pharm Sci 2020; 153:105492. [PMID: 32730843 DOI: 10.1016/j.ejps.2020.105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
Abstract
cAMP-dependent guanine nucleotide exchange factor (Epac) is a key regulator in signal transduction and represents an excellent drug target to be investigated against various diseases. To date, very few modulators selective for Epac are available; however, there is still an unmet need of isoform-selective inhibitors. In the present study, ligand-based pharmacophores were designed to investigating structurally diverse molecules as Epac2 inhibitors. Pharmacophore models were developed using reported allosteric site inhibitors. The developed models were used to screen 95 thousand compounds from the National Cancer Institute (NCI), Maybride, and our in-house ICCBS Database. The binding mode and efficiency of the screened hits was investigated using molecular docking simulation on the allosteric site of Epac2 apo-protein (PDB ID: 2BYV) followed by ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling Furthermore, obtained in silico screened hits were subjected to in vitro assay for insulin secretion. We identified, three lead molecules RDR02145, AAK-399, and AAD-026 reducing, insulin secretion. Remarkably, a higher inhibitory effect on insulin secretion was observed in AAK-399, and AAD-026 as compared to that of standard Epac2 non-competitive allosteric site inhibitor, MAY0132. Furthermore, Dynamic simulation studies of lead compounds proved the structural stability of the Epac2 auto-inhibited state. These findings underline the potential of these compounds as valuable pharmacological tools for designing future selective probes to inhibit the Epac-mediated signaling pathway.
Collapse
Affiliation(s)
- Urooj Qureshi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rafaila Rafique
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
6
|
Gadde K, Mampuys P, Guidetti A, Ching HYV, Herrebout WA, Van Doorslaer S, Abbaspour Tehrani K, Maes BUW. Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Karthik Gadde
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Pieter Mampuys
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Andrea Guidetti
- Biophysics and Biomedical Physics (BIMEF), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - H. Y. Vincent Ching
- Biophysics and Biomedical Physics (BIMEF), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Wouter A. Herrebout
- Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sabine Van Doorslaer
- Biophysics and Biomedical Physics (BIMEF), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Kourosch Abbaspour Tehrani
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bert U. W. Maes
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
7
|
Kadikova RN, Ramazanov IR, Gabdullin AM, Mozgovoj OS, Dzhemilev UM. Synthesis of heteroatom-containing pyrrolidine derivatives based on Ti(O- iPr) 4 and EtMgBr-catalyzed carbocyclization of allylpropargyl amines with Et 2Zn. RSC Adv 2020; 10:17881-17891. [PMID: 35515579 PMCID: PMC9053609 DOI: 10.1039/d0ra02677h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The Ti(O-iPr)4 and EtMgBr-catalyzed regio and stereoselective carbocyclization of N-allyl-substituted 2-alkynylamines with Et2Zn, followed by deuterolysis or hydrolysis, affords the corresponding methylenepyrrolidine derivatives in high yields. It was found that Ti-Mg-catalyzed carbocyclization of N-allyl-substituted 2-alkynylamines with Et2Zn is equally selective in dichloromethane, hexane, toluene, and diethyl ether. The reaction was tolerant to the presence of aryl, alkyl, trimethylsilyl, methoxymethyl and aminomethyl substituents on the alkyne. A selective method was proposed for the preparation of bis-pyrrolidine derivatives using Ti-Mg-catalyzed carbocyclization of bis-allylpropargyl amines with Et2Zn.
Collapse
Affiliation(s)
- Rita N Kadikova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Ilfir R Ramazanov
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Azat M Gabdullin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Oleg S Mozgovoj
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| |
Collapse
|
8
|
Wilhelm EA, Torres MLCP, Pereira CF, Vogt AG, Cervo R, Dos Santos BGT, Cargnelutti R, Luchese C. Therapeutic potential of selanyl amide derivatives in the in vitro anticholinesterase activity and in in vivo antiamnesic action. Can J Physiol Pharmacol 2020; 98:304-313. [PMID: 31821013 DOI: 10.1139/cjpp-2019-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study evaluated the in vitro acetylcholinesterase (AChE) inhibitor activity of two new selanyl amide derivatives in cerebral structures of mice. Our results demonstrated that N-(2-(3-(phenylselanyl)propoxy)phenyl)furan-2-carboxamide (1) and N-(2-(3-(phenylselanyl)propoxy)phenyl)thiophene-2-carboxamide (2) inhibited the in vitro AChE activity in mice. Another objective was to assess the effect of the best AChE inhibitor in an amnesic model induced by scopolamine (SCO) in male Swiss mice. The involvement of AChE activity and lipid peroxidation in the cerebral structures was investigated. Our results showed that compound 1 (10 mg/kg, intragastrically) attenuated the latency to find the escape box and the number of holes visited in the Barnes maze task, without altering the locomotor and exploratory activities in an open-field test. Compound 1 protected against increasing in lipid peroxidation levels and AChE activity caused by SCO in the cerebral cortex and hippocampus of mice. In conclusion, the present study evidenced the in vitro anticholinesterase effect of two new selanyl amide derivatives in the cerebral structures of mice. Moreover, compound 1, a selanyl amide derivative containing a furan ring, demonstrated antiamnesic action due to its antioxidant and anticholinesterase activities in cerebral structures.
Collapse
Affiliation(s)
- Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Marina Laura C P Torres
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Caroline F Pereira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Rodrigo Cervo
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Brenda G T Dos Santos
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
9
|
Metal-free photocatalysts for the oxidation of non-activated alcohols and the oxygenation of tertiary amines performed in air or oxygen. Nat Protoc 2020; 15:822-839. [PMID: 32051614 DOI: 10.1038/s41596-019-0268-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
This protocol describes the use of 9-fluorenone as a cheap and non-toxic photocatalyst for the oxidation of non-activated alcohols performed under the irradiation of a blue light-emitting diode. It also describes the use of the similarly cheap and non-toxic photocatalyst rose bengal for the selective α-oxygenation of tertiary amines to produce the corresponding amides in a selective way using the same light source. We have provided detailed instructions on how to assemble the light-emitting diode equipment and set up the photocatalytic reaction, where an oxygen atmosphere is created with an O2-filled balloon. Further details are provided using four example reactions that illustrate how this system works: alcohol oxidation to prepare terephthlalaldehyde and androstanedione, and amine oxidation to make 2-phenyl-3,4-dihydroisoquinolin-1(2H)-one and (4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)m-tolyl)methanone. The times needed to perform these photocatalytic reactions are 18, 76, 22 and 54 h, respectively. We believe that this protocol represents a robust methodology for the late-stage modification of amines and the selective oxidation of steroids.
Collapse
|
10
|
An efficient route for the synthesis of N-(1H-benzo[d]imidazol-2-yl)benzamide derivatives promoted by CBr4 in one pot. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Wang SM, Zhao C, Zhang X, Qin HL. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO 2F 2: a significant breakthrough for the construction of amides and peptide linkages. Org Biomol Chem 2020; 17:4087-4101. [PMID: 30957817 DOI: 10.1039/c9ob00699k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The construction of amide bonds and peptide linkages is one of the most fundamental transformations in all life processes and organic synthesis. The synthesis of structurally ubiquitous amide motifs is essential in the assembly of numerous important molecules such as peptides, proteins, alkaloids, pharmaceutical agents, polymers, ligands and agrochemicals. A method of SO2F2-mediated direct clickable coupling of carboxylic acids with amines was developed for the synthesis of a broad scope of amides in a simple, mild, highly efficient, robust and practical manner (>110 examples, >90% yields in most cases). The direct click reactions of acids and amines on a gram scale are also demonstrated using an extremely easy work-up and purification process of washing with 1 M aqueous HCl to provide the desired amides in greater than 99% purity and excellent yields.
Collapse
Affiliation(s)
- Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China.
| | | | | | | |
Collapse
|
12
|
Liu J, Zhang C, Zhang Z, Wen X, Dou X, Wei J, Qiu X, Song S, Jiao N. Nitromethane as a nitrogen donor in Schmidt-type formation of amides and nitriles. Science 2019; 367:281-285. [DOI: 10.1126/science.aay9501] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
The Schmidt reaction has been an efficient and widely used synthetic approach to amides and nitriles since its discovery in 1923. However, its application often entails the use of volatile, potentially explosive, and highly toxic azide reagents. Here, we report a sequence whereby triflic anhydride and formic and acetic acids activate the bulk chemical nitromethane to serve as a nitrogen donor in place of azides in Schmidt-like reactions. This protocol further expands the substrate scope to alkynes and simple alkyl benzenes for the preparation of amides and nitriles.
Collapse
Affiliation(s)
- Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaojin Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Li J, Wang SY, Ji SJ. Nickel-Catalyzed Thiolation and Selenylation of Cycloketone Oxime Esters with Thiosulfonate or Seleniumsulfonate. J Org Chem 2019; 84:16147-16156. [DOI: 10.1021/acs.joc.9b02431] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
14
|
Yuan B, Jiang Y, Qi Z, Guan X, Wang T, Yan R. External Oxidant‐Free Oxidative Tandem Cyclization: NaI‐Catalyzed Thiolation for the Synthesis of 3‐Thiosubstituted Pyrroles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bingxiang Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yong Jiang
- School of Chemistry and Chemical EngineeringYangtze Normal University Chongqing People's Republic of China
| | - Zhenjie Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xin Guan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Ting Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
15
|
Devendar P, Qu RY, Kang WM, He B, Yang GF. Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8914-8934. [PMID: 30060657 DOI: 10.1021/acs.jafc.8b03792] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pd-catalyzed cross-coupling reactions have become essential tools for the construction of carbon-carbon and carbon-heteroatom bonds. Over the last three decades, great efforts have been made with cross-coupling chemistry in the discovery, development, and commercialization of innovative new pharmaceuticals and agrochemicals (mainly herbicides, fungicides, and insecticides). In view of the growing interest in both modern crop protection and cross-coupling chemistry, this review gives a comprehensive overview of the successful applications of various Pd-catalyzed cross-coupling methodologies, which have been implemented as key steps in the synthesis of agrochemicals (on R&D and pilot-plant scales) such as the Heck, Suzuki, Sonogashira, Stille, and Negishi reactions, as well as decarboxylative, carbonylative, α-arylative, and carbon-nitrogen bond bond-forming cross-coupling reactions. Some perspectives and challenges for these catalytic coupling processes in the discovery of agrochemicals are briefly discussed in the final section. The examples chosen demonstrate that cross-coupling chemistry approaches open-up new, low-cost, and more efficient industrial routes to existing agrochemicals, and such methods also have the capability to lead the new generation of pesticides with novel modes of action for sustainable crop protection.
Collapse
Affiliation(s)
- Ponnam Devendar
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Wei-Ming Kang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , P. R. China
| |
Collapse
|
16
|
Yu M, Zhang T, Jalani HB, Dong X, Lu H, Li G. Iridium-Catalyzed Aryl C–H Sulfonamidation and Amide Formation Using a Bifunctional Nitrogen Source. Org Lett 2018; 20:4828-4832. [DOI: 10.1021/acs.orglett.8b01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Yu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhang
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hitesh B. Jalani
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Xunqing Dong
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongjian Lu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
17
|
Shoji T, Fukutomi H, Okada Y, Chiba K. Artificial bioconjugates with naturally occurring linkages: the use of phosphodiester. Beilstein J Org Chem 2018; 14:1946-1955. [PMID: 30112100 PMCID: PMC6071721 DOI: 10.3762/bjoc.14.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Artificial orthogonal bond formations such as the alkyne–azide cycloaddition have enabled selective bioconjugations under mild conditions, yet naturally occurring linkages between native functional groups would be more straightforward to elaborate bioconjugates. Herein, we describe the use of a phosphodiester bond as a versatile option to access various bioconjugates. An opposite activation strategy, involving 5’-phosphitylation of the supported oligonucleotides, has allowed several biomolecules that possess an unactivated alcohol to be directly conjugated. It should be noted that there is no need to pre-install artificial functional groups and undesired and unpredictable perturbations possibly caused by bioconjugation can be minimized.
Collapse
Affiliation(s)
- Takao Shoji
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroki Fukutomi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
18
|
Mampuys P, Ruijter E, Orru RVA, Maes BUW. Synthesis of Secondary Amides from Thiocarbamates. Org Lett 2018; 20:4235-4239. [DOI: 10.1021/acs.orglett.8b01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pieter Mampuys
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
19
|
Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01897] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiri Kollmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Xu X, Feng H, Huang L, Liu X. Direct Amidation of Carboxylic Acids through an Active α-Acyl Enol Ester Intermediate. J Org Chem 2018; 83:7962-7969. [PMID: 29873491 DOI: 10.1021/acs.joc.8b00819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of a highly efficient and simple protocol for the direct amidation of carboxylic acids is described employing ynoates as novel coupling reagents. The transformation proceeds in good to excellent yields via in situ α-acyl enol ester intermediates formation under mild reaction conditions. This useful method has been demonstrated for a range of substrates to provide a succinct access to structurally diverse amides, including key intermediates of glibenclamide, tiapride hydrochloride, and nateglinide, and can be conducted on a mole scale.
Collapse
Affiliation(s)
- Xianjun Xu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai , 201620 , China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai , 201620 , China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai , 200032 , China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai , 201620 , China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai , 201620 , China
| |
Collapse
|
21
|
Mei C, Lu W. Palladium(II)-Catalyzed Oxidative Homo- and Cross-Coupling of Aryl ortho-sp2 C–H Bonds of Anilides at Room Temperature. J Org Chem 2018; 83:4812-4823. [DOI: 10.1021/acs.joc.8b00120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chong Mei
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Lu
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
22
|
Fraczyk J, Kaminski ZJ, Katarzynska J, Kolesinska B. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Toluene-4-sulfonate (DMT/NMM/TsO−
) Universal Coupling Reagent for Synthesis in Solution. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Joanna Katarzynska
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| |
Collapse
|
23
|
Understanding Chemistry and Unique NMR Characters of Novel Amide and Ester Leflunomide Analogues. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry3040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Zhang XX, Jin H, Deng YJ, Gao XH, Li Y, Zhao YT, Tao K, Hou TP. Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Gao P, Bai Z. Carbon Tetrabromide/Triphenylphosphine-Activated Beckmann Rearrangement of Ketoximes for Synthesis of Amides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering; Baoji University of Arts and Sciences; Baoji Shaanxi 721013 China
| | - Zijing Bai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering; Baoji University of Arts and Sciences; Baoji Shaanxi 721013 China
| |
Collapse
|
26
|
Digwal CS, Yadav U, Ramya PVS, Sana S, Swain B, Kamal A. Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. J Org Chem 2017; 82:7332-7345. [DOI: 10.1021/acs.joc.7b00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Upasana Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
27
|
Zhu YP, Mampuys P, Sergeyev S, Ballet S, Maes BUW. Amine Activation:N-Arylamino Acid Amide Synthesis from Isothioureas and Amino Acids. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yan-Ping Zhu
- Organic Synthesis, Department of Chemistry; University of Antwerp; Groenenborgerlaan 171, B- 2020 Antwerp Belgium
| | - Pieter Mampuys
- Organic Synthesis, Department of Chemistry; University of Antwerp; Groenenborgerlaan 171, B- 2020 Antwerp Belgium
| | - Sergey Sergeyev
- Organic Synthesis, Department of Chemistry; University of Antwerp; Groenenborgerlaan 171, B- 2020 Antwerp Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2, B- 1050 Brussels Belgium
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry; University of Antwerp; Groenenborgerlaan 171, B- 2020 Antwerp Belgium
| |
Collapse
|
28
|
Xie YB, Ye SP, Chen WF, Hu YL, Li DJ, Wang L. Brønsted-Acid-Catalyzed Multicomponent One-Pot Reaction: Efficient Synthesis of Polysubstituted 1,2-Dihydropyridines. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi-Bi Xie
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| | - Si-Pei Ye
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| | - Wei-Feng Chen
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| | - Yu-Lin Hu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| | - De-Jiang Li
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; College of Materials and Chemical Engineering; China Three Gorges University; Yichang Hubei 443002 China
| |
Collapse
|
29
|
de Figueiredo RM, Suppo JS, Midrier C, Campagne JM. Sequential One-Pot Synthesis of Dipeptides through the Transient Formation of CDI-N
-Protected α-Aminoesters. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt Montpellier; UMR 5253 CNRS-UM-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt Montpellier; UMR 5253 CNRS-UM-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Camille Midrier
- Institut Charles Gerhardt Montpellier; UMR 5253 CNRS-UM-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt Montpellier; UMR 5253 CNRS-UM-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| |
Collapse
|
30
|
Xiong Z, Liang D, Luo S. Palladium-catalyzed β-selective C(sp2)–H carboxamidation of enamides by isocyanide insertion: synthesis of N-acyl enamine amides. Org Chem Front 2017. [DOI: 10.1039/c7qo00049a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of N-acyl enamine amides via palladium-catalyzed alkene C–H activation and isocyanide insertion has been developed.
Collapse
Affiliation(s)
- Zhuang Xiong
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Dongdong Liang
- Department of Pharmaceutical Sciences
- University of Maryland School of Pharmacy
- Baltimore
- USA
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| |
Collapse
|
31
|
Ojeda-Porras A, Gamba-Sánchez D. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. J Org Chem 2016; 81:11548-11555. [PMID: 27934465 DOI: 10.1021/acs.joc.6b02358] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amides are unquestionably one of the most important functional groups in organic chemistry because of their presence in numerous interesting molecules such as peptides, pharmaceutical agents, naturally occurring molecules, proteins and alkaloids, among others. This synopsis surveys the diverse recent approaches to amide synthesis from nonactivated carboxylic acids and derivatives as well as noncarboxylic compounds, highlighting the most innovative methodologies and those that are more eco-friendly compared to traditional methods while focusing on recent developments during the past two years.
Collapse
Affiliation(s)
- Andrea Ojeda-Porras
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes , Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes , Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| |
Collapse
|