1
|
Zhang S, Zhu HT, Xi JJ, Wang SB, Chang X, Shen CP, Feng Y, Zhang ZY, Zhao MT, Zhang LK, Li M, Jin X, Zhou AX, Zhou NN. Brønsted Acid-Catalyzed Intramolecular Tandem Double Cyclization of γ-Hydroxy Acetylenic Ketones with Alkynes into Naphtho[1,2- b]furan-3-ones. J Org Chem 2024; 89:1633-1647. [PMID: 38235569 DOI: 10.1021/acs.joc.3c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.
Collapse
Affiliation(s)
- Sen Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Hai-Tao Zhu
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jia-Jun Xi
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - San-Bao Wang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xin Chang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Cheng-Ping Shen
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yue Feng
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Zhao-Yang Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Meng-Ting Zhao
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Li-Kun Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Mi Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - An-Xi Zhou
- key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China
| | - Ni-Ni Zhou
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
2
|
Chen WS, Yang F, Wang T, Zhang GQ, Wei Y, Wang MH, Chen ZS, Ji K. Chemoselective Transformations of Amides: An Approach to Quinolones from β-Amido Ynones. Org Lett 2023; 25:5762-5767. [PMID: 37500499 DOI: 10.1021/acs.orglett.3c01974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
An efficient and chemoselective transformation of β-amido ynones to 3-acyl-substituted quinolones 2 and 3-H-quinolones 4 has been developed. In this reaction, β-cyclic amido ynones can be selectively transformed into quinolones 2 in anhydrous EG via a selective C═O bond cleavage, 1,5-O migration, and C═C bond recombination process. The practical approach of this reaction renders it a viable alternative for the construction of various quinolones.
Collapse
Affiliation(s)
- Wen-Shuai Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang-Qiong Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Wei
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mo-Han Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Jiang XL, Liu Q, Wei KF, Zhang TT, Ma G, Zhu XH, Ru GX, Liu L, Hu LR, Shen WB. Copper-catalyzed alkyne oxidation/Büchner-type ring-expansion to access benzo[6,7]azepino[2,3-b]quinolines and pyridine-based diones. Commun Chem 2023; 6:35. [PMID: 36807326 PMCID: PMC9941089 DOI: 10.1038/s42004-023-00840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
General access to highly valuable seven-membered rings via Büchner-type reaction remains a formidable challenge. Here we report a Cu-catalyzed intermolecular oxidation of alkynes using N-oxides as oxidants, which enables expedient preparation of valuable benzo[6,7]azepino[2,3-b]quinolines and pyridine-based diones. Importantly, in contrast to the well-established gold-catalyzed intermolecular alkyne oxidation, the dissociated pyridine or quinoline partner could be further utilized to construct N-heterocycles in this system and the reaction most likely proceeds by a Büchner-type ring expansion pathway. A mechanistic rationale for this cascade cyclization is supported by DFT calculations.
Collapse
Affiliation(s)
- Xiao-Lei Jiang
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China ,Sanmenxia Polytechnic, Sanmenxia, Henan 472000 China
| | - Qing Liu
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China
| | - Kua-Fei Wei
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China
| | - Ting-Ting Zhang
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guang Ma
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiu-Hong Zhu
- grid.108266.b0000 0004 1803 0494College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guang-Xin Ru
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Lijie Liu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Lian-Rui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Cazzaniga G, Mori M, Meneghetti F, Chiarelli LR, Stelitano G, Caligiuri I, Rizzolio F, Ciceri S, Poli G, Staver D, Ortore G, Tuccinardi T, Villa S. Virtual screening and crystallographic studies reveal an unexpected γ-lactone derivative active against MptpB as a potential antitubercular agent. Eur J Med Chem 2022; 234:114235. [DOI: 10.1016/j.ejmech.2022.114235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
|
5
|
Guo J, Chen ZS, Chen WS, Zhao X, Ji K. Gold(I)-Catalyzed Oxidative Amination of β-Amino-ynones to Quaternary Ammonium-olate Salts: The Benefit of a P,N-Bidentate Ligand. Org Lett 2021; 23:8873-8877. [PMID: 34748358 DOI: 10.1021/acs.orglett.1c03382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel P,N-bidentate ligand-assisted gold-catalyzed oxidative amination of β-amino-ynones has been developed, allowing the simple and efficient construction of various quaternary ammonium-olate salts in good to excellent yields. These unprecedented quaternary ammonium-olate salts can be isolated and purified via simple suction filtration. The broad substrate scope, easy purification, easy further transformation, and mild conditions make it a viable alternative for the synthesis of various quaternary ammonium-olate salts.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wen-Shuai Chen
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China.,School of Pharmacy, Baotou Medical College, Inner Mongolia, Baotou 014060, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
7
|
Hu Y, Nan J, Gong X, Zhang J, Yin J, Ma Y. Zinc-catalyzed C-H alkenylation of quinoline N-oxides with ynones: a new strategy towards quinoline-enol scaffolds. Chem Commun (Camb) 2021; 57:4930-4933. [PMID: 33870963 DOI: 10.1039/d1cc00245g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A zinc-catalyzed C-H alkenylation of quinoline N-oxides with ynones has been developed to rapidly assemble a broad collection of valuable quinoline-enol organic architectures. Uncommonly, this novel reaction involves C-H functionalization, and N-O, C-C and C[triple bond, length as m-dash]C bond cleavage in one operation, and leads exclusively to the formation of an enol rather than a keto product. Application of the enols generated was highlighted by further derivative transformation and preparation of a series of "BODIPY" analogues with high quantum yields (up to 86%).
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Gong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiacheng Yin
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Kaur R, Mandal S, Banerjee D, Kumar Yadav A. Transition Metal Free
α
−C−H Functionalization of Six Membered Heteroaromatic‐
N
‐Oxides. ChemistrySelect 2021. [DOI: 10.1002/slct.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ramandeep Kaur
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Sudip Mandal
- Sudip Mandal Centre of Biomedical Research (CBMR) Lucknow India
| | - Debolina Banerjee
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| |
Collapse
|
9
|
Nan J, Zhang J, Hu Y, Wang C, Wang T, Wang W, Ma Y, Szostak M. Cu II-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C-C and C-H Bond Cleavages. Org Lett 2021; 23:1928-1933. [PMID: 33570962 DOI: 10.1021/acs.orglett.1c00371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a new copper-catalyzed [2 + 2 + 1] annulation process through the selective cleavage of sigma and triple C-C and C-H bonds using two ynone units. This new methodology involves breaking multiple chemical bonds in a single operation, including C≡C, C-C, C-H, and N-O. These high-value adducts lead to a diverse collection of synthetically challenging trisubstituted indolizines by the simultaneous engagement of different bond-breaking events and show excellent fluorescence in green aqueous solutions.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingting Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Yang WW, Ye YF, Chen LL, Fu JY, Zhu JY, Wang YB. Catalyst- and Additive-Free Annulation of Ynediones and (Iso)Quinoline N-Oxides: An Approach to Synthesis of Pyrrolo[2,1- a]Isoquinolines and Pyrrolo[1,2- a]Quinolines. J Org Chem 2020; 86:169-177. [PMID: 33252226 DOI: 10.1021/acs.joc.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple and effective annulation of ynediones and (iso)quinoline N-oxides was developed to afford various functionalized pyrrolo[2,1-a]isoquinolines and pyrrolo[1,2-a]quinolines in moderate to excellent yields. This protocol underwent a tandem [3 + 2] cycloaddition/ring-opening/N-nucleophilic addition, which exhibited high regioselectivity, broad substrate tolerance, and atom economy under catalyst-, additive-free, and air conditions. Moreover, indolizine was also successfully prepared using pyridine N-oxide.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ya-Fang Ye
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Lu-Lu Chen
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| |
Collapse
|
11
|
Wu F, Lu S, Zhu S. Regioselectivity‐Switchable Intramolecular Hydroarylation of Ynone. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Shiwei Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
12
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Yang WW, Chen LL, Chen P, Ye YF, Wang YB, Zhang X. Solvent-controlled divergent annulation of ynones and (iso)quinoline N-oxides: of 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones. Chem Commun (Camb) 2020; 56:1183-1186. [PMID: 31894780 DOI: 10.1039/c9cc08713c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An effective annulation of ynones and (iso)quinoline N-oxides was developed to deliver various functionalized 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones in moderate to excellent yields, respectively. This protocol exhibits high regioselectivity and broad substrate scope under transition-metal-free conditions. Moreover, the key reaction intermediate was successfully isolated and determined unambiguously by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | | | | | | | | | | |
Collapse
|
14
|
Liu J, Ba D, Chen Y, Wen S, Cheng G. Synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via tandem reactions under transition metal- and additive-free conditions. Chem Commun (Camb) 2020; 56:4078-4081. [DOI: 10.1039/c9cc09460a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via a sequential [3+2] cycloaddition/ring-opening/O-arylation reaction under transition metal- and additive-free conditions is reported.
Collapse
Affiliation(s)
- Jing Liu
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Dan Ba
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Yanhui Chen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Si Wen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
15
|
Zhang S, Wu C, Zhang Z, Wang T. Metal-Free Synthesis of 3-(Iso)quinolinyl 4-Chromenones and 3-(Iso)quinolinyl 4-Quinolones from (Iso)quinoline N-Oxides and Ynones. Org Lett 2019; 21:9995-9998. [PMID: 31794231 DOI: 10.1021/acs.orglett.9b03921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Chun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
16
|
Affiliation(s)
- Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| | - Leiv K. Sydnes
- Department of Chemistry, University of Bergen, Allégt. 41, Bergen NO-5007, Norway
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| |
Collapse
|
17
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
18
|
Li X, Zhou G, Du X, Wang T, Zhang Z. Catalyst- and Additive-Free Cascade Reaction of Isoquinoline N-Oxides with Alkynones: An Approach to Benzoazepino[2,1-a]isoquinoline Derivatives. Org Lett 2019; 21:5630-5633. [PMID: 31287323 DOI: 10.1021/acs.orglett.9b01966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Guanghua Zhou
- Department of Chemistry, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang 330032, China
| | - Xinru Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
19
|
Bora SJ, Chetia B. Synthesis of ynones at room temperature catalyzed by copper chloride cryptand complex under solvent free conditions. Heliyon 2019; 5:e02000. [PMID: 31372526 PMCID: PMC6656957 DOI: 10.1016/j.heliyon.2019.e02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
An air-stable highly efficient reusable CuCl2-cryptand-[2.2.Benzo] catalyst is reported first time for coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine acting both as base and solvent at room temperature to give the corresponding ynones. Easy-going, short reaction time, cost-effective, palladium-, phosphorus- and solvent-free, high yield and recyclability up to 5th times make this method green procedure for ynones' synthesis with wide substrate variety.
Collapse
Affiliation(s)
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
20
|
Golovanov AA, Gusev DM, Odin IS, Zlotskii SS. Conjugated 2,4,1- and 1,4,3-enynones as polycentricelectrophiles in synthesis of heterocyclic compounds. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Wagh SB, Singh RR, Sahani RL, Liu RS. Gold-Catalyzed Oxidative Hydrative Alkenylations of Propargyl Aryl Thioethers with Quinoline N-Oxides Involving a 1,3-Sulfur Migration. Org Lett 2019; 21:2755-2758. [DOI: 10.1021/acs.orglett.9b00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
22
|
Wagh SB, Sharma P, Patil MD, Liu RS. Gold-catalyzed oxidative cycloalkenations of alkynes with quinoline N-oxides. Org Chem Front 2019. [DOI: 10.1039/c8qo01175c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports gold-catalyzed oxidative cycloalkenations of phenyl propargyl ethers and phenoxyalkynes with quinoline N-oxides to afford 4-alkylidenechroman-2-ones and 3-alkylidenebenzofuran-2-ones respectively.
Collapse
Affiliation(s)
- Sachin Bhausaheb Wagh
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Pankaj Sharma
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Manoj D. Patil
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Rai-Shung Liu
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| |
Collapse
|
23
|
Li X, Wang T, Zhang Z. Synthesis of 4-(Iso)Quinolinyl-3(2H
)-furanones from (Iso)Quinoline N
-oxides and 1,4-Diyn-3-ones: A Comparison of Copper Catalysis and Metal-free Reaction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| |
Collapse
|
24
|
Petrosyan A, Hauptmann R, Pospech J. Heteroarene N
-Oxides as Oxygen Source in Organic Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andranik Petrosyan
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Richy Hauptmann
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Jola Pospech
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| |
Collapse
|
25
|
Kim SW, Um TW, Shin S. Metal-Free Iodine-Catalyzed Oxidation of Ynamides and Diaryl Acetylenes into 1,2-Diketo Compounds. J Org Chem 2018; 83:4703-4711. [DOI: 10.1021/acs.joc.8b00484] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seung Woo Kim
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
26
|
Wang BQ, Zhang CH, Tian XX, Lin J, Yan SJ. Cascade Reaction of Isatins with 1,1-Enediamines: Synthesis of Multisubstituted Quinoline-4-carboxamides. Org Lett 2018; 20:660-663. [DOI: 10.1021/acs.orglett.7b03803] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao-Qu Wang
- Key Laboratory of Medicinal Chemistry
for Natural Resources (Yunnan University), Ministry of Education,
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry
for Natural Resources (Yunnan University), Ministry of Education,
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Xue Tian
- Key Laboratory of Medicinal Chemistry
for Natural Resources (Yunnan University), Ministry of Education,
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry
for Natural Resources (Yunnan University), Ministry of Education,
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry
for Natural Resources (Yunnan University), Ministry of Education,
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
27
|
Chen KH, Chiang YJ, Zhu JL. Rhodium-catalyzed cyclization of acceptor-substituted biphenyl α-diazoketones: a study of the substitution effect on chemoselectivity. Org Biomol Chem 2018; 16:8353-8364. [DOI: 10.1039/c8ob01489b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A range of biphenyl α-diazoketones containing different α-electron withdrawing groups exhibits divergent chemoselectivity toward rhodium(ii) catalysis, delivering phenanthrols, benz[α]azulenones, aromatic ketones and/or 1,2-diketones in varying ratios.
Collapse
Affiliation(s)
- Kuo-Hsin Chen
- Department of Chemistry
- National Dong Hwa University
- Hualien 97401
- R.O.C
| | - Yi-Jung Chiang
- Department of Chemistry
- National Dong Hwa University
- Hualien 97401
- R.O.C
| | - Jia-Liang Zhu
- Department of Chemistry
- National Dong Hwa University
- Hualien 97401
- R.O.C
| |
Collapse
|
28
|
Kataria M, Deol H, Singh G, Kumar M, Bhalla V. Visible-light-mediated dehydrogenative cross-coupling between terminal alkynes and aldehydes by employing a supramolecular polymeric ensemble of PBI derivative. NEW J CHEM 2018. [DOI: 10.1039/c7nj03557h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A supramolecular polymer of PBI derivative and ZnO NPs exhibits remarkable efficiency in direct dehydrogenative cross-coupling reaction for the synthesis of ynones under photocatalytic conditions.
Collapse
Affiliation(s)
- Meenal Kataria
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Harnimarta Deol
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Gurpreet Singh
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Manoj Kumar
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Vandana Bhalla
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
29
|
Zhang B, Huang L, Yin S, Li X, Xu T, Zhuang B, Wang T, Zhang Z, Hashmi ASK. Cascade C═O/C═C/C–N Bond Formation: Metal-Free Reactions of 1,4-Diynes and 1-En-4-yn-3-ones with Isoquinoline and Quinoline N-Oxides. Org Lett 2017; 19:4327-4330. [PMID: 28753297 DOI: 10.1021/acs.orglett.7b01996] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bing Zhang
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Long Huang
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Shiwei Yin
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Xuetong Li
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Xu
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Biyang Zhuang
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- School
of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - A. Stephen K. Hashmi
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Ramanathan M, Liu ST. Cascade annulations of aryldiazonium salts, nitriles and halo-alkynes leading to 3-haloquinolines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Wu FP, Peng JB, Qi X, Wu XF. Palladium-catalyzed carbonylative Sonogashira coupling of aryl diazonium salts with formic acid as the CO source: the effect of 1,3-butadiene. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01773a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient carbonylative cross-coupling of aryl diazonium salts with terminal alkynes using formic acid as the CO source has been developed. And 1,3-butadiene was found to play a crucial role in this transformation.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou 310018
- People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou 310018
- People's Republic of China
| | - Xinxin Qi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou 310018
- People's Republic of China
| |
Collapse
|