1
|
Wu J, Wang X, Zou J, Qiu R, Mao Z, Liu Z. Screening Anti-Parkinson's Disease Drugs in Living Mouse Brains via a Peroxynitrite-Activated Fluorescent Probe. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:301-309. [PMID: 40443559 PMCID: PMC12117393 DOI: 10.1021/cbmi.4c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 06/02/2025]
Abstract
Screening anti-Parkinson's disease (PD) drugs at in vivo brain level is imperative for managing PD yet currently remains unaccomplished. Peroxynitrite (ONOO-) has been implicated in PD progression. Thus, developing in vivo ONOO--based imaging tools for anti-PD drug screening holds promise for early prognosis and treatment of PD. Consequently, a near-infrared (NIR) fluorescence probe, BOB-Cl-PN, with high specificity, good sensitivity (LOD = 24 nM), and rapid response (<60 s), was devised to investigate ONOO- and PD relationships. Utilizing NIR fluorescence imaging, BOB-Cl-PN effectively monitored ONOO- fluctuations in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD cell models, establishing a cellular high throughput screening (cHTS) system for anti-PD drugs. In live animal imaging, BOB-Cl-PN's ability to penetrate the blood-brain barrier enabled ONOO- flux imaging of PD mouse brains. Moreover, BOB-Cl-PN served as an imaging contrast for in vivo screening of potential traditional Chinese medicines for PD therapy, identifying fisetin as having the best therapeutic index among 10 Chinese medicines. This study constructs a sensitive, efficient imaging contrast for monitoring ONOO- dynamics in PD brains and provides a valuable platform for cellular and in vivo screening of anti-PD drugs.
Collapse
Affiliation(s)
- Jiao Wu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Xiaoyu Wang
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Jingwen Zou
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Renli Qiu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Zhiqiang Mao
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Zhihong Liu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| |
Collapse
|
2
|
Wang C, Chen D, Wei Z, Tan J, Wu C, Zhang X. Metal-Catalyzed Abiotic Cleavage of C═C Bonds for Effective Fluorescence Imaging of Cu(II) and Fe(III) in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412407. [PMID: 39784410 PMCID: PMC11848571 DOI: 10.1002/advs.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment. Here, a new strategy is developed by employing this aberrant Cu(II)/Fe(III) to catalyze bond cleavage for fluorescent imaging of them. A short series of near-infrared fluorescent molecules (NIRB1-NIRB6) is devised as substrates, wherein the specific C═C bonds can be effectively cleaved to activate red fluorophore by Cu(II)/Fe(III) catalyzing. Representatively, NIRB1 is applied for fluorescent imaging of Cu(II)/Fe(III) in living cells, zebrafish, and Alzheimer's disease (AD)-afflicted mouse brains which is of significance to monitor metal safety. The successful cleavage of C═C bonds catalyzed by Cu(II)/Fe(III) enriches the application of abiotic bond cleavage reactions in metal detection, and may also inspire the development of fluorescent tools for the future diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuAnhui241002China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Zixiang Wei
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
3
|
Bayer Kömüşdoğan E, Batool S, Şahin E, Yildirim E, Işık M, Tanyeli C. Multicomponent synthesis of stereogenic-at-boron fluorophores (BOSPYR) from boronic acids, salicylaldehydes, and 2-formylpyrrole hydrazones. Chem Commun (Camb) 2025; 61:576-579. [PMID: 39656116 DOI: 10.1039/d4cc03956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This work describes one-step syntheses of various stereogenic-at-boron fluorochromes (BOSPYR) via multicomponent reactions involving readily accessible boronic acids, salicylaldehydes, and 2-formylpyrrole hydrazones. The dyes absorb and emit in the visible region of the electromagnetic radiation, and are characterized by large Stokes shifts (2850-4930 cm-1) with weak fluorescence emissions (Φfl: 1.5-9.1%). Notably, the dimmed fluorescence of BOSPYRs recovers upon transition to viscous media (21-fold for 1a). The representative compound 1a exhibits clear Cotton effects with dissymmetry factors of ca. |gabs| ∼ 1.9 × 10-3 in the visible region, indicating efficient asymmetry induction to the chromophore. The X-ray molecular structure of 1a shows that the chromophore deviates from planarity by 17.2°, which may contribute significantly to the inherent chirality of the fluorophore. A computational examination of excited states by time-dependent density functional theory (TD-DFT) identifies the emission mechanism as arising from a locally-excited (LE) state.
Collapse
Affiliation(s)
| | - Sania Batool
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| | - Ertan Şahin
- Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey
| | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| | - Murat Işık
- Department of Food Engineering, Bingöl University, Bingöl, 12000, Turkey.
| | - Cihangir Tanyeli
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
4
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
5
|
Wang C, Sun Y, Huang S, Wei Z, Tan J, Wu C, Chen Q, Zhang X. Self-Immolative Photosensitizers for Self-Reported Cancer Phototheranostics. J Am Chem Soc 2023. [PMID: 37216494 DOI: 10.1021/jacs.3c01666] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photosensitizers to precise target and change fluorescence upon light illumination could accurately self-report where and when the photosensitizers work, enabling us to visualize the therapeutic process and precisely regulate treatment outcomes, which is the unremitting pursuit of precision and personalized medicine. Here, we report self-immolative photosensitizers by adopting a strategy of light-manipulated oxidative cleavage of C═C bonds that can generate a burst of reactive oxygen species, to cleave to release self-reported red-emitting products and trigger nonapoptotic cell oncosis. Strong electron-withdrawing groups are found to effectively suppress the C═C bond cleavage and phototoxicity via studying the structure-activity relationship, allowing us to elaborate NG1-NG5 that could temporarily inactivate the photosensitizer and quench the fluorescence by different glutathione (GSH)-responsive groups. Thereinto, NG2 with 2-cyano-4-nitrobenzene-1-sulfonyl group displays excellent GSH responsiveness than the other four. Surprisingly, NG2 shows better reactivity with GSH in weakly acidic condition, which inspires the application in weakly acidic tumor microenvironment where GSH elevates. To this end, we further synthesize NG-cRGD by anchoring integrin αvβ3 binding cyclic pentapeptide (cRGD) for tumor targeting. In A549 xenografted tumor mice, NG-cRGD successfully deprotects to restore near-infrared fluorescence because of elevated GSH in tumor site, which is subsequently cleaved upon light irradiation releasing red-emitting products to report photosensitizer working, while effectively ablating tumors via triggered oncosis. The advanced self-immolative organic photosensitizer may accelerate the development of self-reported phototheranostics in future precision oncology.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Shaojuan Huang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zixiang Wei
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|
6
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
7
|
Miao W, Guo X, Yan X, Shang Y, Yu C, Dai E, Jiang T, Hao E, Jiao L. Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry 2023; 29:e202203832. [PMID: 36650103 DOI: 10.1002/chem.202203832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Collapse
Affiliation(s)
- Wei Miao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.,Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Xi Yan
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - En Dai
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Ting Jiang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| |
Collapse
|
8
|
Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214779] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wang C, Fu H, Tan J, Zhang X. Rational Design of Oxazolidine-Based Red Fluorescent pH Probe for Simultaneous Imaging Two Subcellular Organelles. BIOSENSORS 2022; 12:bios12090696. [PMID: 36140081 PMCID: PMC9496385 DOI: 10.3390/bios12090696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
A reversible pH-responsive fluorescent probe, BP, was rationally designed and synthesized, based on protonation and deprotonation gave rise to oxazolidine ring open and close. The fluorescence response of BP against pH ranges from 3.78 to 7.54, which is suitable for labeling intracellular pH-dependent organelles. BP displayed strong red emission at a relatively high pH in living HeLa cells and U87 cells. More importantly, this probe exhibited good colocalization with both mitochondria and lysosomes in these two cell lines, attributing to pH-induced structure tautomerism resulting in an oxazolidine ring open and close that triggered effective targeting of these two organelles. As organelle interactions are critical for cellular processes, this strategy of targeting dual organelles through the structure tautomerism is conducive to further developing more effective and advanced probes for real-time imaging of the interaction between mitochondria and lysosomes.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Hengyi Fu
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence:
| |
Collapse
|
10
|
Yu C, Fang X, Wu Q, Guo X, Chen N, Cheng C, Hao E, Jiao L. Synthesis and Spectral Properties of Aggregation-Induced Emission-Active Push-Pull Chromophores Based On Isoindole Scaffolds. Org Lett 2022; 24:4557-4562. [PMID: 35730791 DOI: 10.1021/acs.orglett.2c01659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new class of tailor-made push-pull isoindole fluorophores has been synthesized through the combination of Suzuki coupling and Knoevenagel reactions. The efficient synthetic strategy rendered the isoindole scaffold as the π-bridge and the isolation spacer and provided dyes bearing various types of electron donors and electron acceptors for manipulating their energy gaps and tuning their absorptions and emissions. Most of the N-alkylated isoindole dyes showed aggregation-induced emission behaviors suitable for bioimaging and nice solid-state emission with maxima up to 851 nm.
Collapse
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.,Postdoctoral Research Center of Suntex TEXTILE Technology Co, Ltd., Wuhu, Anhui 241200, China
| | - Xingbao Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Na Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Chao Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
11
|
Li Z, Zhang L, Wu Q, Li H, Kang Z, Yu C, Hao E, Jiao L. Boron-Templated Synthesis of B(III)-Submonoazaporphyrins: The Hybrids of B(III)-Subporphyrins and B(III)-Subporphyrazines. J Am Chem Soc 2022; 144:6692-6697. [PMID: 35294839 DOI: 10.1021/jacs.2c01671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new class of hybridized and core-contracted porphyrinoids, B(III)-submonoazaporphyrins, which may be viewed as the hybrids of B(III)-subporphyrins and B(III)-subporphyrazines, was reported. The versatile single-step synthesis was based on an efficient intramolecular nucleophilic substitution reaction on readily available α-amino-α'-bromotripyrromethenes, while boronic acids, trifluoroborate salts, or trimethoxyborate simultaneously acted as the template and provider of apical substituent. Those new hybrids, as robust and photostable compounds, were fully characterized by NMR, mass spectrometry, and X-ray crystallography. They showed intense absorption and emission in the visible region, and their electrochemical properties and computational calculation are also discussed.
Collapse
Affiliation(s)
- Zhongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lei Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
12
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
13
|
Wang J, Boens N, Jiao L, Hao E. Aromatic [b]-fused BODIPY dyes as promising near-infrared dyes. Org Biomol Chem 2021; 18:4135-4156. [PMID: 32441725 DOI: 10.1039/d0ob00790k] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Far-red and near-infrared (NIR) absorbing/emitting dyes have found diverse applications in biomedicine and material science. However, the absorption and emission of classical BODIPY chromophores at short wavelength hamper their applications. Several strategies have been adopted to modify the structure of the BODIPY core to design NIR dyes. Among these, the most efficient approach to expand the π-conjugation of the BODIPY core is via fusion of aromatic rings. So far, many novel BODIPY skeletons fused to aromatic hydrocarbons and heterocycles at the b bond have been reported. This review comprehensively describes the recent advances regarding the development of aromatic [b]-fused BODIPY dyes with the focus on the design and synthesis, the relationships between their photophysical/spectroscopic properties and molecular structures, and the potential applications in bioassays and optoelectronic devices.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. and Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Noël Boens
- Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Heverlee, Belgium
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
14
|
Wang J, Fang X, Guo X, Wu Q, Gong Q, Yu C, Hao E, Jiao L. Sterically Protected and Conformation-Restricted BOBHY Dyes with Bright Near-Infrared Fluorescence: N 2O-type Expanded BOPHY Dyes Derived from Boronic Acids. Org Lett 2021; 23:4796-4801. [PMID: 34080878 DOI: 10.1021/acs.orglett.1c01515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new family of N2O-type hydrazine-containing bipyrrole boron complexes has been developed via a one-pot condensation of formylisoindole, hydrazine, and various organoboronic acids. Because of the conformation-restricted coplanar structure and the axial-substituted aryl groups, these novel dyes show deep-red absorption, bright near-infrared (NIR) fluorescence in both solution and solid states, and good solubility in organic solvents. The derivative with pyridinium ions also has been synthesized as an NIR mitochondrially targetable fluorescent probe.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
15
|
Nabeshima T, Chiba Y, Nakamura T, Matsuoka R. Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes. Synlett 2020. [DOI: 10.1055/s-0040-1707155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion
Collapse
|
16
|
Yu C, Fang X, Wu Q, Jiao L, Sun L, Li Z, So PK, Wong WY, Hao E. A Family of BODIPY-like Highly Fluorescent and Unsymmetrical Bis(BF 2) Pyrrolyl-Acylhydrazone Chromophores: BOAPY. Org Lett 2020; 22:4588-4592. [PMID: 32281804 DOI: 10.1021/acs.orglett.0c00940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new family of pyrrolyl-acylhydrazones anchored with two BF2 units, named BOAPY, have been developed as BODIPY-like and unsymmetrical bis(BF2) chromophores via a simple one-pot reaction. The easily accessible scaffold enjoys excellent diversity due to the structural versatilities of 2-formylpyrroles and acylhydrazines. BOAPYs exhibit good molar absorption coefficients, large Stokes shifts, and excellent chemical stability. More importantly, most of them display excellent fluorescence quantum yields both in solution and the solid state (up to 0.88 and 0.64, respectively).
Collapse
Affiliation(s)
- Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| | - Xingbao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lilin Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
17
|
Ray C, Schad C, Avellanal-Zaballa E, Moreno F, Maroto BL, Bañuelos J, García-Moreno I, de la Moya S. Multichromophoric COO-BODIPYs: an advantageous design for the development of energy transfer and electron transfer systems. Chem Commun (Camb) 2020; 56:13025-13028. [DOI: 10.1039/d0cc04902f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis and photonics avails a new design for multichromophoric arrays.
Collapse
Affiliation(s)
- César Ray
- Depto. de Química Orgánica I
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- Madrid
| | - Christopher Schad
- Depto. de Química Orgánica I
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- Madrid
| | | | - Florencio Moreno
- Depto. de Química Orgánica I
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- Madrid
| | - Beatriz L. Maroto
- Depto. de Química Orgánica I
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- Madrid
| | - Jorge Bañuelos
- Depto. de Química Física
- Universidad del Pais Vasco-EHU
- Bilbao
- Spain
| | - Inmaculada García-Moreno
- Depto. de Sistemas de Baja Dimensionalidad
- Superficies y Materia Condensada
- Instituto de Química-Física Rocasolano
- Centro Superior de Investigaciones Científicas (CSIC)
- 28006 Madrid
| | - Santiago de la Moya
- Depto. de Química Orgánica I
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- Madrid
| |
Collapse
|
18
|
Wang C, Tan J, Zhang X. Structure–reactivity relationship of probes based on the H 2S-mediated reductive cleavage of the CC bond. NEW J CHEM 2020. [DOI: 10.1039/d0nj02307h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structure–reactivity relationship of H2S-mediated reductive cleavage of CC bond was studied and utilized to develop probes for detecting H2S.
Collapse
Affiliation(s)
- Chunfei Wang
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| | - Jingyun Tan
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences, University of Macau
- Taipa
- Macau
| |
Collapse
|
19
|
Wu S, Li Y, Deng T, Wang X, Hu S, Peng G, Huang XA, Ling Y, Liu F. A new fluorescent probe for sensing of biothiols and screening of acetylcholinesterase inhibitors. Org Biomol Chem 2020; 18:2468-2474. [DOI: 10.1039/d0ob00020e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An axial N2O-type BODIPY probe has been proposed for sensitive and selective sensing of biothiols and screening of AChE inhibitors using a fluorescence turn-on assay.
Collapse
Affiliation(s)
- Shengjun Wu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Yuge Li
- The Second Clinical College of Guangzhou University of Chinese Medicine
- Guangzhou 510120
- PR. China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Xiaojuan Wang
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Shiyou Hu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Guiyuan Peng
- The Second Clinical College of Guangzhou University of Chinese Medicine
- Guangzhou 510120
- PR. China
| | - Xin-an Huang
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Yanwu Ling
- Department of Human Anatomy
- Youjiang Medical University for Nationalities
- Baise 533000
- PR. China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| |
Collapse
|
20
|
Symmetric Fluoroborate and its Boron Modification: Crystal and Electronic Structures. CRYSTALS 2019. [DOI: 10.3390/cryst9120662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Four boron-carrying molecules were synthesized and purified. These were found to be (a) relatively neutral with respect to the parent BF derivative and (b) functionalized by donor–acceptor groups resulting in a charge transfer within the molecule. The study discusses the steric effect and the influence of the substitution of the side rings on the surroundings of the boron atom. Electronic structures were characterized by real-space bonding indicators. Hirshfeld surface and energy frameworks tools were applied to examine the crystal packing features.
Collapse
|
21
|
|
22
|
Sheng W, Lv F, Tang B, Hao E, Jiao L. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C–H bond activation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Wang J, Li Y, Gong Q, Wang H, Hao E, Lo PC, Jiao L. β-AlkenylBODIPY Dyes: Regioselective Synthesis via Oxidative C-H Olefination, Photophysical Properties, and Bioimaging Studies. J Org Chem 2019; 84:5078-5090. [PMID: 30964680 DOI: 10.1021/acs.joc.9b00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 2-alkenyl- and 2,6-dialkenylboron dipyrromethene (BODIPY) derivatives were synthesized through Pd(II)-catalyzed regioselective and stereoselective oxidative C-H olefination in one step. The 2-alkenyl BODIPY derivative further reacted with various amines regioselectively at the 5-position through direct oxidative nucleophilic substitution. The photophysical properties of the 2-alkenyl- and 2,6-dialkenyl-substituted BODIPYs were investigated, which showed great potential in fluorescent bioimaging.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yongxin Li
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Pui-Chi Lo
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
24
|
Wang Z, Cheng C, Kang Z, Miao W, Liu Q, Wang H, Hao E. Organotrifluoroborate Salts as Complexation Reagents for Synthesizing BODIPY Dyes Containing Both Fluoride and an Organo Substituent at the Boron Center. J Org Chem 2019; 84:2732-2740. [DOI: 10.1021/acs.joc.8b03145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhaoyun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Cheng Cheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zhengxin Kang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Wei Miao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Hua Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
25
|
Clarke RG, Hall MJ. Recent developments in the synthesis of the BODIPY dyes. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Wang J, Wu Q, Gong Q, Cheng K, Liu Q, Yu C, Hao E, Jiao L. Direct β-Selective Styrylation of BODIPY Dyes via Palladium(II)-Catalyzed C−H Functionalization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qingbao Gong
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Kai Cheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering; Shandong University of Science and Technology; Qingdao People's Republic of China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| |
Collapse
|
27
|
Jean-Gérard L, Vasseur W, Scherninski F, Andrioletti B. Recent advances in the synthesis of [a]-benzo-fused BODIPY fluorophores. Chem Commun (Camb) 2018; 54:12914-12929. [PMID: 30394483 DOI: 10.1039/c8cc06403b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article summarizes the different strategies for the synthesis of [a]-benzo-fused BODIPYs that have been reported in the literature until 2018. These π-extended BODIPYs are promising fluorophores for bio-imaging and organic photovoltaic applications due to both their attractive photophysical properties in the near-infrared area and their higher (photo)chemical stability compared to conventional bis-styryl derivatives. The four main strategies described in this review can be used to access either directly the expected [a]-benzo-fused BODIPYs or through the di-/tetra-hydroisoindole.
Collapse
Affiliation(s)
- Ludivine Jean-Gérard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CPE-Lyon, ICBMS-UMR CNRS 5246, Campus Lyon-Tech la Doua, Bât. Lederer, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France.
| | | | | | | |
Collapse
|
28
|
Gobo Y, Matsuoka R, Chiba Y, Nakamura T, Nabeshima T. Synthesis and chiroptical properties of phenanthrene-fused N2O-type BODIPYs. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Wang C, Cheng X, Tan J, Ding Z, Wang W, Yuan D, Li G, Zhang H, Zhang X. Reductive cleavage of C[double bond, length as m-dash]C bonds as a new strategy for turn-on dual fluorescence in effective sensing of H 2S. Chem Sci 2018; 9:8369-8374. [PMID: 30542584 PMCID: PMC6247518 DOI: 10.1039/c8sc03430c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 11/24/2022] Open
Abstract
Four effective probes with turn-off to turn-on fluorescence switches were successfully applied for sensing H2S.
Reductive cleavage of alkenes is rarely reported in synthetic chemistry. Here we report a unique H2S-mediated reductive cleavage of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds under mild conditions, which is a successful new strategy for the design of probes for effective sensing of H2S with turn-on dual-color fluorescence. A short series of phenothiazine ethylidene malononitrile derivatives were shown to react with H2S, via reductive cleavage of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds with intramolecular cyclization reactions to form thiophene rings. Enlightened by this new reaction mechanism, four effective probes with turn-off to turn-on fluorescence switches were successfully applied for sensing H2S, an important gaseous signalling molecule in living systems, among which PTZ-P4 exhibited two fluorescent colors after reductive cleavage. The dual-color probe was applied for imaging endogenous H2S and showed distinct differences in brightness in living C. elegans for wild type N2, glp-1 (e2144) mutants (higher levels of endogenous H2S), and cth-1 (ok3319) mutants (lower levels of endogenous H2S). The discovery of H2S-mediated reductive cleavage of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds is expected to be valuable for chemical synthesis, theoretical studies, and the design of new fluorescent H2S probes.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Xiaoxiang Cheng
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Jingyun Tan
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Zhaoyang Ding
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Gang Li
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Hongjie Zhang
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| | - Xuanjun Zhang
- Faculty of Health Sciences , University of Macau , Macau SAR , China . ;
| |
Collapse
|
30
|
Wu Q, Yuan J, Yu C, Wei Y, Mu X, Jiao L, Hao E. Synthesis, structure and photophysical properties of dibenzofuran-fused boron dipyrromethenes. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regioselective functionalization of core per-substituted boron dipyrromethenes (BODIPYs) has been achieved efficiently based on tetrabromoBODIPY, which affords a series of dibenzofuran-fused chromophores, via a regioselective nucleophilic substitution reaction followed by direct palladium-catalyzed two-fold intramolecular ring fusion. These rigid dibenzofuran-fused BODIPYs showed impressive photophysical properties such as clearly red-shifted absorption and emission bands, enhanced absorption coefficients upon and intense fluorescence (close to unity).
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Jin Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Yun Wei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Xiaolong Mu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
31
|
Yu C, Huang Z, Wang X, Miao W, Wu Q, Wong WY, Hao E, Xiao Y, Jiao L. A Family of Highly Fluorescent and Unsymmetric Bis(BF2) Chromophore Containing Both Pyrrole and N-Heteroarene Derivatives: BOPPY. Org Lett 2018; 20:4462-4466. [DOI: 10.1021/acs.orglett.8b01752] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xinru Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Wei Miao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
32
|
Sheng W, Wu Y, Yu C, Bobadova-Parvanova P, Hao E, Jiao L. Synthesis, Crystal Structure, and the Deep Near-Infrared Absorption/Emission of Bright AzaBODIPY-Based Organic Fluorophores. Org Lett 2018; 20:2620-2623. [DOI: 10.1021/acs.orglett.8b00820] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wanle Sheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yayang Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Petia Bobadova-Parvanova
- Department of Chemistry, Rockhurst University, 1100 Rockhurst Road, Kansas City, Missouri 64110, United States
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
33
|
Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET. Polymers (Basel) 2018; 10:polym10030283. [PMID: 30966318 PMCID: PMC6415166 DOI: 10.3390/polym10030283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/05/2022] Open
Abstract
Temperature is a significant parameter to regulate biological reactions and functions inside cells. Sensing the intracellular temperature with a competent method is necessary to understand life science. In this work, an energy-transfer polymeric thermometer was designed for temperature sensing. The thermometer was prepared from two thermo-responsive polymers with different lower critical solution temperatures (LCSTs) of 31.1 °C and 48.6 °C, coupling with blue and red fluorescent molecules, respectively, developed for ratiometric temperature sensing based on the Förster resonance energy transfer (FRET) mechanism. The polymers were synthesized from two monomers, N-isopropylacrylamide (NIPA) and N-isopropylmethacrylamide (NIPmA), which provided different temperature responses. The fluorescent intensity of each polymer (peaked at 436 and 628 nm, respectively) decreased upon the heating of the polymer aqueous solution. While these two polymer aqueous solutions were mixed, the fluorescent intensity decrease at 436 nm and substantial fluorescence enhancement at 628 nm was observed with the increasing temperature due to FRET effect. The cell imaging of HeLa cells by these thermo-responsive polymers was explored. The difference of LCSTs resulting in ratiometric fluorescence change would have a potential impact on the various biomedical applications.
Collapse
|
34
|
Lugovik KI, Eltyshev AK, Suntsova PO, Slepukhin PA, Benassi E, Belskaya NP. Highlights on the Road towards Highly Emitting Solid-State Luminophores: Two Classes of Thiazole-Based Organoboron Fluorophores with the AIEE/AIE Effect. Chem Asian J 2018; 13:311-324. [DOI: 10.1002/asia.201701526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Kseniya I. Lugovik
- Ural Federal University; 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | | | - Polina O. Suntsova
- Ural Federal University; 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Pavel A. Slepukhin
- Ural Federal University; 19 Mira Str. Yekaterinburg 620002 Russian Federation
- Institute of Organic Synthesis of the Ural Branch, of Russian Academy of Science; 20 S. Kovalevskaya Str. Yekaterinburg 620219 Russian Federation
| | - Enrico Benassi
- School of Science and Technology; Nazarbaev University; 53 Kabanbay Batyr Ave. Astana 010000 Republic of Kazakhstan
| | | |
Collapse
|
35
|
Li Z, Yan X, Huang F, Sepehrpour H, Stang PJ. Near-Infrared Emissive Discrete Platinum(II) Metallacycles: Synthesis and Application in Ammonia Detection. Org Lett 2017; 19:5728-5731. [PMID: 29027805 PMCID: PMC5808942 DOI: 10.1021/acs.orglett.7b02456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel discrete organoplatinum(II) metallacycles are prepared by means of coordination-driven self-assembly of a 90° organoplatinum(II) acceptor, cis-(PEt3)2Pt(OTf)2, with two donors, a pyridyl donor, 9,10-di(4-pyridylvinyl)anthracene, and one of two dicarboxylate ligands. Both metallacycles display aggregation-induced emission as well as solvatochromism. More interestingly, both metallacycles exhibit near-infrared fluorescent emission in the solid state and can be used to detect ammonia gas.
Collapse
Affiliation(s)
- Zhengtao Li
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xuzhou Yan
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Cui J, Sheng W, Wu Q, Yu C, Hao E, Bobadova-Parvanova P, Storer M, Asiri AM, Marwani HM, Jiao L. Synthesis, Structure, and Properties of Near-Infrared [b]Phenanthrene-Fused BF 2 Azadipyrromethenes. Chem Asian J 2017; 12:2486-2493. [PMID: 28730703 DOI: 10.1002/asia.201700876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023]
Abstract
A new class of phenanthrene-fused BF2 azadipyrromethene (azaBODIPY) dyes have been synthesized through a tandem Suzuki reaction and oxidative ring-fusion reaction, or a palladium-catalyzed intramolecular C-H activation reaction. These phenanthrene-fused azaBODIPY dyes are highly photostable and display markedly redshifted absorption (up to λ=771 nm) and emission bands (λ≈800 nm) in the near-infrared region. DFT calculations and cyclic voltammetry studies indicate that, upon annulation, more pronounced stabilization of the LUMO is the origin of the bathochromic shift of the absorption and high photostability.
Collapse
Affiliation(s)
- Jiuen Cui
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Wanle Sheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | | | - Marie Storer
- Department of Chemistry, Rockhurst University, 1100 Rockhurst Rd, Kansas City, MO, 64110, USA
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| |
Collapse
|