1
|
Kundu S, Craig KC, Gupta P, Guo J, Jaiswal M, Guo Z. Sensitive Method To Analyze Cell Surface GPI-Anchored Proteins Using DNA Hybridization Chain Reaction-Mediated Signal Amplification. Anal Chem 2024; 96:9576-9584. [PMID: 38808923 PMCID: PMC11299218 DOI: 10.1021/acs.analchem.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Palak Gupta
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
2
|
Guo Z, Kundu S. Recent research progress in glycosylphosphatidylinositol-anchored protein biosynthesis, chemical/chemoenzymatic synthesis, and interaction with the cell membrane. Curr Opin Chem Biol 2024; 78:102421. [PMID: 38181647 PMCID: PMC10922524 DOI: 10.1016/j.cbpa.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Glycosylphosphatidylinositol (GPI) attachment to the C-terminus of proteins is a prevalent posttranslational modification in eukaryotic species, and GPIs help anchor proteins to the cell surface. GPI-anchored proteins (GPI-APs) play a key role in various biological events. However, GPI-APs are difficult to access and investigate. To tackle the problem, chemical and chemoenzymatic methods have been explored for the preparation of GPI-APs, as well as GPI probes that facilitate the study of GPIs on live cells. Substantial progress has also been made regarding GPI-AP biosynthesis, which is helpful for developing new synthetic methods for GPI-APs. This article reviews the recent advancements in the study of GPI-AP biosynthesis, GPI-AP synthesis, and GPI interaction with the cell membrane utilizing synthetic probes.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA.
| | - Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Yan X, Guo J, Kundu S, Guo Z. A Biotinylated Glycosylphosphatidylinositol (GPI) as the Universal Platform To Access GPI-Anchored Protein Analogues. J Org Chem 2024; 89:1345-1352. [PMID: 38153341 PMCID: PMC10872333 DOI: 10.1021/acs.joc.3c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A glycosylphosphatidylinositol (GPI) derivative with biotin linked to its mannose III 6-O-position was prepared by a convergent strategy. This biotinylated GPI was demonstrated to bind avidinated proteins readily through biotin-avidin interaction and, therefore, can serve as a universal platform to access various biologically significant GPI-anchored protein analogues.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
5
|
Sharma K, Sharma KK, Sharma A, Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov Today 2023; 28:103464. [PMID: 36481586 DOI: 10.1016/j.drudis.2022.103464] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The progressive development of peptides from reaction vessels to life-saving drugs via rigorous preclinical and clinical assessments is fascinating. Peptide therapeutics have gained momentum with the evolution of techniques in peptide chemistry, such as microwave irradiation in solid- and solution-phase synthesis, ligation chemistry, recombinant synthesis, and amalgamation with synthetic tools, including metal catalysis. Diverse emerging technologies, such as DNA-encoded libraries (DELs) and display techniques, are changing the status quo in the discovery of peptide therapeutics. In this review, we analyzed US Food and Drug Administration (FDA)-approved peptide drugs and those in clinical trials, highlighting recent advances in peptide-based drug discovery.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
6
|
Kitoun C, Saidjalolov S, Bouquet D, Djago F, Remaury QB, Sargueil B, Poinot P, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation to Access Stable Aminoacyl- or Peptidyl-Dinucleotide. ACS OMEGA 2023; 8:3850-3860. [PMID: 36743074 PMCID: PMC9893454 DOI: 10.1021/acsomega.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Aminoacyl- and peptidyl-tRNA are specific biomolecules involved in many biological processes, from ribosomal protein synthesis to the synthesis of peptidoglycan precursors. Here, we report a post-synthetic approach based on traceless Staudinger ligation for the synthesis of a stable amide bond to access aminoacyl- or peptidyl-di-nucleotide. A series of amino-acid and peptide ester phenyl phosphines were synthetized, and their reactivity was studied on a 2'-N3 di-nucleotide. The corresponding 2'-amide di-nucleotides were obtained and characterized by LC-HRMS, and mechanistic interpretations of the influence of the amino acid phenyl ester phosphine were proposed. We also demonstrated that enzymatic 5'-OH phosphorylation is compatible with the acylated di-nucleotide, allowing the possibility to access stable aminoacylated-tRNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Saidbakhrom Saidjalolov
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Delphine Bouquet
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Fabiola Djago
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Quentin Blancart Remaury
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Bruno Sargueil
- Université
Paris Cité, CNRS, UMR 8038/CiTCoM, Paris F-75006, France
| | - Pauline Poinot
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Laura Iannazzo
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
9
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
10
|
Bouchet F, Atze H, Arthur M, Ethève-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation To Introduce Chemical Diversity on β-Lactamase Inhibitors of Second Generation. Org Lett 2021; 23:7755-7758. [PMID: 34613747 DOI: 10.1021/acs.orglett.1c02741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explored the traceless Staudinger ligation for the functionalization of the C2 position of second generation β-lactamase inhibitors based on a diazabicyclooctane (DBO) scaffold. Our strategy is based on the synthesis of phosphine phenol esters and their ligation to an azido-containing precursor. Biological evaluation showed that this route provided access to a DBO that proved to be superior to commercial relebactam for inhibition of two of the five β-lactamases that were tested.
Collapse
Affiliation(s)
- Flavie Bouchet
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Heiner Atze
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Mélanie Ethève-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
11
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
12
|
Kitoun C, Fonvielle M, Arthur M, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation for Bioconjugation of RNA. Curr Protoc 2021; 1:e42. [PMID: 33591622 DOI: 10.1002/cpz1.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Staudinger ligation is an attractive bioorthogonal reaction for use in studying biomolecules due to its capacity to form a native amide bond between a tag and a biomolecule. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. The procedure involves (i) synthesis of phosphine-containing reactive groups, affinity purification tags, or photoactivatable benzophenone probe, (ii) synthesis of 2'-azido dinucleotides and 24-nt RNA, and (iii) traceless Staudinger ligation experiments. Each phosphine was characterized by 1 H, 13 C, and 31 P NMR and high-resolution spectrometry and the functionalized nucleotides were characterized by LC/MS. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phosphines Basic Protocol 2: Synthesis of dinucleotides 4 and 5 Basic Protocol 3: Synthesis of modified RNA 6 Basic Protocol 4: Traceless Staudinger reactions on a dinucleotide Basic Protocol 5: Traceless Staudinger reaction on RNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Mélanie Etheve-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| |
Collapse
|
13
|
Qiao M, Li B, Ji Y, Lin L, Linhardt R, Zhang X. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Crit Rev Biotechnol 2020; 41:47-62. [PMID: 33153306 DOI: 10.1080/07388551.2020.1844623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar nucleotides are the principal building blocks for the synthesis of most complex carbohydrates and are crucial intermediates in carbohydrate metabolism. Uridine diphosphate (UDP) monosaccharides are among the most common sugar nucleotide donors and are transferred to glycosyl acceptors by glycosyltransferases or synthases in glycan biosynthetic pathways. These natural nucleotide donors have great biological importance, however, the synthesis and application of unnatural sugar nucleotides that are not available from in vivo biosynthesis are not well explored. In this review, we summarize the progress in the preparation of unnatural sugar nucleotides, in particular, the widely studied UDP-GlcNAc/GalNAc analogs. We focus on the "two-block" synthetic pathway that is initiated from monosaccharides, in which the first block is the synthesis of sugar-1-phosphate and the second block is the diphosphate bond formation. The biotechnological applications of these unnatural sugar nucleotides showing their physiological and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Sarkar B, Jayaraman N. Glycoconjugations of Biomolecules by Chemical Methods. Front Chem 2020; 8:570185. [PMID: 33330359 PMCID: PMC7672192 DOI: 10.3389/fchem.2020.570185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bioconjugations under benign aqueous conditions have the most promise to covalently link carbohydrates onto chosen molecular and macromolecular scaffolds. Chemical methodologies relying on C-C and C-heteroatom bond formations are the methods of choice, coupled with the reaction conditions being under aqueous milieu. A number of methods, including metal-mediated, as well as metal-free azide-alkyne cyclo-addition, photocatalyzed thiol-ene reaction, amidation, reductive amination, disulfide bond formation, conjugate addition, nucleophilic addition to vinyl sulfones and vinyl sulfoxides, native chemical ligation, Staudinger ligation, olefin metathesis, and Suzuki-Miyaura cross coupling reactions have been developed, in efforts to conduct glycoconjugation of chosen molecular and biomolecular structures. Within these, many methods require pre-functionalization of the scaffolds, whereas methods that do not require such pre-functionalization continue to be few and far between. The compilation covers synthetic methodology development for carbohydrate conjugation onto biomolecular and biomacromolecular scaffolds. The importance of such glycoconjugations on the functional properties is also covered.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
15
|
Kitoun C, Fonvielle M, Sakkas N, Lefresne M, Djago F, Blancart Remaury Q, Poinot P, Arthur M, Etheve-Quelquejeu M, Iannazzo L. Phosphine-Mediated Bioconjugation of the 3′-End of RNA. Org Lett 2020; 22:8034-8038. [DOI: 10.1021/acs.orglett.0c02982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camélia Kitoun
- UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, F-75006 Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006, Paris, France
| | - Nicolas Sakkas
- UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, F-75006 Paris, France
| | - Manon Lefresne
- UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, F-75006 Paris, France
| | - Fabiola Djago
- Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université de Poitiers, UMR 7285, 86073, Poitiers, France
| | - Quentin Blancart Remaury
- Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université de Poitiers, UMR 7285, 86073, Poitiers, France
| | - Pauline Poinot
- Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université de Poitiers, UMR 7285, 86073, Poitiers, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006, Paris, France
| | - Mélanie Etheve-Quelquejeu
- UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, F-75006 Paris, France
| | - Laura Iannazzo
- UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, F-75006 Paris, France
| |
Collapse
|
16
|
Bajaj K, Pillai GG, Sakhuja R, Kumar D. Expansion of Phosphane Treasure Box for Staudinger Peptide Ligation. J Org Chem 2020; 85:12147-12159. [DOI: 10.1021/acs.joc.0c01319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kiran Bajaj
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | | | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
17
|
Roller RF, Malik A, Carillo MA, Garg M, Rella A, Raulf M, Lepenies B, Seeberger PH, Varón Silva D. Semisynthesis of Functional Glycosylphosphatidylinositol‐Anchored Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Renée F. Roller
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Ankita Malik
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Maria A. Carillo
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Monika Garg
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Antonella Rella
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Marie‐Kristin Raulf
- Immunology Unit and Research Center for Emerging Infections and Zoonoses University of Veterinary Medicine Hannover Bünteweg 17 30559 Hannover Germany
- Institute for Parasitology, Center for infection Medicine University of Veterinary Medicine Hannover Bünteweg 17 30559 Hannover Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses University of Veterinary Medicine Hannover Bünteweg 17 30559 Hannover Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
18
|
Roller RF, Malik A, Carillo MA, Garg M, Rella A, Raulf M, Lepenies B, Seeberger PH, Varón Silva D. Semisynthesis of Functional Glycosylphosphatidylinositol-Anchored Proteins. Angew Chem Int Ed Engl 2020; 59:12035-12040. [PMID: 32307806 PMCID: PMC7383966 DOI: 10.1002/anie.202002479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Indexed: 12/23/2022]
Abstract
Glypiation is a common posttranslational modification of eukaryotic proteins involving the attachment of a glycosylphosphatidylinositol (GPI) glycolipid. GPIs contain a conserved phosphoglycan that is modified in a cell- and tissue-specific manner. GPI complexity suggests roles in biological processes and effects on the attached protein, but the difficulties to get homogeneous material have hindered studies. We disclose a one-pot intein-mediated ligation (OPL) to obtain GPI-anchored proteins. The strategy enables the glypiation of folded and denatured proteins with a natural linkage to the glycolipid. Using the strategy, glypiated eGFP, Thy1, and the Plasmodium berghei protein MSP119 were prepared. Glypiation did not alter the structure of eGFP and MSP119 proteins in solution, but it induced a strong pro-inflammatory response in vitro. The strategy provides access to glypiated proteins to elucidate the activity of this modification and for use as vaccine candidates against parasitic infections.
Collapse
Affiliation(s)
- Renée F. Roller
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Ankita Malik
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Maria A. Carillo
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Monika Garg
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Antonella Rella
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Marie‐Kristin Raulf
- Immunology Unit and Research Center for Emerging Infections and ZoonosesUniversity of Veterinary Medicine HannoverBünteweg 1730559HannoverGermany
- Institute for Parasitology, Center for infection MedicineUniversity of Veterinary Medicine HannoverBünteweg 1730559HannoverGermany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and ZoonosesUniversity of Veterinary Medicine HannoverBünteweg 1730559HannoverGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Daniel Varón Silva
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
19
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J Org Chem 2019; 84:4615-4628. [PMID: 30900880 DOI: 10.1021/acs.joc.8b03001] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Medicines Research Centre , GlaxoSmithKline , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Martin N Kenworthy
- Pharmaceutical Technology and Development , AstraZeneca , Silk Road Business Park, Charter Way , Macclesfield SK10 2NA , U.K
| | - Subha Mukherjee
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael E Kopach
- Small Molecule Design and Development , Eli Lilly and Company , 1400 West Raymond Street , Indianapolis , Indiana , United States
| | - Katarzyna Wegner
- Active Pharmaceutical Ingredient Development , IPSEN Manufacturing Ireland, Ltd. , Blanchardstown Industrial Park , Dublin 15 , Ireland
| | - Fabrice Gallou
- Chemical & Analytical Development , Novartis , 4056 Basel , Switzerland
| | - Austin G Smith
- Drug Substance Process Development , Amgen, Inc. , 1 Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Frank Roschangar
- Chemical Development , Boehringer Ingelheim Pharmaceuticals , Ridgefield , Connecticut 06877 , United States
| |
Collapse
|
21
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
22
|
Zhang X, Green DE, Schultz VL, Lin L, Han X, Wang R, Yaksic A, Kim SY, DeAngelis PL, Linhardt RJ. Synthesis of 4-Azido-N-acetylhexosamine Uridine Diphosphate Donors: Clickable Glycosaminoglycans. J Org Chem 2017; 82:9910-9915. [PMID: 28813597 PMCID: PMC7558457 DOI: 10.1021/acs.joc.7b01787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Unnatural chemically modified nucleotide sugars UDP-4-N3-GlcNAc and UDP-4-N3-GalNAc were chemically synthesized for the first time. These unnatural UDP sugar products were then tested for incorporation into hyaluronan, heparosan, or chondroitin using polysaccharide synthases. UDP-4-N3-GlcNAc served as a chain termination substrate for hyaluronan or heparosan synthases; the resulting 4-N3-GlcNAc-terminated hyaluronan and heparosan were then successfully conjugated with Alexa Fluor 488 DIBO alkyne, demonstrating that this approach is generally applicable for labeling and detection of suitable glycosaminoglycans.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73126, United States
| | - Victor L. Schultz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lei Lin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ruitong Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Alexander Yaksic
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - So Young Kim
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73126, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|