1
|
Gambhir D, Kumar K, Murugesan P, Yadav A, Sinha Ray S, Koner RR. Amino Acid-Based Molecular and Membranous Chiral Tools for Enantiomeric Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2745-2753. [PMID: 38279959 DOI: 10.1021/acs.langmuir.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Given the need, both academic and industrial, for new approaches and technologies for chiral discrimination of enantiomers, the present work demonstrates the development through rational design and integration of two new chiral platforms (molecular and membranous) for enantioselective recognition through visual as well as microscopic observation. The molecular platform (TPT) is based on the tryptophan derivative developed through the condensation of two tryptophan units with terepthaloyl chloride. While TPT based on l-tryptophan recognizes R-mandelic acid over the S-isomer, the host with reverse chirality (TPDT) recognizes S-mandelic acid over R-isomer. The role of chemical functionality in this sensitive recognition process was established experimentally by developing an analogue of TPT and by judiciously using different chiral analytes. Importantly, a detailed theoretical study at the molecular level revealed the U-shaped conformation of TPT, creating a cavity for accommodating a chiral guest with selective functional interaction resulting in the discrimination of enantiomers. Finally, a chiral polymeric mat of poly(methyl methacrylate) (PMMA)/polyacrylonitrile (PAN) (2:3) impregnated with TPT was developed via electrospinning. The resulting fibrous mat was successfully utilized for chiral recognition through microscopic and architectural observation. Hence, the present work reports simple chiral tools for enantiomeric recognition.
Collapse
Affiliation(s)
- Diksha Gambhir
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Krishan Kumar
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Premkumar Murugesan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Arti Yadav
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sumit Sinha Ray
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
2
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
3
|
Yuan S, Zhao L, Wang F, Tan L, Wu D. Recent advances of optically active helical polymers as adsorbents and chiral stationary phases for chiral resolution. J Sep Sci 2023; 46:e2300363. [PMID: 37480172 DOI: 10.1002/jssc.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Yue JY, Song LP, Shi YH, Zhang L, Pan ZX, Yang P, Ma Y, Tang B. Chiral Ionic Covalent Organic Framework as an Enantioselective Fluorescent Sensor for Phenylalaninol Determination. Anal Chem 2023. [PMID: 37454333 DOI: 10.1021/acs.analchem.3c01637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phenylalaninol (PAL) is a significant chemical intermediate widely utilized in drug development and chiral synthesis, for instance, as a reactant for bicyclic lactams and oxazoloisoindolinones. Since the absolute stereochemical configuration significantly impacts biological action, it is crucial to evaluate the concentration and enantiomeric content of PAL in a quick and convenient manner. Herein, an effective PAL enantiomer recognition method was reported based on a chiral ionic covalent organic framework (COF) fluorescent sensor, which was fabricated via one-step postquaternization modification of an achiral COF by (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl-carbonochloridate (L-MTE). The formed chiral L-TB-COF can be applied as a chiral fluorescent sensor to recognize the stereochemical configuration of PAL, which displayed a turn-on fluorescent response for R-PAL over that of S-PAL with an enantioselectivity factor of 16.96. Nonetheless, the single L-MTE molecule had no chiral recognition ability for PAL. Moreover, the ee value of PAL can be identified by L-TB-COF. Furthermore, density functional theory (DFT) calculations demonstrated that the chiral selectivity came from the stronger binding affinity between L-TB-COF and R-PAL in comparison to that with S-PAL. L-TB-COF is the first chiral ionic COF employed to identify chiral isomers by fluorescence. The current work expands the range of applications for ionic COFs and offers fresh suggestions for creating novel chiral fluorescent sensors.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying-Hao Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P.R. China
| |
Collapse
|
5
|
Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Gal CA, Barabás LE, Varga A, Csuka P, Bencze LC, Toșa MI, Poppe L, Paizs C. How to identify and characterize novel transaminases? Two novel transaminases with opposite enantioselectivity for the synthesis of optically active amines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Ma X, Zhang C, Cai L. Functional ionic liquids as chiral selector for visual chiral sensing and enantioselective precipitate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ma X, Chen B, Cai L. Investigation on improvement of enantioseparation in capillary electrophoresis based on maltodextrin by chiral ionic liquids. J Sep Sci 2022; 45:3604-3613. [PMID: 35916273 DOI: 10.1002/jssc.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Taking advantage of chiral ionic liquids, this study deals with the improvement of the enantioseparation performance of a traditional chiral selector (maltodextrin) in capillary electrophoresis. Herein, two polyhydroxy compound-based chiral ionic liquids, namely tetramethylammonium-D-gluconic acid and tetramethylammonium-shikimic acid were designed and utilized as additives for chiral separation for the first time. The synergistic systems provided much better enantioseparations of twelve model drugs compared to the single maltodextrin system. These model analytes contained analgesics, antidepressants, antiallergic drugs, antifungal drugs, antihypertensive drugs, and antiparkinsonian drugs. After optimizing the separation conditions, the chiral recognition mechanism was probed by means of ultraviolet spectroscopy, nuclear magnetic resonance, and molecular modeling. The results of spectroscopic and computational analyses were in good consistency with enantioseparation outcomes. Finally, the proposed method was successfully used for the determination of the enantiomeric purity of duloxetine hydrochloride.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Bohua Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| |
Collapse
|
9
|
Gambhir D, Kumar S, Koner RR. Chiral gelators for visual enantiomeric recognition. SOFT MATTER 2022; 18:3624-3637. [PMID: 35481833 DOI: 10.1039/d2sm00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Introduction of chirality in supramolecular gels has allowed the effective translation and amplification of molecular chirality. Upon integrating the stimuli-responsive nature of these gels with supramolecular chirality, a new platform for the discrimination of the enantiomeric guests through naked eye can be developed. Over the past decade, several groups have reported the development of chiral supramolecular gels for enantioselective recognition through gel formation or collapse. However, to the best of our knowledge, we are yet to come across a review highlighting the utilization of chiral supramolecular gels for macroscopic discrimination of enantiomers. In this article, we have articulated the chiral gelators developed to date for the recognition of different enantiomeric analytes focusing on their mode of recognition with an in-depth analysis of the mechanism of interactions assisting the recognition process.
Collapse
Affiliation(s)
- Diksha Gambhir
- School of Basic Science, Indian Institute of Technology, Mandi, Mandi-175075, Himachal Pradesh, India
| | - Sunil Kumar
- School of Basic Science, Indian Institute of Technology, Mandi, Mandi-175075, Himachal Pradesh, India
| | - Rik Rani Koner
- School of Basic Science, Indian Institute of Technology, Mandi, Mandi-175075, Himachal Pradesh, India
- School of Engineering, Indian Institute of Technology, Mandi, Mandi-175075, Himachal Pradesh, India.
| |
Collapse
|
10
|
|
11
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
12
|
A multi-stage activated carbon impregnation system: Isotherms, kinetics and multi-objective modeling optimization. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Flieger J, Feder-Kubis J, Tatarczak-Michalewska M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques. Int J Mol Sci 2020; 21:E4253. [PMID: 32549300 PMCID: PMC7352568 DOI: 10.3390/ijms21124253] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Ionic liquids (ILs) are chemical compounds composed of ions with melting points below 100 °C exhibiting a design feature. ILs are commonly used as the so-called green solvents, reagents or highly efficient catalysts in varied chemical processes. The huge application potential of ionic liquids (IL) justifies the growing interest in these compounds. In the last decade, increasing attention has been devoted to the development of new methods in the synthesis of stable chiral ionic liquids (CILs) and their application in various separation techniques. The beginnings of the successful use of CILs to separate enantiomers date back to the 1990 s. Most chiral ILs are based on chiral cations or chiral anions. There is also a limited number of CILs possessing both a chiral cation and a chiral anion. Due to the high molecular diversity of both ions, of which at least one has a chiral center, we have the possibility to design a large variety of optically active structures, thus expanding the range of CIL applications. Research utilizing chiral ionic liquids only recently has become more popular. However, it is the area that still has great potential for future development. This review aimed to describe the diversity of structures, properties and examples of applications of chiral ionic liquids as new chiral solid materials and chiral components of the anisotropic environment, providing chiral recognition of enantiomeric analytes, which is useful in liquid chromatography, countercurrent chromatography and other various CIL-based extraction techniques including aqueous biphasic (ABS) extraction systems, solid-liquid two-phase systems, liquid-liquid extraction systems with hydrophilic CILs, liquid-liquid extraction systems with hydrophobic CILs, solid-phase extraction and induced-precipitation techniques developed in the recent years. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs highlighting them as affordable and environmentally friendly both chiral selectors and solvents.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Feder-Kubis
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | | |
Collapse
|
14
|
Ma X, Du Y, Zhu X, Yang J. Visual chiral recognition of aromatic amino acids with (S)-mandelic acid-based ionic liquids via complexation. Talanta 2020; 217:121083. [PMID: 32498868 DOI: 10.1016/j.talanta.2020.121083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
Recently, chiral ionic liquids have attracted increasing attention in analytical chemistry. However, only a few papers focus on the application of them in visual chiral recognition. Herein, two functionalized chiral ionic liquids derived from (S)-mandelic acid (1-butyl-3-methylimidazolium mandelate, CIL1 and N-butyl-N-methylpyrrolidinium mandelate, CIL2) were prepared for visual chiral recognition of aromatic amino acids for the first time. In the presence of Cu(II) and appropriate solvents, visual enantiomeric responses of phenylalanine, tryptophane, tyrosine and phenylglycine were observed. Relying on solubility or color differences, all chiral recognition could be finished within 5 min. The potential mechanism was investigated by means of infrared spectroscopy, ultraviolet spectroscopy, thermal gravity analysis, elemental analysis and scanning electron microscope. Results revealed that CuSO4 interacted with CIL1 and D-tryptophane in the ratio of 1:1.96:0.43 in relevant precipitate, and the different stability of complex was responsible for the chiral recognition. In addition, resolution of racemic tryptophane was performed, which offered excellent enantiomeric excess values (94.2% for CIL1 and 95.1% for CIL2 in solid phase). The proposed ionic liquids had strong enantioselectivity for aromatic amino acids and great potential in visual chiral recognition.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
15
|
Qin M, Zhang Y, Liu J, Xing C, Zhao C, Dou X, Feng C. Visible Enantiomer Discrimination via Diphenylalanine-Based Chiral Supramolecular Self-Assembly on Multiple Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2524-2533. [PMID: 32090561 DOI: 10.1021/acs.langmuir.9b03449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of enantioselective recognition is of great significance in medical science and pharmaceutical industry, which associates with the molecular recognition phenomenon widely observed in biological systems. In particular, the facile and straight achievement of visual enantioselective recognition has been drawing increasing consideration, but it is still a challenge. Herein, a heterochiral diphenylalanine-based gelator (LFDF) is synthesized, presenting left-handed nanofibers during self-assembly in ethanol, which accomplishes the phenylalaninol enantiomer recognition on multiple platforms. When adding l- or d-phenylalaninol into LFDF supramolecular solution followed by ultrasonic treatment, precipitate and gel are formed, respectively. Meanwhile, LFDF supramolecular gel completely collapses in a minute after dropping l-phenylalaninol, while the gel almost remains when d-type is employed. Moreover, a fluorescent supramolecular xerogel (ThT-LFDF) is fabricated by combining the LFDF gelator with thioflavine T (ThT), which could detect l-phenylalaninol accompanying with fluorescence quenching while d-type with barely decreasing. And the ThT-LFDF xerogel system shows a good sensitivity (reaches to ppm) for the detection of l-phenylalaninol. It is found that the chirality of the assembled nanofibers, as well as amino and carboxyl of phenylalaninol, plays a critical role on the discrimination process. The multiple and visible enantioselective recognition of phenylalaninol through chiral supramolecular self-assemblies shows potential applications in the fields of medical science and pharmaceutical industry.
Collapse
Affiliation(s)
- Minggao Qin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinying Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
16
|
Li J, Zhou L, Wang Y, Ma Q, Lei Y, Lai R, Luo Y, Hai L, Wu Y. [Cp*Rh III
] in an Ionic Liquid as a Highly Efficient and Recyclable Catalytic Medium for Regio- and Diastereoselective Csp 3
-H Carbenoid Insertion. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Lin Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yaoling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| |
Collapse
|
17
|
Wu D, Pan F, Tan W, Gao L, Tao Y, Kong Y. Recent progress of enantioseparation under scale production (2014–2019). J Sep Sci 2019; 43:337-347. [DOI: 10.1002/jssc.201900682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Wensheng Tan
- Changzhou Key Laboratory of Large Plastic Parts Intelligence ManufacturingChangzhou College of Information Technology Changzhou P. R. China
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| |
Collapse
|
18
|
Cai P, Gao Z, Yin X, Luo Y, Zhao X, Pan Y. Facile enantioseparation and recognition of mandelic acid and its derivatives in self‐assembly interaction with chiral ionic liquids. J Sep Sci 2019; 42:3589-3598. [DOI: 10.1002/jssc.201900584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Pengfei Cai
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Zhan Gao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xinchi Yin
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanqing Luo
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xiaoyong Zhao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou P. R. China
| |
Collapse
|
19
|
Wu D, Kong Y. Dynamic Interaction between Host and Guest for Enantioselective Recognition: Application of β-Cyclodextrin-Based Charged Catenane As Electrochemical Probe. Anal Chem 2019; 91:5961-5967. [DOI: 10.1021/acs.analchem.9b00378] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
20
|
Ma X, Kan Z, Du Y, Yang J, Feng Z, Zhu X, Chen C. Enantioseparation of amino alcohol drugs by nonaqueous capillary electrophoresis with a maltobionic acid-based ionic liquid as the chiral selector. Analyst 2019; 144:7468-7477. [DOI: 10.1039/c9an01162e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study deals with the nonaqueous capillary electrophoretic enantioseparation of twenty-two amino alcohol drugs with a maltobionic acid (MA)-based ionic liquid (tetramethylammonium maltobionic acid, TMA-MA) as the novel chiral selector.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Zigui Kan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| |
Collapse
|
21
|
Wu D, Tan W, Li H, Lei Z, Deng L, Kong Y. A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Analyst 2019; 144:543-549. [DOI: 10.1039/c8an01519h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional mesoporous organosilica spheres with electroactive units were prepared for chiral recognition of amino acids.
Collapse
Affiliation(s)
- Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Wensheng Tan
- Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing
- Changzhou College of Information Technology
- Changzhou
- China
| | - Hongda Li
- Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing
- Changzhou College of Information Technology
- Changzhou
- China
| | - Zhangchen Lei
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Linhong Deng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yong Kong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
22
|
Wu D, Tan W, Yu Y, Yang B, Li H, Kong Y. A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 2018; 1033:58-64. [DOI: 10.1016/j.aca.2018.06.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
23
|
Affiliation(s)
- Mahesh D. Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Andreas Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
24
|
Wu D, Yu Y, Zhang J, Guo L, Kong Y. Chiral Poly(ionic liquid) with Nonconjugated Backbone as a Fluorescent Enantioselective Sensor for Phenylalaninol and Tryptophan. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23362-23368. [PMID: 29911854 DOI: 10.1021/acsami.8b04869] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, a novel fluorescent chiral poly(ionic liquid) ( S)-PCIL-4 with nonconjugated backbone is designed and synthesized in the control of micelle through free-radical polymerization, whose fluorescence emission maximum is at λem,max = 430 nm. It is observed that polymers with spatially proximate units (phenyl group and pyridinium cation) have photoluminescence through spatial π-π and ion-π interaction. Then, ( S)-PCIL-4 can be served as a fluorescent turn off/on sensor for chiral recognition of phenylalaninol and tryptophan in the presence of Cu(II). For example, when ( S)-PCIL-4-Cu(II) is treated with ( R/ S)-phenylalaninol, it will exhibit different fluorescence responses. Values of the enantiomeric fluorescence difference ratio for phenylalaninol and tryptophan are 1.10 and 1.08, respectively. In brief, we believe that the approach opens up a possible pathway to prepare a variety of fluorescent polymers with nonconjugated backbone and proves to be desirable in further application.
Collapse
Affiliation(s)
- Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Yin Yu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Jie Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Lili Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Yong Kong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| |
Collapse
|