1
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Mizuta S, Yamaguchi T, Iwasaki M, Ishikawa T. A facile access to aliphatic trifluoromethyl ketones via photocatalyzed cross-coupling of bromotrifluoroacetone and alkenes. Org Biomol Chem 2024; 22:8847-8856. [PMID: 39258408 DOI: 10.1039/d4ob01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biological molecules incorporating trifluoromethyl ketones (TFMKs) have emerged as reversible covalent inhibitors, aiding in the management and treatment of inflammatory diseases, cancer, and respiratory conditions. TFMKs, renowned for their versatile binding properties and adaptability, are pivotal in the rational design of novel drugs for diverse diseases. The photocatalytic insertion of alkenes, abundant feedstocks, into the α-carbon of trifluoromethylacetone represents a highly effective and atom-economical method for synthesizing valuable TFMKs. However, these processes typically necessitate high-energy photoirradiation (λ > 300 nm, Hg lamp) and stoichiometric oxidants to generate the acetonyl radical from acetone. In our study, we demonstrate the visible-light photocatalytic radical addition into olefins using bromotrifluoroacetone as the trifluoroacetonyl radical precursor under mild conditions. Aliphatic trifluoromethyl ketones or the corresponding bromo-substituted products can be obtained by selecting an appropriate photocatalyst and solvent. Comprehensive experimental investigations, including cyclic voltammetry, Stern-Volmer quenching studies, and kinetic isotope effects, corroborate the synthesis of trifluoroacetonyl radical species from bromotrifluoroacetone under photoredox conditions. Further, we demonstrate the efficient synthesis of an oseltamivir derivative bearing a trifluoromethylketone moiety, which shows promising biological activity. Hence, this methodology will streamline the direct introduction of trifluoromethyl ketone into biological target molecules during drug discovery.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
3
|
Zhao X, Zhong B, Dong L, Zhang YS, Luo HT, Yang JD, Cheng JP. Hydroxylamine-Mediated C(sp 2)-H Trifluoromethylation of Terminal Alkenes. Chemistry 2024; 30:e202400995. [PMID: 38600034 DOI: 10.1002/chem.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hai-Tian Luo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Hyeon Ka C, Kim S, Jin Cho E. Visible Light-Induced Metal-Free Fluoroalkylations. CHEM REC 2023; 23:e202300036. [PMID: 36942971 DOI: 10.1002/tcr.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.
Collapse
Affiliation(s)
- Cheol Hyeon Ka
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
5
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Chernov GI, Levin VV, Dilman AD. Photocatalytic reactions of fluoroalkyl iodides with alkenes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Tang L, Lv G, Fu Y, Chang XP, Cheng R, Wang L, Zhou Q. Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. J Org Chem 2022; 87:14763-14777. [DOI: 10.1021/acs.joc.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
- China Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, Henan 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ya Fu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingling Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
8
|
Yu M, Niu K, Wang Z, Liu Y, Wang Q. Visible-Light-Induced Metal-Free Decarboxylative Perfluoroalkylation of Aryl Acrylic Acids. Org Lett 2022; 24:7622-7626. [PMID: 36219166 DOI: 10.1021/acs.orglett.2c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluoroalkylation is important for late-stage modification of biologically active molecules. Herein, we report a protocol for visible-light-induced perfluoroalkylation reactions of aryl acrylic acids. These reactions, which use perfluoroalkyl iodides as radical precursors and inexpensive eosin Y as a photocatalyst, proceed in a decarboxylative manner. The easy accessibility of perfluoroalkyl iodides and the broad substrate scope, mild conditions, and metal-free catalyst make this protocol applicable for the transformation of inexpensive raw materials to high-value chemicals.
Collapse
Affiliation(s)
- Mo Yu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Shigenaga S, Shibata H, Tagami K, Kanbara T, Yajima T. Eosin Y-Catalyzed Visible-Light-Induced Hydroperfluoroalkylation of Electron-Deficient Alkenes. J Org Chem 2022; 87:14923-14929. [PMID: 36200531 DOI: 10.1021/acs.joc.2c01827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eosin Y-catalyzed hydroperfluoroalkylation of electron-deficient alkenes is described herein. The reaction proceeded smoothly under visible light irradiation and selectively afforded a hydroperfluoroalkylated product. Various perfluoroalkyl bromides and electron-deficient olefins can be used in this reaction, and all chemicals required for this reaction are safe and readily available.
Collapse
Affiliation(s)
- Satsuki Shigenaga
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Haruko Shibata
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
10
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
11
|
Cao J, Li G, Wang G, Gao L, Li S. Iodoperfluoroalkylation of unactivated alkenes via pyridine-boryl radical initiated atom-transfer radical addition. Org Biomol Chem 2022; 20:2857-2862. [PMID: 35297935 DOI: 10.1039/d2ob00453d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pyridine/bis(pinacolate)diboron combination has been found to be able to initiate the iodoperfluoroalkylation of unactivated alkenes with perfluoroalkyl iodides. Theoretical calculations and control experiments indicate that the atom transfer radical addition mechanism is responsible for the formation of iodoperfluoroalkylation products. This metal-free and photo-free strategy is applicable to a wide range of perfluoroalkyl iodides and unactivated alkenes with good functional group tolerance. Further applications in iodoperfluoroalkylation of organic semiconductor-relevant or bioactive molecules demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. .,School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
12
|
Tang S, Liu T, Liu J, He J, Hong Y, Zhou H, Liu YL. Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPerfluoroalkylation is one of the most important methods for the introduction of multiple fluorine atoms into organic molecules in a single step. The use of photoinduced technology is a common strategy that uses the outstanding oxidation or reduction ability of a photoredox catalyst in its excited state to generate perfluoroalkyl radicals from perfluoroalkyl halides. The perfluoroalkyl radicals thus obtained can undergo various subsequent reactions under mild conditions, such as ATRA reaction of alkenes, alkynes, and 1,n-enynes; carbo/heteroperfluoroalkylation of alkenes and isocyanides; and C–H/F perfluoroalkylation. This allows the expedient incorporation of various perfluoroalkyl groups into the molecular motifs. Perfluorinated functional groups are still in demand in pharmaceutical and material sciences; this short review discusses recent advances in photoinduced perfluoroalkylation methodologies and technologies.1 Introduction2 Photocatalytic Perfluoroalkylation of Alkenes, Alkynes, and 1,n- Enynes3 Photocatalytic Carboperfluoroalkylation or Heteroperfluoroalkylation of Alkenes, Alkynes, Isocyanides, and Hydrazones4 Photocatalytic ATRE Reactions of Alkenes with Perfluoroalkyl Halides5 Photocatalytic C–X (X = H, F) Bond Perfluoroalkylation6 Continuous Flow Strategies in Photocatalytic Perfluoroalkylation7 Conclusions
Collapse
|
13
|
Louvel D, Souibgui A, Taponard A, Rouillon J, ben Mosbah M, Moussaoui Y, Pilet G, Khrouz L, Monnereau C, Vantourout JC, Tlili A. Tailoring the Reactivity of the Langlois Reagent and Styrenes with Cyanoarenes Organophotocatalysts under Visible‐Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dan Louvel
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Amel Souibgui
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Jean Rouillon
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Mongi ben Mosbah
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15) Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Guillaume Pilet
- Univ Lyon Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR 5615, CNRS, Bâtiment Chevreul Avenue du 11 novembre 1918 69622 Villeurbanne cedex France
| | - Lhoussain Khrouz
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Cyrille Monnereau
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Julien C. Vantourout
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
14
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
15
|
Vishwakarma RK, Kumar S, Singh KN. Visible-Light-Induced Photocatalytic Synthesis of β-Keto Dithiocarbamates via Difunctionalization of Styrenes. Org Lett 2021; 23:4147-4151. [PMID: 33988029 DOI: 10.1021/acs.orglett.1c01059] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile photocatalyzed strategy for difunctionalization of styrenes in the presence of CS2 and amines providing β-keto dithiocarbamates has been developed. In the case of 4-nitrostyrene and 2-vinylpyridine, however, only 2-arylethylthiocarbamates are interestingly formed without the aid of photoredox catalysis/TBHP.
Collapse
Affiliation(s)
| | - Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
16
|
Abstract
The increasing importance of visible light photoredox catalysis as a powerful strategy
for the activation of small molecules require the development of new effective radical
sources and photocatalysts. The unique properties of organoboron compounds have contributed
significantly to the rapid progress of photocatalysis. Since the first work on the topic in
2005, many researchers have appreciated the role of boron-containing compounds in photocatalysis,
and this is reflected in several publications. In this review, we highlight the utility of
organoboron compounds in various photocatalytic reactions enabling the construction of carbon-
carbon and carbon-heteroatom bonds. The dual role of organoboron compounds in photocatalysis
is highlighted by their applications as reactants and as well as organic photocatalysts.
Collapse
Affiliation(s)
- Tomasz Kliś
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Kublicki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
17
|
Chen F, Xu XH, Qing FL. Photoredox-Catalyzed Addition of Dibromofluoromethane to Alkenes: Direct Synthesis of 1-Bromo-1-fluoroalkanes. Org Lett 2021; 23:2364-2369. [PMID: 33666440 DOI: 10.1021/acs.orglett.1c00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein is a direct and efficient route to 1-bromo-1-fluoroalkanes through the reaction of unactivated alkenes with dibromofluoromethane under photoredox catalysis. The key to the success of these addition reactions is the employment of a suitable photoredox catalyst. In particular, hydro- and bromo-bromofluoromethylated products were chemoselectively formed using THF and DMF/H2O as solvents, respectively. Furthermore, the synthetic application of the prepared 1-bromo-1-fluoroalkanes has been demonstrated by their transformation into a variety of fluorine-containing compounds.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
18
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Zhang S, Weniger F, Ye F, Rabeah J, Ellinger S, Zaragoza F, Taeschler C, Neumann H, Brückner A, Beller M. Selective nickel-catalyzed fluoroalkylations of olefins. Chem Commun (Camb) 2020; 56:15157-15160. [PMID: 33210679 DOI: 10.1039/d0cc06652d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild and selective nickel-catalyzed trifluoromethylation and perfluoroalkylation reactions of alkenes were developed to provide fluorinated olefins, including natural products, pharmaceuticals, and variety of synthetic building blocks in good to excellent yields (38 examples). Control experiments, kinetic measurements and in situ EPR studies reveal the importance of radical species and the formation of 1,2-adducts as intermediates.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang Q, Liang Y, Zhang Y, Zhao X. Chalcogenide-Catalyzed Intermolecular Electrophilic Thio- and Halofunctionalization of gem-Difluoroalkenes: Construction of Diverse Difluoroalkyl Sulfides and Halides. Org Lett 2020; 22:7581-7587. [PMID: 32966094 DOI: 10.1021/acs.orglett.0c02784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thio- and halodifluoromethylated compounds are an important class of compounds in medicinal chemistry and organic synthesis. Herein, we report a facile method for the construction of these compounds via chalcogenide-catalyzed intermolecular electrophilic thio- and halofunctionalization of gem-difluoroalkenes. Simple treatment of gem-difluoroalkenes with electrophilic sulfur/halogen reagents and various O- or N-nucleophiles affords diverse multifunctionalized thio- and halodifluoromethylated compounds. This reaction features a relatively broad substrate scope, good functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
21
|
Barthelemy AL, Bourdreux F, Dagousset G, Magnier E. Photoredox-Catalyzed Selective Synthesis of Allylic Perfluoroalkanes from Alkenes. Chemistry 2020; 26:10213-10216. [PMID: 32343860 DOI: 10.1002/chem.202002046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/22/2022]
Abstract
We report herein a novel photoredox-catalyzed synthesis of allylic trifluoromethanes. The use of sulfilimino iminium as a source of trifluoromethyl radicals proves crucial to achieving high selectivity. Importantly, both styrene derivatives and unactivated alkenes are for the first time suitable partners for this process. The mild reaction conditions are compatible with a variety of functional groups. Remarkably, this method is readily broadened to other perfluoroalkyl groups (RF =CFCl2 , CF2 Br, C4 F9 ). An extensive mechanistic study is also provided.
Collapse
Affiliation(s)
- Anne-Laure Barthelemy
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - F Bourdreux
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| |
Collapse
|
22
|
Jain A, Ameta C. Novel Way to Harness Solar Energy: Photo-Redox Catalysis in Organic Synthesis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s002315842002007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Visible-light Promoted Atom Transfer Radical Addition-Elimination (ATRE) Reaction for the Synthesis of Fluoroalkylated Alkenes Using DMA as Electron-Donor. Molecules 2020; 25:molecules25030508. [PMID: 31991642 PMCID: PMC7036948 DOI: 10.3390/molecules25030508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/21/2020] [Indexed: 01/12/2023] Open
Abstract
Here, we describe a mild, catalyst-free and operationally-simple strategy for the direct fluoroalkylation of olefins driven by the photochemical activity of an electron donor−acceptor (EDA) complex between DMA and fluoroalkyl iodides. The significant advantages of this photochemical transformation are high efficiency, excellent functional group tolerance, and synthetic simplicity, thus providing a facile route for further application in pharmaceuticals and life sciences.
Collapse
|
24
|
Bhattacharjee S, Laru S, Samanta S, Singsardar M, Hajra A. Visible light-induced photocatalytic C–H ethoxycarbonylmethylation of imidazoheterocycles with ethyl diazoacetate. RSC Adv 2020; 10:27984-27988. [PMID: 35519122 PMCID: PMC9055643 DOI: 10.1039/d0ra05795a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
A visible-light-promoted regioselective ethoxycarbonylmethylation of imidazoheterocycles has been developed using an α-diazoester via a radical pathway.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan
- India
| | - Sudip Laru
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan
- India
| | - Sadhanendu Samanta
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan
- India
| | - Mukta Singsardar
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan
- India
| |
Collapse
|
25
|
Sun Y, Zhang G. Photoinduced Decarboxylative Amino‐Fluoroalkylation of Maleic Anhydride. Chemistry 2019; 26:419-422. [DOI: 10.1002/chem.201904751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Youwen Sun
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryCenter for Excellence in Molecular SynthesisUniversity of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryCenter for Excellence in Molecular SynthesisUniversity of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
26
|
Upadhyay NS, Chaładaj W. Palladium‐Catalyzed Carboperfluoroalkylation of Alkynes with Fluoroalkyl Iodides and Arylstannanes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|
27
|
Tong CL, Xu XH, Qing FL. Oxidative Hydro-, Bromo-, and Chloroheptafluoroisopropylation of Unactivated Alkenes with Heptafluoroisopropyl Silver. Org Lett 2019; 21:9532-9535. [DOI: 10.1021/acs.orglett.9b03705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
28
|
Zhou MD, Peng Z, Li L, Wang H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Israr M, Xiong H, Li Y, Bao H. Copper(I)-Catalyzed Cyanoperfluoroalkylation of Alkynes. Org Lett 2019; 21:7078-7083. [PMID: 31436436 DOI: 10.1021/acs.orglett.9b02648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Muhammad Israr
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Haigen Xiong
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
30
|
Fedorov OV, Scherbinina SI, Levin VV, Dilman AD. Light-Mediated Dual Phosphine-/Copper-Catalyzed Atom Transfer Radical Addition Reaction. J Org Chem 2019; 84:11068-11079. [DOI: 10.1021/acs.joc.9b01649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oleg V. Fedorov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Sofya I. Scherbinina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
31
|
Zhao L, Huang Y, Wang Z, Zhu E, Mao T, Jia J, Gu J, Li XF, He CY. Organophosphine-Catalyzed Difluoroalkylation of Alkenes. Org Lett 2019; 21:6705-6709. [DOI: 10.1021/acs.orglett.9b02314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yang Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ze Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Erlin Zhu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ting Mao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiwei Gu
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Xiao-Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
32
|
Moon J, Moon YK, Park DD, Choi S, You Y, Cho EJ. Visible-Light-Induced Trifluoromethylation of Unactivated Alkenes with Tri(9-anthryl)borane as an Organophotocatalyst. J Org Chem 2019; 84:12925-12932. [DOI: 10.1021/acs.joc.9b01624] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jisu Moon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yu Kyung Moon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Do Dam Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sukyung Choi
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
33
|
Brochetta M, Borsari T, Bag S, Jana S, Maiti S, Porta A, Werz DB, Zanoni G, Maiti D. Directmeta‐C−H Perfluoroalkenylation of Arenes Enabled by a Cleavable Pyrimidine‐Based Template. Chemistry 2019; 25:10323-10327. [DOI: 10.1002/chem.201902811] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Massimo Brochetta
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 2100 Pavia Italy
- Institute of Organic ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Tania Borsari
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 2100 Pavia Italy
| | - Sukdev Bag
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sadhan Jana
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Siddhartha Maiti
- Department of Bioscience and BioengineeringIndian Institute of, Technology Bombay Powai Mumbai 400076 India
| | - Alessio Porta
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 2100 Pavia Italy
| | - Daniel B. Werz
- Institute of Organic ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Giuseppe Zanoni
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 2100 Pavia Italy
| | - Debabrata Maiti
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 2100 Pavia Italy
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
34
|
Xia ZH, Gao ZH, Dai L, Ye S. Visible-Light-Promoted Oxo-difluoroalkylation of Alkenes with DMSO as the Oxidant. J Org Chem 2019; 84:7388-7394. [PMID: 31083945 DOI: 10.1021/acs.joc.9b01077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visible-light-promoted oxo-difluoroalkylation (acetylation and acetamidation) of alkenes with dimethyl sulfoxide as both the solvent and the oxidant was developed, affording the corresponding α,α-difluoro-γ-ketoacetates and acetamides in modest yields. Both terminal and internal alkenes worked well for the reaction. This reaction features simple starting materials, a green oxidant, mild reaction conditions, and highly functional products.
Collapse
Affiliation(s)
- Zi-Hao Xia
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Lei Dai
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| | - Song Ye
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| |
Collapse
|
35
|
Chen H, Sun S, Liao X. Nickel-Catalyzed Decarboxylative Alkenylation of Anhydrides with Vinyl Triflates or Halides. Org Lett 2019; 21:3625-3630. [PMID: 31062981 DOI: 10.1021/acs.orglett.9b01048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decarboxylative cross-coupling of aliphatic acid anhydrides with vinyl triflates or halides was accomplished via nickel catalysis. This methodology works well with a broad array of substrates and features abundant functional group tolerance. Notably, our approach addresses the issue of safe and environmental installation of methyl or ethyl group into molecular scaffolds. The method possesses high chemoselectivity toward alkyl groups when aliphatic/aromatic mixed anhydrides are involved. Furthermore, diverse ketones could be modified with our strategy.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing 100084 , China
| | - Shuhao Sun
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing 100084 , China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
36
|
Cao J, Wang G, Gao L, Chen H, Liu X, Cheng X, Li S. Perfluoroalkylative pyridylation of alkenes via 4-cyanopyridine-boryl radicals. Chem Sci 2019; 10:2767-2772. [PMID: 30996995 PMCID: PMC6419949 DOI: 10.1039/c8sc05237a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/15/2019] [Indexed: 11/26/2022] Open
Abstract
A metal- and photo-free method for the perfluoroalkylative pyridylation of alkenes has been developed.
A metal-free and photo-free method for the perfluoroalkylative pyridylation of alkenes has been developed via a combination of computational and experimental studies. Density functional theory calculations and control experiments indicate that the homolysis of Rf–X (X = Br, I) bonds by the 4-cyanopyridine-boryl radicals in situ generated from 4-cyanopyridine and B2pin2 is the key step. Sequential addition of Rf radicals to alkenes and the selective cross-coupling of the resulting alkyl radicals and 4-cyanopyridine-boryl radicals gives alkene difunctionalization products with a quaternary carbon center. This method exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China . .,Shaanxi Key Laboratory of Chemical Reaction Engineering , School of Chemistry and Chemical Engineering , Yan'an University , Yan'an 716000 , P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Hui Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences , Jiangsu Key Laboratory of Advanced Organic Material , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| |
Collapse
|
37
|
Zhu E, Liu XX, Wang AJ, Mao T, Zhao L, Zhang X, He CY. Visible light promoted fluoroalkylation of alkenes and alkynes using 2-bromophenol as a catalyst. Chem Commun (Camb) 2019; 55:12259-12262. [DOI: 10.1039/c9cc06587c] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple, mild and efficient approach for the fluoroalkylation of alkenes and alkynes using 2-bromophenol as a catalyst is presented.
Collapse
Affiliation(s)
- Erlin Zhu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| | - Xiao-Xiao Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| | - An-Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| | - Ting Mao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi 563003
- China
| |
Collapse
|
38
|
Iqbal N, Iqbal N, Han SS, Cho EJ. Synthesis of fluoroalkylated alkynes via visible-light photocatalysis. Org Biomol Chem 2019; 17:1758-1762. [DOI: 10.1039/c8ob02486c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluoroalkylated alkynes, which are versatile building blocks for the synthesis of various biologically active organofluorine compounds, were synthesized from easily available alkynyl halides and fluoroalkyl halides by visible-light photocatalysis.
Collapse
Affiliation(s)
- Naila Iqbal
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Sung Su Han
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
39
|
Yajima T, Shigenaga S. Metal-Free Visible Light Hydroperfluoroalkylation of Unactivated Alkenes Using Perfluoroalkyl Bromides. Org Lett 2018; 21:138-141. [DOI: 10.1021/acs.orglett.8b03596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoko Yajima
- Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Satsuki Shigenaga
- Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
40
|
Noto N, Tanaka Y, Koike T, Akita M. Strongly Reducing (Diarylamino)anthracene Catalyst for Metal-Free Visible-Light Photocatalytic Fluoroalkylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02885] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Wang CS, Dixneuf PH, Soulé JF. Photoredox Catalysis for Building C-C Bonds from C(sp 2)-H Bonds. Chem Rev 2018; 118:7532-7585. [PMID: 30011194 DOI: 10.1021/acs.chemrev.8b00077] [Citation(s) in RCA: 543] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Collapse
|
42
|
Affiliation(s)
- Sebastián Barata-Vallejo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Maria Victoria Cooke
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Al Postigo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| |
Collapse
|
43
|
Li D, Mao T, Huang J, Zhu Q. Copper-Catalyzed Bromodifluoroacetylation of Alkenes with Ethyl Bromodifluoroacetate. J Org Chem 2018; 83:10445-10452. [DOI: 10.1021/acs.joc.8b01434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dengke Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Tingting Mao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Zhang T, Wang P, Gao Z, An Y, He C, Duan C. Pyrene-based metal–organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (Z)-selective perfluoroalkylation of olefins by visible-light irradiation. RSC Adv 2018; 8:32610-32620. [PMID: 35547715 PMCID: PMC9086246 DOI: 10.1039/c8ra06181e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Iodoperfluoroalkylation or (Z)-selective perfluoroalkylation of olefins is mediated through energy transfer processes by using pyrene-based MOF NU-1000 under visible-light irradiation.
Collapse
Affiliation(s)
- Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Pengfang Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zirui Gao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang An
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
45
|
Beniazza R, Remisse L, Jardel D, Lastécouères D, Vincent JM. Light-mediated iodoperfluoroalkylation of alkenes/alkynes catalyzed by chloride ions: role of halogen bonding. Chem Commun (Camb) 2018; 54:7451-7454. [DOI: 10.1039/c8cc02765j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A catalytic amount of chloride ions greatly facilitates the UVA-mediated iodoperfluoroalkylation of alkenes and alkynes.
Collapse
Affiliation(s)
- Redouane Beniazza
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- Univ. Bordeaux
- 33405 Talence
- France
| | - Lionel Remisse
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- Univ. Bordeaux
- 33405 Talence
- France
| | - Damien Jardel
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- Univ. Bordeaux
- 33405 Talence
- France
| | | | - Jean-Marc Vincent
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- Univ. Bordeaux
- 33405 Talence
- France
| |
Collapse
|
46
|
Sun J, Li P, Guo L, Yu F, He YP, Chu L. Catalytic, metal-free sulfonylcyanation of alkenes via visible light organophotoredox catalysis. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00547h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A catalytic, redox-neutral group transfer radical addition of olefins with tosyl cyanide via visible light-induced organophotoredox catalysis has been described.
Collapse
Affiliation(s)
- Jianfeng Sun
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Peng Li
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Lei Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fang Yu
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Yu-Peng He
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
47
|
Kibriya G, Samanta S, Jana S, Mondal S, Hajra A. Visible Light Organic Photoredox-Catalyzed C–H Alkoxylation of Imidazopyridine with Alcohol. J Org Chem 2017; 82:13722-13727. [DOI: 10.1021/acs.joc.7b02582] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Golam Kibriya
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sourav Jana
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|