1
|
Tabakmakher KM, Makarieva TN, Sabutski YE, Kokoulin MS, Menshov AS, Popov RS, Guzii AG, Shubina LK, Chingizova EA, Chingizov AR, Yurchenko EA, Fedorov SN, Grebnev BB, von Amsberg G, Dyshlovoy SA, Ivanchina NV, Dmitrenok PS. Stonikacidin A, an Antimicrobial 4-Bromopyrrole Alkaloid Containing L-Idonic Acid Core from the Northwestern Pacific Marine Sponge Lissodendoryx papillosa. Mar Drugs 2024; 22:396. [PMID: 39330277 PMCID: PMC11432817 DOI: 10.3390/md22090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one of the outstanding investigators in the field of marine natural chemistry. The structure of 1 was determined using NMR, MS analysis, and chemical correlations. The L-idonic acid core was established by the comparison of GC, NMR, MS, and optical rotation data of methyl-pentaacetyl-aldonates obtained from the hydrolysis products of 1 and standard hexoses. The L-form of the idonic acid residue in 1 was confirmed by GC analysis of pentaacetate of (S)-2-butyl ester of the hydrolysis product from 1 and compared with corresponding derivatives of L- and D-idonic acids. The biosynthetic pathway for stonikacidin A (1) was proposed. The alkaloid 1 inhibited the growth of Staphylococcus aureus and Escherichia coli test strains, as well as affected the formation of S. aureus and E. coli biofilms. Compound 1 inhibited the activity of sortase A. Molecular docking data showed that stonikacidin A (1) can bind with sortase A due to the interactions between its bromine atoms and some amino acid residues of the enzyme.
Collapse
Affiliation(s)
- Kseniya M. Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Yuri E. Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Sergey N. Fedorov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Boris B. Grebnev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| |
Collapse
|
2
|
Ippoliti FM, Wonilowicz LG, Adamson NJ, Darzi ER, Donaldson JS, Nasrallah DJ, Mehta MM, Kelleghan AV, Houk KN, Garg NK. Total Synthesis of Lissodendoric Acid A. Angew Chem Int Ed Engl 2024; 63:e202406676. [PMID: 38695853 PMCID: PMC11461081 DOI: 10.1002/anie.202406676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/04/2024]
Abstract
We describe a full account of our synthetic strategy leading to the first total synthesis of the manzamine alkaloid lissodendoric acid A . These efforts demonstrate that strained cyclic allenes are valuable synthetic building blocks and can be employed efficiently in total synthesis.
Collapse
Affiliation(s)
- Francesca M Ippoliti
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry, Hamline University, St. Paul, Minnesota, 55104, USA
| | - Laura G Wonilowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan J Adamson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Evan R Darzi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- ElectraTect, Inc., Phoenix, AZ 85004, USA
| | - Joyann S Donaldson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Pfizer Oncology Medicinal Chemistry, San Diego, CA 92121, USA
| | - Daniel J Nasrallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry, Roanoke College, Salem, Virginia, 24153, USA
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Gilead Sciences Medicinal Chemistry, Foster City, CA 94404, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Tian H, Zhang L. Total synthesis of lissodendoric acid A by [4 + 2] cycloaddition of transient cyclic allene. Chin J Nat Med 2023; 21:161-162. [PMID: 37003638 DOI: 10.1016/s1875-5364(23)60417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Hongchang Tian
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Ippoliti FM, Adamson NJ, Wonilowicz LG, Nasrallah DJ, Darzi ER, Donaldson JS, Garg NK. Total synthesis of lissodendoric acid A via stereospecific trapping of a strained cyclic allene. Science 2023; 379:261-265. [PMID: 36656952 PMCID: PMC10462259 DOI: 10.1126/science.ade0032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Small rings that contain allenes are unconventional transient compounds that have been known since the 1960s. Despite being discovered around the same time as benzyne and offering a number of synthetically advantageous features, strained cyclic allenes have seen relatively little use in chemical synthesis. We report a concise total synthesis of the manzamine alkaloid lissodendoric acid A, which hinges on the development of a regioselective, diastereoselective, and stereospecific trapping of a fleeting cyclic allene intermediate. This key step swiftly assembles the azadecalin framework of the natural product, allows for a succinct synthetic endgame, and enables a 12-step total synthesis (longest linear sequence; 0.8% overall yield). These studies demonstrate that strained cyclic allenes are versatile building blocks in chemical synthesis.
Collapse
Affiliation(s)
| | | | - Laura G. Wonilowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Daniel J. Nasrallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | | | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
7
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
8
|
Neuroprotective Metabolites from Vietnamese Marine Derived Fungi of Aspergillus and Penicillium Genera. Mar Drugs 2020; 18:md18120608. [PMID: 33266016 PMCID: PMC7760690 DOI: 10.3390/md18120608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Low molecular weight secondary metabolites of marine fungi Aspergillus flocculosus, Aspergillus terreus and Penicillium sp. from Van Phong and Nha Trang Bays (Vietnam) were studied and a number of polyketides, bis-indole quinones and terpenoids were isolated. The structures of the isolated compounds were determined by 1D and 2D NMR and HR-ESI-MS techniques. Stereochemistry of some compounds was established based on ECD data. A chemical structure of asterriquinone F (6) was thoroughly described for the first time. Anthraquinone (13) was firstly obtained from a natural source. Neuroprotective influences of the isolated compounds against 6-OHDA, paraquat and rotenone toxicity were investigated. 4-Hydroxyscytalone (1), 4-hydroxy-6-dehydroxyscytalone (2) and demethylcitreoviranol (3) have shown significant increasing of paraquat- and rotenone-treated Neuro-2a cell viability and anti-ROS activity.
Collapse
|
9
|
Bian C, Wang J, Zhou X, Wu W, Guo R. Recent Advances on Marine Alkaloids from Sponges. Chem Biodivers 2020; 17:e2000186. [PMID: 32562510 DOI: 10.1002/cbdv.202000186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Alkaloids from marine secondary metabolites have received extensive attention from pharmacists in recent years. Miscellaneous alkaloids derived from marine sponges possessed various pharmacological activities including cytotoxicity, antimicrobial, antioxidant, and so on. Herein, we summarized 149 marine alkaloids from sponges based on their structures and bioactivities reported from 2015 to 2020 and analyzed the production environment of marine sponges with rich alkaloids. Moreover, we discussed biosynthesis routes of pyrrole and guanidine alkaloids from marine sponges Agelas and Monanchora. This article will be beneficial for future research on drugs from marine natural products.
Collapse
Affiliation(s)
- Changhao Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Xinyi Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| |
Collapse
|
10
|
Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K, Pislyagin E, Yurchenko E, Menchinskaya E, Aminin D, Kaluzhskiy L, Ivanov A, Peigneur S, Tytgat J, Kozlovskaya E, Isaeva M. A new multigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep 2020; 10:4205. [PMID: 32144281 PMCID: PMC7060258 DOI: 10.1038/s41598-020-61034-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The Kunitz/BPTI-type peptides are ubiquitous in numerous organisms including marine venomous animals. The peptides demonstrate various biological activities and therefore they are the subject of a number of investigations. We have discovered a new HCIQ subfamily belonging to recently described multigene HCGS family of Heteractis crispa Kunitz-peptides. The uniqueness of this subfamily is that the HCIQ precursors contain a propeptide terminating in Lys-Arg (endopeptidase cleavage site) the same as in the neuro- and cytotoxin ones. Moreover, the HCIQ genes contain two introns in contrast to HCGS genes with one intron. As a result of Sanger and amplicon deep sequencings, 24 HCIQ isoforms were revealed. The recombinant peptides for the most prevalent isoform (HCIQ2c1) and for the isoform with the rare substitution Gly17Glu (HCIQ4c7) were obtained. They can inhibit trypsin with Ki 5.2 × 10-8 M and Ki 1.9 × 10-7 M, respectively, and interact with some serine proteinases including inflammatory ones according to the SPR method. For the first time, Kunitz-peptides have shown to significantly increase neuroblastoma cell viability in an in vitro 6-OHDA-induced neurotoxicity model being a consequence of an effective decrease of ROS level in the cells.
Collapse
Affiliation(s)
- Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia.
| | - Victoria Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Nadezhda Chernysheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Konstantin Guzev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Ekaterina Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow, 119121, Russia
| | - Alexis Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow, 119121, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven, B-3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven, B-3000, Belgium
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| |
Collapse
|
11
|
Jiao WH, Li J, Wang D, Zhang MM, Liu LY, Sun F, Li JY, Capon RJ, Lin HW. Cinerols, Nitrogenous Meroterpenoids from the Marine Sponge Dysidea cinerea. JOURNAL OF NATURAL PRODUCTS 2019; 82:2586-2593. [PMID: 31532203 DOI: 10.1021/acs.jnatprod.9b00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eleven new nitrogenous meroterpenoids, cinerols A-K (1-11), were isolated from the marine sponge Dysidea cinerea collected in the South China Sea, and their structures were determined by detailed spectroscopic analysis. Cinerols A (1) and B (2) feature a rare 5H-pyrrolo[1,2a]benzimidazole moiety, while cinerols C-G (3-7) are examples of rare meroterpene benzoxazoles. The cinerols are noncytotoxic to human melanoma A375 cells at the concentration of 32 μM; however, selected cinerols exhibit moderate inhibitory activity against one or more of protein-tyrosine phosphatase 1B, ATP-citrate lyase, and SH2 domain-containing phosphatase-1 with IC50 values of 2.8-27 μM.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Meng-Meng Zhang
- National Center for Drug Screening , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , 201203 , People's Republic of China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Jing-Ya Li
- National Center for Drug Screening , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , 201203 , People's Republic of China
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| |
Collapse
|
12
|
Jiao WH, Li J, Zhang MM, Cui J, Gui YH, Zhang Y, Li JY, Liu KC, Lin HW. Frondoplysins A and B, Unprecedented Terpene-Alkaloid Bioconjugates from Dysidea frondosa. Org Lett 2019; 21:6190-6193. [PMID: 31246040 DOI: 10.1021/acs.orglett.9b01754] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Meng-Meng Zhang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jie Cui
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu-Han Gui
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yun Zhang
- Institute of Biology, Qilu University of Technology, Jinan, 250103, China
| | - Jing-Ya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ke-Chun Liu
- Institute of Biology, Qilu University of Technology, Jinan, 250103, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
13
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
14
|
Yurchenko EA, Menchinskaya ES, Pislyagin EA, Trinh PTH, Ivanets EV, Smetanina OF, Yurchenko AN. Neuroprotective Activity of Some Marine Fungal Metabolites in the 6-Hydroxydopamin- and Paraquat-Induced Parkinson's Disease Models. Mar Drugs 2018; 16:E457. [PMID: 30469376 PMCID: PMC6265791 DOI: 10.3390/md16110457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
A new melatonin analogue 6-hydroxy-N-acetyl-β-oxotryptamine (1) was isolated from the marine-derived fungus Penicillium sp. KMM 4672. It is the second case of melatonin-related compounds isolation from microfilamentous fungi. The neuroprotective activities of this metabolite, as well as 3-methylorsellinic acid (2) and 8-methoxy-3,5-dimethylisochroman-6-ol (3) from Penicillium sp. KMM 4672, candidusin A (4) and 4″-dehydroxycandidusin A (5) from Aspergillus sp. KMM 4676, and diketopiperazine mactanamide (6) from Aspergillus flocculosus, were investigated in the 6-hydroxydopamine (6-OHDA)- and paraquat (PQ)-induced Parkinson's disease (PD) cell models. All of them protected Neuro2a cells against the damaging influence of 6-OHDA to varying degrees. This effect may be realized via a reactive oxygen species (ROS) scavenging pathway. The new melatonin analogue more effectively protected Neuro2A cells against the 6-OHDA-induced neuronal death, in comparison with melatonin, as well as against the PQ-induced neurotoxicity. Dehydroxylation at C-3″ and C-4″ significantly increased free radical scavenging and neuroprotective activity of candidusin-related p-terphenyl polyketides in both the 6-OHDA- and PQ-induced PD models.
Collapse
Affiliation(s)
- Ekaterina A Yurchenko
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Ekaterina S Menchinskaya
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Evgeny A Pislyagin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam.
| | - Elena V Ivanets
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Olga F Smetanina
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Anton N Yurchenko
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
15
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2017; 34:1340-1344. [PMID: 29090285 DOI: 10.1039/c7np90044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as tryptorubin A isolated from a Streptomyces species.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|