1
|
Pan C, Zeng M. Access to C5-Sulfonylated Tetrahydropyridazines via Photoinduced Cascade Sulfonylation-Cyclization of N-Cinnamyl Aldehyde Hydrazones. J Org Chem 2025; 90:5672-5685. [PMID: 40233413 DOI: 10.1021/acs.joc.5c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Direct installation of a sulfonyl functional group into the C5-position of tetrahydropyridazine was achieved using N'-benzylidene-N-cinnamylacetohydrazide as a new building skeleton via the photocatalytic carbosulfonylation/annulation procedure. Various substituted C5-sulfonylated tetrahydropyridazines were obtained in good to excellent yields employing aryl- or alkylsulfonyl chlorides as the sulfonyl radical sources. This reaction was realized through the selective addition of sulfonyl radical to the C2 position of cinnamyl followed by the 6-endo-trig annulation to the hydrazone CH═N bond.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
2
|
Luo Y, Chen X, Han Y, Zhang X, Zhang L, Zheng Z, Ma W, Lou G, Huang D, Li J, Wang H. Base-controlled regio-divergent C-H bond functionalization. Chem Commun (Camb) 2025; 61:5688-5703. [PMID: 40130273 DOI: 10.1039/d4cc06431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The choice of appropriate directing groups, catalysts, ligands, bases, and solvents to give different regioisomers from the same precursors can improve the efficiency and atom economy in synthetic organic chemistry, while minimizing costs and expanding know chemical space. Base-controlled regio-divergent C-H bond functionalization is an important control strategy in organic synthesis, with the advantages of being operationally simple, and using cheap and available bases with low-toxicity that are easily separable. This highlight is classified into three sections: base-controlled, base-controlled transition metal-catalysed and base-controlled photocatalytic regio-divergent C-H bond functionalization. By summarizing the C-H bond activation model, the mechanisms underlying the regio-divergence and the influencing factors, this highlight aims to deepen the understanding of selective C-H bond functionalization at a molecular level. We expect that this highlight article will provide valuable information for understanding the mechanism of C-H bond functionalization, whilst providing a reference for developing green, efficient C-H bond transformation strategies.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Xi Chen
- Tianshui YiFu Experimental Middle School, Tianshui, Gansu 741001, China
| | - Yongfang Han
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Xiangyun Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Zongqi Zheng
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenzhuo Ma
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Guolong Lou
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Dongdong Huang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Jianlong Li
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Hebin Wang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| |
Collapse
|
3
|
Gao MJ, Fan JH, Liu Y. Photocatalytic Radical Cascade Cyclization of N-( o-Cyanobiaryl)acrylamides with Sulfonyl Chlorides. J Org Chem 2025; 90:5008-5018. [PMID: 40175291 DOI: 10.1021/acs.joc.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A photoredox-catalyzed radical cascade cyclization of N-(o-cyanobiaryl)acrylamides with sulfonyl chlorides for the construction of sulfonyl-containing pyrido[4,3,2-gh]phenanthridines has been disclosed. The developed synthetic tool tolerates a broad range of sulfonyl chlorides to undergo a cascade sequence, including sulfonyl radical addition, nitrile insertion, and cyclization.
Collapse
Affiliation(s)
- Mei-Jin Gao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
4
|
Zhou Z, Xu H, Li J, Zeng X, Wei Y. Sustainable Sulfonylation and Sulfenylation of Indoles with Thiols through Hexamolybdate/H 2O 2-Mediated Oxidative Dehydrogenation Coupling. J Org Chem 2025; 90:3994-4000. [PMID: 40073217 DOI: 10.1021/acs.joc.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Arylsulfonylindole and arylsulfenylindole motifs stand as privileged scaffolds in drug discovery. Traditional methods for synthesizing these molecules have relied mainly on prefunctionalized precursors, involving multistep processes and generating a large amount of waste. In this study, we present a modular protocol for the preparation of 3-sulfonylindoles and 3-sulfenylindoles using indoles and thiols as starting materials via hexamolybdate/H2O2-mediated oxidative dehydrogenative C-S coupling. Notably, this method features a simple reaction setup and uses readily available thiols as a sulfide source, H2O2 as a green oxidant and oxygen source, alcohol as solvent, recyclable hexamolybdate as a catalyst, and water as the sole byproduct. These metrics are an acceptable green organic synthesis process.
Collapse
Affiliation(s)
- Zhibin Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Hao Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jiaoxiong Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Oishi T, Uchikura T, Akiyama T. Synthesis of indole-fused benzodiazepine derivatives by photocatalyzed cascade reaction. Chem Commun (Camb) 2025; 61:2576-2579. [PMID: 39821183 DOI: 10.1039/d4cc05755d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We report a cascade synthesis of indole-fused benzodiazepines by the photocatalyzed addition of phenacyl radical, generated from α-acetoxy acetophenone, to 2-(3-methyl-1H-indol-1-yl)aniline, and subsequent cyclodehydration. A range of indole-fused benzodiazepines were obtained from readily available substrates.
Collapse
Affiliation(s)
- Tatsushi Oishi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
6
|
Yuan N, Chen S, Liu Y, Chen M. C(sp 2)-Arylsulfones Directly from Arylsulfonyl Chlorides with Boronic Acids by Photoactivation of Boosted EDA Complexes. Chemistry 2025; 31:e202403487. [PMID: 39434238 DOI: 10.1002/chem.202403487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Directly with arylsulfonyl chlorides, a green and efficient deborylativesulfonylation of aryl(alkenyl)boronic acids has been developed to access both diarylsulfones and vinylarylsulfones in moderate to excellent yields at room temperature under visible-light irradiation. This protocol features broad C(sp2)-arylsulfone applicability, simple operation, accessibility of raw materials and ease of scale-up. The key to the success of this photoredox transformation is introducing catalytic amounts of additives, naphthalen-2-ols, thus boosting the formed electron donor-acceptor (EDA) complexes, which can dramatically improve not only the reaction efficiency but also the selectivity. This strategy was inspired and derived from specific substrates, representing a rare paradigm of how to exploit a more general reaction system. Moreover, extensive control experiments provide insights into the proposed mechanism.
Collapse
Affiliation(s)
- Nianting Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Sen Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yuanxin Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| |
Collapse
|
7
|
Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. Electrochemical Regioselective C(sp 2)-H Bond Chalcogenation of Pyrazolo[1,5- a]pyrimidines via Radical Cross-Coupling at Room Temperature. J Org Chem 2024; 89:14496-14504. [PMID: 39283698 DOI: 10.1021/acs.joc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we disclose an electrochemical approach for the C(sp2)-H chalcogenation of pyrazolo[1,5-a]pyrimidines. This technique offers an oxidant and catalyst-free protocol for achieving regioselective chalcogenation of pyrazolo[1,5-a]pyrimidines. The procedure uses only 0.5 equiv. of diaryl chalcogenides which underscores the atom economy of the protocol. Key attributes of this methodology include mild reaction conditions, short reaction time, utilization of cheap electrode materials, and eco-friendly reaction conditions. Cyclic voltammetry studies and radical quenching experiments revealed a radical cross-coupling pathway for the reaction mechanism.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Rajesh T Bhawale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
8
|
Singh S, Chakrabortty G, Tiwari K, Dagar N, Raha Roy S. Shining light for organophotocatalysed site-selective sulfonylation of anilides. Org Biomol Chem 2024; 22:7690-7695. [PMID: 39222056 DOI: 10.1039/d4ob01169d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The site-selective sulfonylation of C(sp2)-H bonds of anilide and quinoline amide derivatives has been developed using organophotocatalysis. This mild and sustainable protocol, which operates at room temperature, precludes the requirement for any metal-based catalyst or photocatalyst and oxidant, which are the challenges associated with existing methodologies. Furthermore, the generation of aryl sulfonyl radicals from commercially available aryl sulfonyl chlorides has been achieved through the use of Rose Bengal as an organophotocatalyst, an approach that was previously unexplored. The detailed mechanistic investigation unveiled the underlying mechanism for site-selective sulfonylation at both the proximal and distal positions, thereby establishing a straightforward approach for building valuable aryl sulfone scaffolds.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Gopal Chakrabortty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kajal Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
9
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
10
|
Liu Y, Yuan Y, He J, Han S, Liu Y. Iodophor-/H 2O 2-Mediated 2-Sulfonylation of Indoles and N-Methylpyrrole in Aqueous Phase. Molecules 2024; 29:3564. [PMID: 39124969 PMCID: PMC11314382 DOI: 10.3390/molecules29153564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
A convenient and efficient strategy for the preparation of 2-sulfonylindoles has been achieved through iodophor-/H2O2-mediated 2-sulfonylation of indoles with readily available sulfonyl hydrazides in the aqueous phase. Iodophor is commercially available and serves as the green catalyst and aqueous phase. A series of 2-sulfonylated products from indoles and N-methylpyrrole were synthesized in moderate yields in only 10 min. Control experiments were also conducted to reveal the mechanism of action. This method is environment friendly, easy to operate and suitable for a wide range of substrates.
Collapse
Affiliation(s)
- Yashuai Liu
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yutong Yuan
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China; (J.H.); (S.H.)
| | - Jing He
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China; (J.H.); (S.H.)
| | - Sheng Han
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China; (J.H.); (S.H.)
| | - Yan Liu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China; (J.H.); (S.H.)
| |
Collapse
|
11
|
Zhong LJ, Chen H, Shang X, Xiong BQ, Tang KW, Liu Y. Oxidant-Assisted Sulfonylation/Cyclization Cascade Synthesis of Alkylsulfonylated Oxindoles via the Insertion of SO 2. J Org Chem 2024; 89:5409-5422. [PMID: 38563439 DOI: 10.1021/acs.joc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
12
|
Chandu P, Biswas S, Pal K, Sureshkumar D. Organophotoredox Catalysis: Switchable Radical Generation from Alkyl Sodium Sulfinates for Sulfonylation and Alkylative Activation of C-C Bonds of Cyclopropenes. J Org Chem 2024; 89:3912-3925. [PMID: 38446801 DOI: 10.1021/acs.joc.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Generating alkyl radicals from the sulfonyl radicals remains challenging in synthetic chemistry. Here, we report an efficient photocatalyzed strategy using alkyl sodium sulfinates as both sulfonylating and alkylating reagents by controlling the reaction temperature. This methodology provides a versatile protocol for synthesizing diastereoselective sulfonylated cyclopropanes and poly-substituted styrene derivatives. This methodology is successfully demonstrated with a wide variety of cyclopropenes and alkyl sulfinates, showcasing its broad substrate scope, high diastereo- and E/Z selectivity, and yielding good to excellent yields.
Collapse
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
13
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
14
|
Cao S, Kim D, Lee W, Hong S. Photocatalytic Enantioselective Hydrosulfonylation of α,β-Unsaturated Carbonyls with Sulfonyl Chlorides. Angew Chem Int Ed Engl 2023; 62:e202312780. [PMID: 37782249 DOI: 10.1002/anie.202312780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
This research explores the enantioselective hydrosulfonylation of various α,β-unsaturated carbonyl compounds via the use of visible light and redox-active chiral Ni-catalysis, facilitating the synthesis of enantioenriched α-chiral sulfones with remarkable enantioselectivity (exceeding 99 % ee). A significant challenge entails enhancing the reactivity between chiral metal-coordinated carbonyl compounds and moderate electrophilic sulfonyl radicals, aiming to minimize the background reactions. The success of our approach stems from two distinctive attributes: 1) the Cl-atom abstraction employed for sulfonyl radical generation from sulfonyl chlorides, and 2) the single-electron reduction to produce a key enolate radical Ni-complex. The latter process appears to enhance the feasibility of the sulfonyl radical's addition to the electron-rich enolate radical. An in-depth investigation into the reaction mechanism, supported by both experimental observations and theoretical analysis, offers insight into the intricate reaction process. Moreover, the versatility of our methodology is highlighted through its successful application in the late-stage functionalization of complex bioactive molecules, demonstrating its practicality as a strategy for producing α-chiral sulfones.
Collapse
Affiliation(s)
- Shi Cao
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyoung Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wooseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Silalai P, Saeeng R. Divergent Synthesis of 3-Pyrrolidin-2-yl-1 H-indoles, Symmetric and Unsymmetric Bis(Indolyl)Methanes (BIMs) through Photocatalyzed Decarboxylative Coupling/Friedel-Crafts Alkylation Reaction. J Org Chem 2023; 88:4052-4065. [PMID: 36881574 DOI: 10.1021/acs.joc.2c02166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This paper reports the acid-controlled divergent synthesis of 3-pyrrolidin-2-yl-1H-indoles and symmetric and unsymmetrical bis(indolyl)methanes (BIMs) through photocatalyzed decarboxylative coupling and Friedel-Crafts alkylation reactions, respectively. The protocol involves C-H functionalization, switching formation of two products, room-temperature conditions, low photocatalyst loadings, without strong oxidant, and moderate to excellent yields. This method has been applied for the synthesis of natural product vibrindole A and 1,1-bis(1H-indol-3-yl)-2-phenylethane.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
16
|
Zhu H, Zhang Y, Ren G, Wang Y, Meng J, Fan Q, Xie Z, Le ZG. Nickel-catalyzed sulfonylative coupling of 2-chlorobenzothiazoles with sulfinates at room temperature. Chem Commun (Camb) 2023; 59:1050-1053. [PMID: 36602378 DOI: 10.1039/d2cc06107d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient nickel-catalyzed cross-coupling for the synthesis of 2-sulfonylthiazoles from readily available 2-chlorobenzothiazoles and sodium sulfinates has been developed. A variety of 2-chlorobenzothiazoles and sulfinates having a diverse range of substitution patterns can undergo the coupling process successfully at room temperature. Avoiding the use of precious catalysts and sensitive ligands, moderate to excellent yields of various 2-sulfonylthiazoles were observed.
Collapse
Affiliation(s)
- Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yingying Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Gaowen Ren
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yaoqi Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Jia Meng
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
17
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
18
|
Wang Z, Chang C, Chen Y, Wu X, Li J, Zhu C. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Bhati KS, Nagar R, Malviya BK, Shukla M, Jassal AK, Verma VP, Yadav DK, Kumari N, Sharma S. Electrochemical Regioselective Sulfenylation of 2 H-Indazoles with Thiols in Batch and Continuous Flow. J Org Chem 2022; 87:13845-13855. [PMID: 36223646 DOI: 10.1021/acs.joc.2c01549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel electrochemical cross-dehydrogenative C-S bond coupling of aryl thiols with 2H-indazole is reported. Thiol-functionalized 2H-indazoles were synthesized under catalyst-, oxidant-, and metal-free conditions with innocuous hydrogen as the sole byproduct at ambient temperature. Furthermore, continuous electrochemical flow conditions using a graphite/Ni flow cell were used to obtained 3-(arylthio)-2H-indazole compounds on a gram scale within the residence time of 39 min. Detailed mechanistic studies including control experiments and cyclic voltammetry are provided to support the radical-radical cross-coupling pathway.
Collapse
Affiliation(s)
- Kuldeep Singh Bhati
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Riya Nagar
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | | | - Monika Shukla
- Department of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali 304022, India
| | - Amanpreet Kaur Jassal
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, New Delhi, India
| | - Ved Prakash Verma
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, New Delhi, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Neetu Kumari
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| |
Collapse
|
20
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
21
|
Kim M, You E, Kim J, Hong S. Site-Selective Pyridylic C-H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022; 61:e202204217. [PMID: 35481719 DOI: 10.1002/anie.202204217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/08/2022]
Abstract
An efficient pyridylic C(sp3 )-H functionalization has been developed through photocatalytic radical-mediated fluoroalkylation or cascade reactions. This method is enabled by the reversible formation of alkylidene dihydropyridine intermediates via the facile enolate formation of C4-alkyl N-amidopyridinium salts in the absence of an external base, thereby establishing the conditions necessary for subsequent intermolecular radical trapping. Rapid structural diversification of the pyridylic site can be achieved through photocatalytic multicomponent cascade reactions involving alkene trifluoromethylation, SO2 -reincorporation, and sulfonyl radical addition. This operationally simple method features a broad substrate scope and high chemoselectivity and offers a unique approach for the rational modification of the heterobenzylic C-H bonds of pyridines and quinolines with uniform site-selective control. Furthermore, experimental and theoretical studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Gong B, Zhu H, Yang L, Wang H, Fan Q, Xie Z, Le Z. Base-promoted synthesis of diarylsulfones from sulfonyl hydrazines and diaryliodonium salts. Org Biomol Chem 2022; 20:3501-3505. [PMID: 35420103 DOI: 10.1039/d2ob00389a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and concise method for the synthesis of diverse substituted sulfones was developed with high selectivity. Using n-PrOH as the solvent, diaryl sulfones are formed even on a gram scale via metal-free coupling from sulfonyl hydrazines with symmetrical or unsymmetrical diaryliodonium salts.
Collapse
Affiliation(s)
- Bozhen Gong
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Liu Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Haifeng Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China. .,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China. .,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
23
|
Ultra-efficient synthesis of bamboo-shape porphyrin framework for photocatalytic CO2 reduction and consecutive C-S/C-N bonds formation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Kim M, You E, Kim J, Hong S. Site‐Selective Pyridylic C–H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myojeong Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Euna You
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Jieun Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Sungwoo Hong
- Korea Advanced Institute of Science and Technology KAIST Department of Chemistry Yusung Gu (KAIST) 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
25
|
Yang R, Yi D, Shen K, Fu Q, Wei J, Lu J, Yang L, Wang L, Wei S, Zhang Z. Indole and Pyrrole Derivatives as Pre-photocatalysts and Substrates in the Sulfonyl Radical-Triggered Relay Cyclization Leading to Sulfonylated Heterocycles. Org Lett 2022; 24:2014-2019. [DOI: 10.1021/acs.orglett.2c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ran Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Kunrong Shen
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Wang
- Department of Nuclear Medicine, Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
26
|
Zhou N, Xu Q, Xia Z, Kuang K, Wu S, Li W, Zhang M. Palladium-catalyzed radical cascade cyanoalkylsulfonylation/cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with cyclobutanone oxime esters and DABSO. Chem Commun (Camb) 2022; 58:2335-2338. [PMID: 35079757 DOI: 10.1039/d1cc06825c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A palladium-catalyzed radical cascade cyanoalkylsulfonylation/cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with DABCO·(SO2)2 and cyclobutanone oxime esters via cleavage of a C-C single bond and insertion of SO2 was described. A series of cyanoalkylsulfone-containing cyclopenta[gh]phenanthridines were obtained in moderate-to-good yields, thus featuring mild reaction conditions, a broad substrate scope, and a high functional group tolerance.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Wenping Li
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
27
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
28
|
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
29
|
Srivastava V, Singh PK, Tivari S, Singh PP. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d1qo01602d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light and photoredox catalysis have emerged as a powerful and long-lasting tool for organic synthesis, demonstrating the importance of a variety of chemical bond formation methods.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Pravin K. Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Praveen P. Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj 211010, India
| |
Collapse
|
30
|
Sun B, Ding H, Tian H, Huang P, Jin C, Wu C, Shen R. Photo‐Triggered Self‐Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hai‐Xia Tian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Pan‐Yi Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chun‐Lei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| | - Run‐Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| |
Collapse
|
31
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
32
|
Visible-Light Photoredox-Catalyzed Sulfonyl Lactonization of Alkenoic Acids with Sulfonyl Chlorides for Sulfonyl Lactone Synthesis. J Org Chem 2021; 86:11998-12007. [PMID: 34404211 DOI: 10.1021/acs.joc.1c01378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light photoredox-catalyzed sulfonyl lactonization of unsaturated carboxylic acids with sulfonyl chlorides is described. This reaction features good functional group tolerance and a broad substrate scope, providing a simple and efficient protocol to access a wide range of sulfonyl lactones in high to excellent yields. Preliminary mechanistic investigations suggested that a free-radical pathway should be involved in the process.
Collapse
|
33
|
Zhou N, Kuang K, Wu M, Wu S, Xu Q, Xia Z, Zhang M. tert
‐Butyl Hydroperoxide‐Initiated Radical Cyclization of 1‐(Allyloxy)‐2‐(1‐Arylvinyl)Benzenes with Sulfinic Acids to Access Sulfonated Benzoxepines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| |
Collapse
|
34
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
35
|
Zhou N, Kuang K, Wu M, Wu S, Xia Z, Xu Q, Zhang M. Visible-light-induced radical cascade cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the synthesis of sulfonated benzoxepines. Org Chem Front 2021. [DOI: 10.1039/d1qo00611h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible light photocatalyzed cascade sulfonylation/cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the construction of sulfonated benzoxepines is developed.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
36
|
Lv Y, Luo J, Lin M, Yue H, Dai B, He L. A visible-light photoredox-catalyzed four-component reaction for the construction of sulfone-containing quinoxalin-2(1 H)-ones. Org Chem Front 2021. [DOI: 10.1039/d1qo00816a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light photoredox-catalyzed four component reaction of quinoxalin-2(1H)-ones, alkenes, aryldiazonium, and sodium metabisulfite leading to sulfone-containing quinoxalin-2(1H)-ones has been developed.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|
37
|
Hsueh N, Chang M. PdCl
2
/CuCl
2
/Bi(OTf)
3
‐promoted Construction of Sulfonyl Dibenzooxabicyclo[3.3.1]nonanes and Arylnaphthalenes via Intramolecular Annulation of Sulfonyl
o
‐Allylarylchromanones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nai‐Chen Hsueh
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Meng‐Yang Chang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 807 Taiwan
| |
Collapse
|
38
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
39
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|
40
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
41
|
Zhou N, Wu M, Kuang K, Wu S, Zhang M. Transition‐metal‐free Photo‐induced Cascade Sulfonylation/Addition/Cyclization of 3‐Arylethynyl‐[1,1′‐biphenyl]‐2‐carbonitriles with Aryldiazonium Tetrafluoroborates via the Insertion of Sulfur Dioxide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241000 People's Republic of China
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241000 People's Republic of China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241000 People's Republic of China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241000 People's Republic of China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241000 People's Republic of China
| |
Collapse
|
42
|
Breton‐Patient C, Naud‐Martin D, Mahuteau‐Betzer F, Piguel S. Three‐Component C–H Bond Sulfonylation of Imidazoheterocycles by Visible‐Light Organophotoredox Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloé Breton‐Patient
- CNRS UMR9187, Inserm U1196 Université Paris‐Saclay 91400 Orsay France
- CNRS UMR9187, Inserm U1196 Institut Curie, Université PSL 91400 Orsay France
| | | | | | - Sandrine Piguel
- CNRS UMR9187, Inserm U1196 Université Paris‐Saclay 91400 Orsay France
- CNRS UMR9187, Inserm U1196 Institut Curie, Université PSL 91400 Orsay France
| |
Collapse
|
43
|
Pagire SK, Kumagai N, Shibasaki M. The Different Faces of [Ru(bpy) 3Cl 2] and fac[Ir(ppy) 3] Photocatalysts: Redox Potential Controlled Synthesis of Sulfonylated Fluorenes and Pyrroloindoles from Unactivated Olefins and Sulfonyl Chlorides. Org Lett 2020; 22:7853-7858. [PMID: 32909759 DOI: 10.1021/acs.orglett.0c02760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cascade alkene sulfonylation that simultaneously forges C-S and C-C bonds is a highly efficient and powerful approach for directly accessing structurally diverse sulfonylated compounds in a single operation. The reaction was enabled by visible-light-mediated regioselective radical addition of sulfonyl chlorides to 2-arylstyrenes using fac[Ir(ppy)3] as a photocatalyst, demonstrating its unique role in a photocascade process to execute atom transfer radical addition (ATRA) followed by photocyclization. A new class of sulfonyl-substituted fluorenes and pyrroloindoles, which are useful in the field of photoelectronic materials and medicinal chemistry, was produced in excellent yields by this photocascade reaction. In contrast, the cyclization was interrupted when using the [Ru(bpy)3Cl2] catalyst having lower reduction potential, leading only to the formation of a C-S bond and the production of acyclic sulfonylated 2-arylstyrenes under identical reaction conditions. The synthetic utility of the present room-temperature photocatalysis is enhanced by the broad availability of bench-stable sulfonyl chlorides and unactivated olefins, thereby providing a cost-effective and broad-scope protocol.
Collapse
Affiliation(s)
- Santosh K Pagire
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
44
|
Tsuchiya Y, Onai R, Uraguchi D, Ooi T. Redox-regulated divergence in photocatalytic addition of α-nitro alkyl radicals to styrenes. Chem Commun (Camb) 2020; 56:11014-11017. [PMID: 32785394 DOI: 10.1039/d0cc04821f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A divergent photocatalytic system for the reaction of α-bromo nitroalkanes with styrene derivatives is established, wherein the generation of the persistent nitroxyl radical as a junctional intermediate and suitable tuning of the redox ability of the system constitute the crucial elements for achieving rigorous control over the possible reaction pathways.
Collapse
Affiliation(s)
- Yuto Tsuchiya
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Ryota Onai
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Daisuke Uraguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
45
|
Santos MS, Betim HLI, Kisukuri CM, Campos Delgado JA, Corrêa AG, Paixão MW. Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Org Lett 2020; 22:4266-4271. [DOI: 10.1021/acs.orglett.0c01297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marilia S. Santos
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Hugo L. I. Betim
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Camila M. Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Jose Antonio Campos Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Arlene G. Corrêa
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Márcio W. Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
46
|
Pagire SK, Föll T, Reiser O. Shining Visible Light on Vinyl Halides: Expanding the Horizons of Photocatalysis. Acc Chem Res 2020; 53:782-791. [PMID: 32150385 DOI: 10.1021/acs.accounts.9b00615] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusOver the past decade, photoredox catalysis has blossomed as a powerful methodology because of its wide applicability in sustainable free-radical-mediated processes, in which light is used as a cleaner energy source to alter the redox properties of organic molecules and to drive unique chemical transformations. Numerous examples of highly selective C-C and C-heteroatom bond formation processes have been achieved this way in an efficient and waste-reducing way. Therein, the activation of widely available organic halides via single-electron reduction has been broadly applied for organic synthesis. However, in comparison with alkyl and aryl halides, the analogous utilization of vinyl halides is less developed, most likely as a consequence of the highly unstable vinyl radicals generated as intermediates along with their strong tendency to abstract hydrogen atoms from a suitable source (e.g., the solvent), resulting in a synthetically less useful reduction.Nevertheless, during the last years, a number of photocatalytic processes involving vinyl halides have been developed, featuring the generation of vinyl radicals, diradicals, or radical cations as the key transient species. Moreover, photoredox processes in which a radical reacts with a vinyl halide or with an in situ-generated vinylmetal halide have been developed. Thus, identifying suitable conditions to generate and manipulate these reactive species has resulted in novel synthetic processes in a controllable manner. Moreover, in view of the great versatility of vinyl halides in palladium-catalyzed cross-coupling reactions, their activation by visible light might provide an attractive alternative to such processes, especially when non-noble metals could be used as photoinitiators in the future.In this Account, we discuss the various strategies of photoredox processes involving vinyl halides, classifying the material into four categories: (a) formation of a vinyl radical upon receipt of an electron from the photocatalyst, (b) formation of a radical cation after donation of an electron to the photocatalyst, (c) energy transfer corresponding to diradical formation upon triplet-triplet sensitization, and (d) dual transition metal and photocatalysis employing vinyl halides as precursors. While in the first three approaches the activation of vinyl halides is part of the photochemical step, the fourth one involves the interaction of a photochemically generated radical with a vinylnickel(II) halide obtained in turn by the oxidative addition of nickel(0) to the vinyl halide. Therefore, we highlight these important developments for conceptual comparison to the direct activation of vinyl halides by light, but they are not covered in depth in this Account.
Collapse
Affiliation(s)
- Santosh K. Pagire
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Thomas Föll
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
47
|
Yue X, He X, Wu Y, Hu M, Wu S, Xie Y, Li J. Metal‐Free Oxidative Decarboxylative Heteroannulation of Alkynyl Carboxylic Acids with Sulfinates and
tert
‐Butyl Nitrite toward 2,2‐Disulfonyl‐2
H
‐Azirines. ChemCatChem 2020. [DOI: 10.1002/cctc.201902400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xin Yue
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Xingyi He
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Yan‐Chen Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ming Hu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Shuang Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ye‐Xiang Xie
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Jin‐Heng Li
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
- Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 P.R. China
| |
Collapse
|
48
|
Pramanik MMD, Yuan F, Yan DM, Xiao WJ, Chen JR. Visible-Light-Driven Radical Multicomponent Reaction of 2-Vinylanilines, Sulfonyl Chlorides, and Sulfur Ylides for Synthesis of Indolines. Org Lett 2020; 22:2639-2644. [PMID: 32186888 DOI: 10.1021/acs.orglett.0c00602] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A visible-light-driven photoredox-catalyzed multicomponent reaction of 2-vinylanilines, sulfonyl chlorides, and sulfur ylides is described. This protocol features redox-neutral mild conditions, a broad substrate scope, and good functional group tolerance, providing access to various sulfonated 2,3-disubstituted indolines. The product can be transformed to a diverse range of functionalized indoles by a selective aromatization/nucleophilic substitution process. Mechanistic investigations suggest that both sulfonyl chlorides and sulfur ylides serve as radical sources, and the reaction proceeds through a sequential radical addition/addition/thermal SN2-substitution process.
Collapse
Affiliation(s)
- Mukund M D Pramanik
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Fan Yuan
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
49
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
50
|
Zhou N, Wu M, Zhang M, Zhou X, Zhou W. TBPB-initiated cascade cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with sulfinic acids: access to sulfone-containing cyclopenta[gh]phenanthridines. Org Biomol Chem 2020; 18:1733-1737. [PMID: 32048693 DOI: 10.1039/d0ob00119h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel TBPB-initiated cascade cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with sulfinic acids via C-S, C-C and C-N bond formation for the synthesis of 3-sulfonated cyclopenta[gh]phenanthridines under metal-free conditions has been developed. This protocol features mild conditions, good functional group tolerance and a broad substrate scope. By using this protocol, a variety of potentially bioactive 3-sulfonated cyclopenta[gh]phenanthridines were facilely synthesized via direct annulation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Xiaoqiang Zhou
- College of chemistry and material, Weinan Normal University, Weinan 714099, Shaanxi province, China
| | - Wei Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|