1
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Doussot A, Bakaï MF, Fouquet E, Hermange P. Ex Situ Generation of 18O 2 and 17O 2 from Endoperoxides for *O-Labeling and Mechanistic Studies of Oxidations by Dioxygen. Org Lett 2023. [PMID: 37276381 DOI: 10.1021/acs.orglett.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Near-stoichiometric amounts of 18O2 and 17O2 were generated ex situ from endoperoxides in a two-chamber glassware to oxidize various substrates. This strategy gave [*O2]endoperoxides, [*O1]quinones, [*O1]phenols, and [*Ox]artemisin in moderate to good yields and high isotopic enrichments (up to 84%) at affordable costs. Moreover, mass spectrometry and 17O NMR of the [*O]products provided valuable information about the chemical mechanisms involved.
Collapse
Affiliation(s)
- Alexandra Doussot
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Marie-France Bakaï
- Laboratoire Chimie Organique et Sciences de l'Environnement (LaCOSE), Faculté des Sciences et Techniques - Université de Kara, BP 404 Kara, Togo
| | - Eric Fouquet
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Philippe Hermange
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
3
|
Yang L, Yan Y, Cao N, Hao J, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. Ni(I)-Catalyzed Hydroxylation of Aryl Halides with Water under Thermal Catalysis. Org Lett 2022; 24:9431-9435. [PMID: 36534081 DOI: 10.1021/acs.orglett.2c03840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient hydroxylation of (hetero)aryl halides using water as a hydroxyl source via Ni catalysis promoted by PhSiH3 under thermal catalysis is reported. This methodology provides a general procedure to obtain diverse multifunctional pharmaceutically phenols and polyphenols, some of which are proven challenging to be synthesized using literature methods. Mechanism studies demonstrated that the addition of PhSiH3 led to the generation of active Ni(I) species, which catalyze the hydroxylation via a Ni(I)-Ni(III) pathway.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Recent trends in non-noble metal-catalyzed hydroxylation reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Katagiri K, Kuriyama M, Yamamoto K, Demizu Y, Onomura O. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Org Lett 2022; 24:5149-5154. [PMID: 35822911 DOI: 10.1021/acs.orglett.2c01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metal-free synthesis of phenols from diaryliodonium salts with water was developed by using N-benzylpyridin-2-one as an organocatalyst. In this process, sterically congested, functionalized, and heterocycle-containing iodonium salts were smoothly converted to the desired products, and the clofibrate and mecloqualone derivatives were also synthesized in high yields. In addition, the gram-scale experiment was successfully carried out with 10 mmol of a sterically congested substrate.
Collapse
Affiliation(s)
- Kotone Katagiri
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Huiqin W, Wu M. Photocatalytic synthesis of phenols mediated by visible light using KI as catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yang L, Zhuang Q, Wu M, Long H, Lin C, Lin M, Ke F. Electrochemical-induced hydroxylation of aryl halides in the presence of Et 3N in water. Org Biomol Chem 2021; 19:6417-6421. [PMID: 34236072 DOI: 10.1039/d1ob00931a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thorough study of mild and environmentally friendly electrochemical-induced hydroxylation of aryl halides without a catalyst is presented. The best protocol consists of hydroxylation of different aryl iodides and aryl bromides by water solution in the presence of Et3N under air, affording the target phenols in good isolated yields. Moreover, aryl chlorides were successfully employed as substrates. This methodology also provides a direct pathway for the formation of deoxyphomalone, which displayed a significant anti-proliferation effect.
Collapse
Affiliation(s)
- Li Yang
- Faculty of Material and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Qinglong Zhuang
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Hua Long
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Chen Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Fang Ke
- Faculty of Material and Chemical Engineering, Yibin University, Yibin 644000, China and Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
8
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Xiao L, Lang TT, Jiang Y, Zang ZL, Zhou CH, Cai GX. Aerobic Copper-Catalyzed Salicylaldehydic C formyl -H Arylations with Arylboronic Acids. Chemistry 2021; 27:3278-3283. [PMID: 33289166 DOI: 10.1002/chem.202004810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Indexed: 12/15/2022]
Abstract
We report a challenging copper-catalyzed Cformyl -H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl -H bond compared to the phenolic O-H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI /CuII /CuIII catalytic cycle.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Tao-Tao Lang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ying Jiang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
10
|
|
11
|
Abstract
Boric acid, B(OH)3, is proved to be an efficient hydroxide reagent in converting (hetero)aryl halides to the corresponding phenols with a Pd catalyst under mild conditions. Various phenol products were obtained in good to excellent yields. This transformation tolerates a broad range of functional groups and molecules, including base-sensitive substituents and complicated pharmaceutical (hetero)aryl halide molecules.
Collapse
Affiliation(s)
- Zhi-Qiang Song
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Dong-Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Cai YM, Xu YT, Zhang X, Gao WX, Huang XB, Zhou YB, Liu MC, Wu HY. Photoinduced Hydroxylation of Organic Halides under Mild Conditions. Org Lett 2019; 21:8479-8484. [PMID: 31580686 DOI: 10.1021/acs.orglett.9b03317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue-Ming Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Yu-Ting Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People’s Republic of China
| |
Collapse
|
13
|
|
14
|
|
15
|
Kim HS, Joo SR, Shin US, Kim SH. Recyclable CNT-chitosan nanohybrid film utilized in copper-catalyzed aerobic ipso-hydroxylation of arylboronic acids in aqueous media. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Liu W, Wu G, Gao W, Ding J, Huang X, Liu M, Wu H. Palladium-catalyzed oxidative CC bond cleavage with molecular oxygen: one-pot synthesis of quinazolinones from 2-amino benzamides and alkenes. Org Chem Front 2018. [DOI: 10.1039/c8qo00670a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Palladium-catalyzed oxidative cleavage/cyclization has been disclosed for the concise synthesis of various quinazolinone derivatives from readily available 2-aminobenzamides and terminal alkenes with excellent functional group tolerance.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Science
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Jinchang Ding
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|
17
|
Yi H, Liu Y, Lei A. Green Cross-Coupling Using Visible Light for C–O and C–N Bond Formation. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|