1
|
Corral Suarez C, Fernández I, Colomer I. Understanding the Regiodivergence between Hydroarylation and Trifluoromethylarylation of 1,3-Dienes Using Anilines in HFIP. JACS AU 2024; 4:1744-1751. [PMID: 38818050 PMCID: PMC11134361 DOI: 10.1021/jacsau.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Conjugated dienes (1,3-dienes) are versatile and valuable chemical feedstocks that can be used as two-carbon or four-carbon synthons with vast applications across the chemical industry. However, the main challenge for their productive incorporation in synthetic routes is their chemo-, regio-, and stereoselective functionalization. Herein, we introduce a unified strategy for the 1,2-hydroarylation and 1,4-trifluoromethylarylation of 1,3-dienes using anilines in hexafluoroisopropanol. DFT calculations point toward a kinetically controlled process in both transformations, particularly in the trifluoromethylarylation, to explain the regiodivergent outcome. In addition, we perform an extensive program of functionalization and diversification of the products obtained, including hydrogenation, oxidation, cyclizations, or cross-coupling reactions, that allows access to a library of high-value species in a straightforward manner.
Collapse
Affiliation(s)
- Carlos Corral Suarez
- Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
Químicas, Universidad Complutense
de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ignacio Colomer
- Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
2
|
Chen K, Zhu H, Liu S, Bai J, Guo Y, Ding K, Peng Q, Wang X. Switch in Selectivities by Dinuclear Nickel Catalysis: 1,4-Hydroarylation of 1,3-Dienes to Z-Olefins. J Am Chem Soc 2023. [PMID: 37903244 DOI: 10.1021/jacs.3c09283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
One of the most challenging tasks in organic synthesis is to control selectivities, especially switching the well-known selectivity to obtain new isomers that were previously inaccessible. Inspired by biological catalysis involving multiple metal centers, catalysis enabled by binuclear metal complexes offers the potential to induce reactivity and selectivity that might not be available to mononuclear catalysts. Herein, we describe that using a macrocyclic bis pyridyl diimine dinickel complex as the catalyst, the commonly observed 4,3-regioselectivity of hydroarylation of 1,3-dienes is switched to 1,4-hydroarylation with thermodynamically less stable Z-stereoselectivity, offering challenging synthetic target Z-olefins. DFT calculations show that the activation of 1,3-diene proceeds through dinuclear Ni-diolefin coordination, and the synergistic effects of two Ni nuclei enable reactivity and selectivity of this binuclear catalysis substantially different from those of mononuclear nickel complexes in the current reaction.
Collapse
Affiliation(s)
- Ke Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongdan Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
3
|
Tran HN, Nguyen CM, Koeritz MT, Youmans DD, Stanley LM. Nickel-catalyzed arylative substitution of homoallylic alcohols. Chem Sci 2022; 13:11607-11613. [PMID: 36320388 PMCID: PMC9555571 DOI: 10.1039/d2sc01716d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Direct coupling of unactivated alcohols remains a challenge in synthetic chemistry. Current approaches to cross-coupling of alcohol-derived electrophiles often involve activated alcohols such as tosylates or carbonates. We report the direct arylative substitution of homoallylic alcohols catalyzed by a nickel-bisphosphine complex as a facile method to generate allylic arenes. These reactions proceed via formation of an allylic alcohol intermediate. Subsequent allylic substitution with arylboroxine nucleophiles enables the formation of a variety of allylic arenes. The presence of p-methoxyphenylboronic acid is crucial to activate the allylic alcohol to achieve high product yields.
Collapse
Affiliation(s)
- Hai N Tran
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Chau M Nguyen
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Mason T Koeritz
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Dustin D Youmans
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Levi M Stanley
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| |
Collapse
|
4
|
Wang C, Guo Y, Wang X, Wang Z, Ding K. Ni-Catalyzed Regioselective Hydroarylation of 1-Aryl-1,3-Butadienes with Aryl Halides. Chemistry 2021; 27:15903-15907. [PMID: 34506052 DOI: 10.1002/chem.202102847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/11/2022]
Abstract
An efficient nickel-catalyzed regioselective hydroarylation of 1,3-dienes with aryl halides and a silane has been developed, affording a range of allylic arenes in good to excellent yields under mild conditions. This method exhibits broad substrate scope, and excellent functional group tolerance. Late-stage modification of complex architectures was demonstrated.
Collapse
Affiliation(s)
- Chengdong Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yingjie Guo
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Kuiling Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Dong Y, Mei B, Zhang XP, Xu H. Selective Gram-Scale C-H Carbenoid Functionalization of N-Sulfonylarylamides with a Rhodium Catalyst. J Org Chem 2021; 86:11660-11672. [PMID: 34382402 DOI: 10.1021/acs.joc.1c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes an effective Cp*RhIII-catalyzed C-H carbenoid functionalization of N-sulfonylarylamides. Compared to the previous late-stage C-H modification methods of N-sulfonylarylamide analogues, this method efficiently achieves the gram-scale transformation with 2.5 mol % Rh-catalyst loading at 0 °C or with a 0.1 mol % Rh-catalyst loading at room temperature. The reaction medium has a great influence on the reaction rate. Methanol is optimal, and adding a nonpolar solvent (such as toluene or 1,2-dichloroethane) causes the rate to decrease. Experiments and density functional theory calculations were performed to rationalize the mechanism of rate control by a polar medium.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Mei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Nishimura T. Iridium-Catalyzed Hydroarylation via C-H Bond Activation. CHEM REC 2021; 21:3532-3545. [PMID: 34101981 DOI: 10.1002/tcr.202100109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/15/2021] [Indexed: 01/02/2023]
Abstract
Hydroarylation reactions via C-H activation, which compensate for shortcomings of classical methods based on the Friedel-Crafts reaction, is one of the most attractive methods to synthesize substituted arenes. This Personal Account reviews our recent studies on iridium-catalyzed intermolecular hydroarylation of vinyl ethers, alkynes, bicycloalkenes, and 1,3-dienes, and intramolecular hydroarylation of m-allyloxyphenyl ketones, where asymmetric addition reactions are included. A cationic iridium catalyst, which is generated from chloroiridium [IrCl] and NaBArF 4 [ArF =3,5-(CF3 )2 C6 H3 ], or a hydroxoiridium [Ir(OH)] complex is effective in catalyzing the hydroarylation depending on the substrates. 1,5-Cyclooctadiene (cod), chiral dienes, and conventional bisphosphines function as ligands controlling the high reactivity and selectivity of the catalysts in the hydroarylation. H/D exchange reaction of alkenes by use of a key intermediate of the hydroarylation reaction is also described.
Collapse
Affiliation(s)
- Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka, 558-8585, Japan
| |
Collapse
|
7
|
Fernández DF, Mascareñas JL, López F. Catalytic addition of C-H bonds across C-C unsaturated systems promoted by iridium(i) and its group IX congeners. Chem Soc Rev 2020; 49:7378-7405. [PMID: 32926061 DOI: 10.1039/d0cs00359j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal-catalyzed hydrocarbonations of unsaturated substrates have emerged as powerful synthetic tools for increasing molecular complexity in an atom-economical manner. Although this field was traditionally dominated by low valent rhodium and ruthenium catalysts, in recent years, there have been many reports based on the use of iridium complexes. In many cases, these reactions have a different course from those of their rhodium homologs, and even allow performing otherwise inviable transformations. In this review we aim to provide an informative journey, from the early pioneering examples in the field, most of them based on other metals than iridium, to the most recent transformations catalyzed by designed Ir(i) complexes. The review is organized by the type of C-H bond that is activated (with C sp2, sp or sp3), as well as by the C-C unsaturated partner that is used as a hydrocarbonation partner (alkyne, allene or alkene). Importantly, we discuss the mechanistic foundations of the methods highlighting the differences from those previously proposed for processes catalyzed by related metals, particularly those of the same group (Co and Rh).
Collapse
Affiliation(s)
- David F Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
8
|
Murakami K, Nagamoto M, Nishimura T. Iridium-catalyzed Annulation of α,β-Unsaturated Amides with Electron-deficient Conjugated Dienes. CHEM LETT 2020. [DOI: 10.1246/cl.200193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kotone Murakami
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Midori Nagamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
9
|
Huang Y, Xu L, Yu F, Shen W, Lu X, Ding L, Zhong L, Zhong G, Zhang J. Stereoselective and Atom-Economic Alkenyl C-H Allylation/Alkenylation in Aqueous Media by Iridium Catalysis. J Org Chem 2020; 85:7225-7237. [PMID: 32372645 DOI: 10.1021/acs.joc.0c00619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical and atom-economic protocol for the stereoselective preparation of various 1,4- and 1,3-diene skeletons through iridium-catalyzed directed olefinic C-H allylation and alkenylation of NH-Ts acrylamides in water was developed. This reaction tolerated a wide scope of substrates under simple reaction conditions and enabled successful gram-scale preparation. Furthermore, an asymmetric variant of this reaction giving enantioenriched 1,4-dienes was achieved employing a chiral diene-iridium complex as the catalyst.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liangyao Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feifei Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhou Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiunan Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liangjun Zhong
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Yoshimoto R, Usuki Y, Satoh T. Rhodium(III)-Catalyzed Redox-Neutral Coupling of α-Trifluoromethylacrylic Acid with Benzamides through Directed C-H Bond Cleavage. Chem Asian J 2020; 15:802-806. [PMID: 32017428 DOI: 10.1002/asia.201901776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Indexed: 01/13/2023]
Abstract
A rhodium(III)-catalyzed redox-neutral coupling of α-trifluoromethylacrylic acid with bezamides proceeds smoothly accompanied by amide-directed C-H bond cleavage to produce β-[2-(aminocarbonyl)phenyl]-α-trifluoromethylpropanoic acid derivatives. One of the products can be transformed to a trifluoromethyl substituted heterocyclic compound. In addition, the redox-neutral coupling of α-trifluoromethylacrylic acid with related aromatic substrates possessing a nitrogen-containing directing group can also be conducted under similar conditions.
Collapse
Affiliation(s)
- Risa Yoshimoto
- Department of Chemistry Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshinosuke Usuki
- Department of Chemistry Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Tetsuya Satoh
- Department of Chemistry Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
11
|
Hamaguchi T, Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Hydroarylation of in Situ Generated 1,3-Dienes with Arylboronic Acids Using a Secondary Homoallyl Carbonate as a Surrogate for the 1,3-Diene and Hydride Source. Org Lett 2020; 22:1124-1129. [DOI: 10.1021/acs.orglett.9b04634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Hamaguchi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
12
|
Chang MY, Lai KX, Chang YL. In(OTf)3-catalyzed intramolecular hydroarylation of α-phenylallyl β-ketosulfones – synthesis of sulfonyl 1-benzosuberones and 1-tetralones. RSC Adv 2020; 10:18231-18244. [PMID: 35517185 PMCID: PMC9053753 DOI: 10.1039/d0ra01962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
In(OTf)3-catalyzed intramolecular hydroarylation of α-phenylallyl β-ketosulfones provides sulfonyl 1-benzosuberones and 1-tetralones in moderate to good yields in refluxing (CH2Cl)2 under open-vessel and easy-operation reaction conditions. A plausible mechanism is proposed and discussed. This highly regioselective protocol provides an atom-economic ring-closure route. In(OTf)3-catalyzed intramolecular hydroarylation of α-phenylallyl β-ketosulfones provides sulfonyl 1-benzosuberones and 1-tetralones in moderate to good yields in refluxing (CH2Cl)2 under open-vessel and easy-operation reaction conditions.![]()
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University Hospital
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Kai-Xiang Lai
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University Hospital
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Yu-Lun Chang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University Hospital
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| |
Collapse
|
13
|
Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Iridium-Catalyzed Cross-Coupling Reactions of Alkenes by Hydrogen Transfer. Org Lett 2019; 21:8219-8224. [PMID: 31589451 DOI: 10.1021/acs.orglett.9b02935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of Ru-, Rh-, or Pd-catalyzed vinylic C-H/C-H cross-coupling reactions of olefins have been demonstrated to provide 1,3-dienes, using a quantitative amount of metal oxidants. Although transfer hydrogenation and C-H alkenylation are two important areas that evolved independently, we herein report the first iridium-catalyzed cross-coupling reactions of alkenes by integration of directed C(alkenyl)-H alkenylation and transfer hydrogenation to obviate the usage of a metal oxidant, employing a hydrogen acceptor such as inexpensive chloranil.
Collapse
Affiliation(s)
- Keke Meng
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Yaling Sun
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Kaiyun Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Xiaohui Ji
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
14
|
Wang G, Gao L, Chen H, Liu X, Cao J, Chen S, Cheng X, Li S. Chemoselective Borane‐Catalyzed Hydroarylation of 1,3‐Dienes with Phenols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guoqiang Wang
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Liuzhou Gao
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Hui Chen
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Xueting Liu
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jia Cao
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Shengda Chen
- School of Minerals Processing and BioengineeringCentral South University Changsha 410083 Hunan China
| | - Xu Cheng
- Institute of Chemistry and Biomedical SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Shuhua Li
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
15
|
Wang G, Gao L, Chen H, Liu X, Cao J, Chen S, Cheng X, Li S. Chemoselective Borane-Catalyzed Hydroarylation of 1,3-Dienes with Phenols. Angew Chem Int Ed Engl 2019; 58:1694-1699. [PMID: 30515921 DOI: 10.1002/anie.201811729] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 12/18/2022]
Abstract
A B(C6 F5 )3 -catalyzed hydroarylation of a series of 1,3-dienes with various phenols has been established through a combination of theoretical and experimental investigations, affording structurally diverse ortho-allyl phenols. DFT calculations show that the reaction proceeds through a borane-promoted protonation/Friedel-Crafts pathway involving a π-complex of a carbocation-anion contact ion pair. This protocol features simple and mild reaction conditions, broad functional-group tolerance, and low catalyst loading. The obtained ortho-allyl phenols could be further converted into flavan derivatives using B(C6 F5 )3 with good cis diastereoselectivity. Furthermore, this transformation was applied in the late-stage modification of pharmaceutical compounds.
Collapse
Affiliation(s)
- Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Liuzhou Gao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hui Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xueting Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia Cao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengda Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
16
|
Xu L, Meng K, Zhang J, Sun Y, Lu X, Li T, Jiang Y, Zhong G. Iridium-catalyzed alkenyl C–H allylation using conjugated dienes. Chem Commun (Camb) 2019; 55:9757-9760. [DOI: 10.1039/c9cc04419a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed olefinic C–H allylation of acrylamides with conjugated dienes was developed, providing an atom economic synthesis of skipped dienes.
Collapse
Affiliation(s)
- Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Keke Meng
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yaling Sun
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Tingyan Li
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yan Jiang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
17
|
Youn SW, Ko TY, Kim YH, Kim YA. Pd(II)/Cu(II)-Catalyzed Regio- and Stereoselective Synthesis of (E)-3-Arylmethyleneisoindolin-1-ones Using Air as the Terminal Oxidant. Org Lett 2018; 20:7869-7874. [DOI: 10.1021/acs.orglett.8b03409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yun Ah Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
18
|
Ouyang XH, Cheng J, Li JH. 1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis. Chem Commun (Camb) 2018; 54:8745-8748. [DOI: 10.1039/c8cc04526g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visible light-driven three-component alkene 1,2-diarylation with aryldiazonium salts and arenes involving aryl C(sp2)–H functionalization is described.
Collapse
Affiliation(s)
- Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|