1
|
Xie R, Xu J, Shi H, Xiao C, Wang N, Huang N, Yao H. Stereocontrolled Synthesis of Aryl C-Nucleosides under Ambient Conditions. Org Lett 2024; 26:5162-5166. [PMID: 38832704 DOI: 10.1021/acs.orglett.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A stereocontrolled synthesis of an aryl C-nucleoside has been developed using D-ribals and arylboronic acids catalyzed by palladium without additional ligands in common solvents under an open-air atmosphere at room temperature. This protocol features very mild conditions, simplicity in operation, exclusive β-stereoselectivity, broad substrate scopes, and good compatibility with reactive amino and hydroxyl groups. The functionalization of unsaturated C-nucleosides and the late-stage glycosylation of natural products/drugs demonstrated the high practicality of this strategy.
Collapse
Affiliation(s)
- Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Chenyu Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
2
|
Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. Eur J Med Chem 2020; 212:113101. [PMID: 33385837 DOI: 10.1016/j.ejmech.2020.113101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The kinetoplastid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are the causative agents of neglected tropical diseases with a serious burden in several parts of the world. These parasites are incapable of synthesizing purines de novo, and therefore rely on ingenious purine salvage pathways to acquire and process purines from their host. Purine nucleoside analogs that may interfere with these pathways therefore constitute a privileged source of new antikinetoplastid agents. In this study, we synthetized a collection of C-nucleosides employing five different heterocyclic nucleobase surrogates. C-nucleosides are chemically and enzymatically stable and allow for extensive structural modification. Inspired by earlier 7-deazaadenosine nucleosides and known antileishmanial C-nucleosides, we introduced different modifications tailored towards antikinetoplastid activity. Both adenosine and inosine analogs were synthesized with the aim of discovering new antikinetoplastid hits and expanding knowledge of structure-activity relationships. Several promising hits with potent activity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum were discovered, and the nature of the nucleobase surrogate was found to have a profound influence on the selectivity profile of the compounds.
Collapse
|
3
|
Nie P, Groaz E, De Jonghe S, Andrei G, Herdewijn P. Synthesis of a 3′-Deoxy- C-Nucleoside Phosphonate Bearing 9-Deazaadenine as Base Moiety. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Nie
- Medicinal Chemistry; Rega Institute for Medical Research; KU Leuven; Herestraat 49 3000 Leuven Belgium
| | - Elisabetta Groaz
- Medicinal Chemistry; Rega Institute for Medical Research; KU Leuven; Herestraat 49 3000 Leuven Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy; Rega Institute for Medical Research; KU Leuven; Herestraat 49 3000 Leuven Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy; Rega Institute for Medical Research; KU Leuven; Herestraat 49 3000 Leuven Belgium
| | - Piet Herdewijn
- Medicinal Chemistry; Rega Institute for Medical Research; KU Leuven; Herestraat 49 3000 Leuven Belgium
| |
Collapse
|
4
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|