1
|
Xie H, Yu S. Photoexcited Copper-Catalyzed Intramolecular [2+2] Cycloaddition To Construct Bicyclo[3.2.0]heptanes. Org Lett 2025; 27:5176-5180. [PMID: 40340496 DOI: 10.1021/acs.orglett.5c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The bicyclo[3.2.0]heptane scaffold is frequently found in a wide range of bioactive molecules and plays a pivotal role in constructing key modules of these compounds. In this study, we present a strategy for the synthesis of bicyclo[3.2.0]heptanes using a copper/BINAP complex to facilitate an intramolecular [2+2] cycloaddition under visible light irradiation. This methodology offers several advantages, including the use of a cost-effective copper catalyst and the ability to achieve high yields (up to 98%) and diastereoselectivity (>20:1 dr). Our approach provides an efficient strategy for constructing the bicyclo[3.2.0]heptane framework.
Collapse
Affiliation(s)
- Hongling Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Carretero JC, Rodríguez N, Adrio J. Metal catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides: structural diversity at the dipole partner. Chem Commun (Camb) 2025; 61:3821-3831. [PMID: 39945035 DOI: 10.1039/d4cc06484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The 1,3-dipolar cycloaddition of azomethine ylides represents a versatile approach for synthesizing pyrrolidines, valuable structural motifs in synthetic and medicinal chemistry. However, most studies to date have relied predominantly on α-iminoesters as ylide precursors, thereby limiting the broader synthetic applications of this strategy. This feature article highlights alternative azomethine ylide precursors, beyond conventional α-iminoesters, which have facilitated the preparation of pyrrolidines with new subtitution patterns.
Collapse
Affiliation(s)
- Juan Carlos Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
3
|
Kumar SV, Olusegun J, Guiry PJ. Zn(II)-catalyzed asymmetric [3 + 2] cycloaddition of acyclic enones with azomethine ylides. Org Biomol Chem 2024; 22:7148-7153. [PMID: 38920098 DOI: 10.1039/d4ob00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The Zn(II)/UCD-Imphanol-catalyzed highly endo-selective [3 + 2] asymmetric cycloaddition of acyclic enones and azomethine ylides has been developed. Moderate to high yields (up to 94%) with excellent endo/exo selectivities (99 : 1) and enantioselectivities up to 96.5 : 3.5 er were obtained.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jeremiah Olusegun
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Long J, Liu R, Mu X, Song Z, Zhang Z, Yang Z. Development of a Strategy for the Total Synthesis of Aspidosperma Alkaloids via the Cyclobutenone-Based PET-Initiated Cationic Radical-Driven [2+2]/Retro-Mannich Reaction. Org Lett 2024; 26:2960-2964. [PMID: 38592965 DOI: 10.1021/acs.orglett.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A novel strategy for the synthesis of Aspidosperma alkaloids has been achieved via a photoredox-initiated [2+2]/retro-Mannich reaction of tryptamine-substituted enaminones as a key step. The developed chemistry has been applied to the construction of the core tetracycle of Aspidosperma alkaloids (±)-aspidospermidine and (±)-limaspermidine.
Collapse
Affiliation(s)
- Jianyu Long
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rudong Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinpeng Mu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Lu L, Lu P. Enantioselective [3+2]-cycloaddition of 2,3-disubstituted cyclobutenones: vicinal quaternary stereocenters construction and skeletal functionalization. Chem Sci 2023; 14:8355-8359. [PMID: 37564417 PMCID: PMC10411620 DOI: 10.1039/d3sc02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Cycloaddition is a fundamental transformation, featuring the assembly of complex cyclic molecules with multiple stereocenters. We report here a silver-catalyzed [3+2]-cycloaddition of 2,3-disubstituted cyclobutenones with an array of azomethine ylide precursors iminoesters, furnishing azabicycles in good yields and enantioselectivities. Up to three contiguous all-carbon quaternary centers, including two angular stereocenters, could be constructed efficiently, due to high reactivity of strained cyclobutenones. Subsequent skeletal remodeling provided versatile molecules with distinct structural characters.
Collapse
Affiliation(s)
- Licheng Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
6
|
Chang X, Liu XT, Li F, Yang Y, Chung LW, Wang CJ. Electron-rich benzofulvenes as effective dipolarophiles in copper(i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2023; 14:5460-5469. [PMID: 37234882 PMCID: PMC10207880 DOI: 10.1039/d3sc00435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A series of benzofulvenes without any electron-withdrawing substituents were employed as 2π-type dipolarophiles for the first time to participate in Cu(i)-catalyzed asymmetric 1,3-dipolar cycloaddition (1,3-DC) reactions of azomethine ylides. An intrinsic non-benzenoid aromatic characteristic from benzofulvenes serves as a key driving force for activation of the electron-rich benzofulvenes. Utilizing the current methodology, a wide range of multi-substituted chiral spiro-pyrrolidine derivatives containing two contiguous all-carbon quaternary centers were formed in good yield with exclusive chemo-/regioselectivity and high to excellent stereoselectivity. Computational mechanistic studies elucidate the origin of the stereochemical outcome and the chemoselectivity, in which the thermostability of these cycloaddition products is the major factor.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Fangfang Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yuhong Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
7
|
Cristóbal C, Corral C, Carretero JC, Ribagorda M, Adrio J. Enantioselective transformations of 5-hydroxymethylfurfural via catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Commun (Camb) 2023; 59:4336-4339. [PMID: 36943748 DOI: 10.1039/d3cc00499f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
A catalytic asymmetric 1,3-dipolar cycloaddition between iminoesters derived from 5-hydroxymethylfurfural (HMF) and different activated alkenes is reported. Excellent levels of diastereo and enantioselectivity were obtained when Fesulphos/CuI complex was used as catalyst. This metodology provides an effective and sustainable access to challenging enantioenriched heterocyclic scaffolds and represents one of the rare examples of catalytic asymmetric transformations using HMF as a starting material.
Collapse
Affiliation(s)
- Christian Cristóbal
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | - César Corral
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
8
|
Tsujihara T, Kawano T, Sato K, Inagaki S, Takehara T, Suzuki T. Catalytic Enantioselective Construction of trans-Fused 2,3,3a,4,5,9b-Hexahydro-1H-pyrrolo[3,2-c]quinoline Derivatives by Intramolecular [3+2]-Cycloaddition. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Qin R, Yu TT, Liu SJ, Wang YC, Luo ML, Chen BH, Zhao Q, Huang W. Asymmetric [4 + 2] Annulation of Cyclobutenones and Pyrazolone 4,5-Diones: Access to Novel δ-Lactone-Fused Spiropyrazolones. J Org Chem 2022; 87:5358-5370. [PMID: 35324180 DOI: 10.1021/acs.joc.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although numerous chiral pyrazolones with a six-membered spirocyclic center at the C4 position have been developed, the asymmetric construction of six-membered oxa-spiropyrazolones is still a challenging task in organic synthesis. Herein, we describe the [4 + 2] annulation of cyclobutanones and pyrazoline-4,5-diones for the efficient synthesis of δ-lactone-fused spiropyrazolone derivatives with generally high yields and good enantioselectivities under mild conditions. The successful scale-up synthesis and further transformation of the final product highlight the practicality and reliability of this reaction.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - You-Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
11
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Yamazaki K, Gabriel P, Di Carmine G, Pedroni J, Farizyan M, Hamlin TA, Dixon DJ. General Pyrrolidine Synthesis via Iridium-Catalyzed Reductive Azomethine Ylide Generation from Tertiary Amides and Lactams. ACS Catal 2021; 11:7489-7497. [PMID: 34306810 PMCID: PMC8291578 DOI: 10.1021/acscatal.1c01589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 02/06/2023]
Abstract
![]()
An
iridium-catalyzed reductive generation of both stabilized and
unstabilized azomethine ylides and their application to functionalized
pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions
is described. Proceeding under mild reaction conditions from both
amide and lactam precursors possessing a suitably positioned electron-withdrawing
or a trimethylsilyl group, using 1 mol% Vaska’s complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal
reductant, a broad range of (un)stabilized azomethine ylides were
accessible. Subsequent regio- and diastereoselective, inter- and intramolecular
dipolar cycloaddition reactions with variously substituted electron-deficient
alkenes enabled ready and efficient access to structurally complex
pyrrolidine architectures. Density functional theory (DFT) calculations
of the dipolar cycloaddition reactions uncovered an intimate balance
between asynchronicity and interaction energies of transition structures,
which ultimately control the unusual selectivities observed in certain
cases.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Pablo Gabriel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Graziano Di Carmine
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Julia Pedroni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mirxan Farizyan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J. Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Edlová T, Dvořáková H, Eigner V, Tobrman T. Substrate-Controlled Regioselective Bromination of 1,2-Disubstituted Cyclobutenes: An Application in the Synthesis of 2,3-Disubstituted Cyclobutenones. J Org Chem 2021; 86:5820-5831. [PMID: 33819050 DOI: 10.1021/acs.joc.1c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Easily available disubstituted cyclobutenes were regioselectively halogenated at the allylic position by means of a reaction with bromine. The regioselectivity of bromination is controlled by the presence of a carbocation-stabilizing group. The prepared disubstituted 3-bromocyclobutenes were converted into the corresponding disubstituted cyclobutenones. On the basis of the performed experiments, the mechanism behind the bromination reaction was also proposed.
Collapse
Affiliation(s)
- Tereza Edlová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
14
|
Yan P, Zhong C, Zhang J, Liu Y, Fang H, Lu P. 3‐(Methoxycarbonyl)Cyclobutenone as a Reactive Dienophile in Enantioselective Diels–Alder Reactions Catalyzed by Chiral Oxazaborolidinium Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Yan
- Department of Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Changxu Zhong
- Department of Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Jie Zhang
- College of Chemistry and Life Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Yu Liu
- College of Chemistry and Life Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering Tianjin Key Lab for Rare Earth Materials and Applications Nankai University Tianjin 300350 P. R. China
| | - Ping Lu
- Department of Research Center for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
15
|
Yan P, Zhong C, Zhang J, Liu Y, Fang H, Lu P. 3-(Methoxycarbonyl)Cyclobutenone as a Reactive Dienophile in Enantioselective Diels-Alder Reactions Catalyzed by Chiral Oxazaborolidinium Ions. Angew Chem Int Ed Engl 2021; 60:4609-4613. [PMID: 33201584 DOI: 10.1002/anie.202014308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Indexed: 11/06/2022]
Abstract
Cyclobutenone has been used as a highly reactive dienophile in Diels-Alder reactions, however, no enantioselective example has been reported. We disclose herein a chiral oxazaborolidine-aluminum bromide catalyzed enantioselective Diels-Alder reaction of 3-alkoxycarbonyl cyclobutenone with a variety of dienes. Furthermore, a total synthesis of (-)-kingianin F was completed for the first time via enantioenriched cycloadduct bicyclo[4.2.0]octane derivative.
Collapse
Affiliation(s)
- Peng Yan
- Department of Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Changxu Zhong
- Department of Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Jie Zhang
- College of Chemistry and Life, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Yu Liu
- College of Chemistry and Life, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, P. R. China
| | - Ping Lu
- Department of Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| |
Collapse
|
16
|
Yang WL, Ni T, Deng WP. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 3] Cycloaddition of 4-Indolyl Allylic Alcohols with Azomethine Ylides. Org Lett 2021; 23:588-594. [PMID: 33404250 DOI: 10.1021/acs.orglett.0c04132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An unprecedented iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols with azomethine ylides is reported. The ability of acid promoter zinc triflate to perform multiple roles is the key factor for the success of this strategy. This method provides scalable and efficient access to biologically important azepino[3,4,5-cd] indoles in good yields with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Mild reaction conditions, easily accessible substrates and chiral catalyst, and broad substrate scope highlight the practicality of this methodology.
Collapse
Affiliation(s)
- Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Tao Ni
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Cui Y, Bai D, Liu B, Chang J, Li X. Rh(iii)-Catalyzed acylation of heteroarenes with cyclobutenones via C-H/C-C bond activation. Chem Commun (Camb) 2020; 56:15631-15634. [PMID: 33283807 DOI: 10.1039/d0cc05965j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium(iii)-catalyzed C-H acylation of heteroarenes has been realized using cyclobutenones as an acylating reagent. This coupling proceeded via integration of C-H activation of heteroarenes and C-C cleavage of cyclobutenones. The reaction features excellent regio/chemoselectivity leading to versatile chalcones with exclusive E-selectivity.
Collapse
Affiliation(s)
- Yixin Cui
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | |
Collapse
|
18
|
Margalef J, Pàmies O, Pericàs MA, Diéguez M. Evolution of phosphorus-thioether ligands for asymmetric catalysis. Chem Commun (Camb) 2020; 56:10795-10808. [PMID: 32812569 DOI: 10.1039/d0cc04145a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the early 1990s chiral P-thiother ligands emerged as promising ligands in the field of asymmetric catalysis, with the development of many P-thioether ligand families. However, only a few of them have shown a broad reaction and substrate scope. So, compared with other heterodonor ligands such as the widely studied P-N ligands, their impact in asymmetric catalysis was not realised until recently. This has been mainly attributed to the difficulty of controlling the configuration at the sulfur atom when coordinated to the metal. More recently, it has been found that this problem could be solved by a rigorous choice of the ligand scaffold, a process usually aided by mechanistic studies. This allowed the recent discovery of new P-thioether ligand families with a broader versatility, both in reactions and in substrate/reagent scope. This feature article aims to highlight those new P-thioether ligand libraries and the relationship between the structure and catalytic performance.
Collapse
Affiliation(s)
- Jèssica Margalef
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain.
| | - Oscar Pàmies
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain.
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av Països Catalans 16, 43007 Tarragona, Spain and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Montserrat Diéguez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain.
| |
Collapse
|
19
|
Zhou F, Zhu L, Pan BW, Shi Y, Liu YL, Zhou J. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem Sci 2020; 11:9341-9365. [PMID: 34094201 PMCID: PMC8162142 DOI: 10.1039/d0sc03249b] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the advances in the catalytic enantioselective construction of vicinal quaternary carbon stereocenters, introduces major synthetic strategies and discusses their advantages and limitations, highlights the application of known protocols in the total synthesis of natural products, and outlines the synthetic opportunities. This review summarizes the advances in catalytic enantioselective construction of vicinal quaternary carbon stereocenters, introduces major synthetic strategies and discusses their advantages and limitations, and outlines the synthetic opportunities.![]()
Collapse
Affiliation(s)
- Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University Shanghai 200062 P. R. China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Engineering University Hubei 432000 P. R. China
| | - Bo-Wen Pan
- School of Pharmaceutical, Guizhou University of Traditional Chinese Medicine Guiyang 550002 P. R. China
| | - Yang Shi
- School of Pharmaceutical, Guizhou University of Traditional Chinese Medicine Guiyang 550002 P. R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University Shanghai 200062 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
20
|
Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chem Commun (Camb) 2020; 56:5050-5053. [PMID: 32243487 DOI: 10.1039/d0cc01061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substituted 1,3-diazabicyclo[3.1.0]hexanes with two contiguous quaternary stereocentres are readily prepared by catalytic asymmetric [3+2] cycloaddition of α-substituted iminoesters with azirines. High diastereoselectivities and enantioselectivities (up to 98% ee) are achieved using CuI/(R)-Fesulphos as the catalytic system.
Collapse
Affiliation(s)
- Alba Molina
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Demchuk OP, Hryshchuk OV, Vashchenko BV, Kozytskiy AV, Tymtsunik AV, Komarov IV, Grygorenko OO. Photochemical [2 + 2] Cycloaddition of Alkenyl Boronic Derivatives: An Entry into 3-Azabicyclo[3.2.0]heptane Scaffold. J Org Chem 2020; 85:5927-5940. [PMID: 32233365 DOI: 10.1021/acs.joc.0c00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of 3-azabicyclo[3.2.0]heptyl boropinacolates and trifluoroborates via the [2 + 2] photocycloaddition of the corresponding alkenyl boronic derivatives and maleimides or maleic anhydride is described. Optimization of the reaction conditions (i.e., wavelength, concentration of the reagents, photosensitizer) was carried out, and the scope and limitations of the method were studied. Alkenyl boronic acid pinacolates were found to be more suitable for the [2 + 2] cycloaddition, providing better reaction outcomes compared to the trifluoroborates. The utility of this approach was shown by the preparation of bi- and trifunctional building blocks (21 examples), which could be easily synthesized on up to 60 g scale. These cycloadducts provide a convenient entry into the 3-azabicyclo[3.2.0]heptane scaffold through the C-C coupling or oxidative deborylation reactions.
Collapse
Affiliation(s)
- Oleksandr P Demchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy V Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Andriy V Tymtsunik
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prospect Peremogy 37, Kyiv 03056, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
22
|
Wu SL, Li N, Yin GW, Xu Z, Ye F, Li L, Cui YM, Xu LW. Catalytic asymmetric cycloaddition of unsymmetrical EWG-activated alkenes to fully substituted pyrrolidines bearing three different carbonyl groups. Chem Commun (Camb) 2019; 55:14363-14366. [PMID: 31720613 DOI: 10.1039/c9cc07738c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A unique 1,3-dipolar [3+2] cycloaddition of alkyl 4-oxo-4-arylbut-2-enoates bearing two different electron-withdrawing groups was completed by using the silver/(R)-DTBM-Segphos catalyst system, which gives the corresponding fully substituted pyrrolidines with four stereogenic centers in good yields and with excellent enantioselectivities (up to 98% ee).
Collapse
Affiliation(s)
- Shi-Lu Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Adrio J, Carretero JC. Stereochemical diversity in pyrrolidine synthesis by catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Commun (Camb) 2019; 55:11979-11991. [PMID: 31552927 DOI: 10.1039/c9cc05238k] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pyrrolidine ring is a privileged structural motif in synthetic and medicinal chemisty. This review aims to highlight the high versatility of the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides for access to different types of stereochemical patterns in enantioselective pyrrolidine synthesis. Special attention will be paid to stereodivergent procedures giving rise to different stereoisomers from the same starting materials.
Collapse
Affiliation(s)
- Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
24
|
Caleffi GS, Larrañaga O, Ferrándiz-Saperas M, Costa PRR, Nájera C, de Cózar A, Cossío FP, Sansano JM. Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. J Org Chem 2019; 84:10593-10605. [DOI: 10.1021/acs.joc.9b00267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H27, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Olatz Larrañaga
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, P. K. 1072, E-20018 San Sebastián, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08193 Barcelona, Spain
| | | | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H—Sala H27, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08193 Barcelona, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, P. K. 1072, E-20018 San Sebastián, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08193 Barcelona, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Fernando P. Cossío
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, P. K. 1072, E-20018 San Sebastián, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08193 Barcelona, Spain
| | - José M. Sansano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08193 Barcelona, Spain
| |
Collapse
|
25
|
Zhang H, Luo Y, Li D, Yao Q, Dong S, Liu X, Feng X. Enantioselective Synthesis of 4-Hydroxy-dihydrocoumarins via Catalytic Ring Opening/Cycloaddition of Cyclobutenones. Org Lett 2019; 21:2388-2392. [PMID: 30900904 DOI: 10.1021/acs.orglett.9b00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly diastereo- and enantioselective ring-opening/cycloaddition reaction of cyclobutenones with 2-hydroxyacetophenones or salicylaldehyde was achieved by employing a chiral N,N'-dioxide-scandium(III) complex as the catalyst. It provided various 3-phenylvinyl-4-hydroxy-dihydrocoumarins in good yields (up to 92%), high enantioselectivities (up to 93% ee), and excellent diastereoselectivities (>19:1 dr). Moreover, a possible catalytic cycle was proposed based on the control experiments and previous reports.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Dawei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Qian Yao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
26
|
Chang X, Sun XS, Che C, Hu YZ, Tao HY, Wang CJ. Copper(I)-Catalyzed Kinetic Resolution of exo-3-Oxodicyclopentadienes and endo-3-Oxodicyclopentadiene. Org Lett 2019; 21:1191-1196. [PMID: 30707591 DOI: 10.1021/acs.orglett.9b00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first example of highly efficient kinetic resolution of exo-3-oxodicyclopentadienes and endo-3-oxodicyclopentadiene has been developed by means of Cu(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylide. Compared with the existing methodologies for those synthetically important optically active convex molecules, the current protocol provides an alternative but more practical approach from the readily available racemic starting materials, which is free from the repetitive reduction/oxidation steps in the enzymatic resolution or the indispensable stoichiometric amount of chirality-induction reagents.
Collapse
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xi-Shang Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chao Che
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yuan-Zheng Hu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Elemento-organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
27
|
Liang L, Niu HY, Wang DC, Yang XH, Qu GR, Guo HM. Facile synthesis of chiral [2,3]-fused hydrobenzofuran via asymmetric Cu(i)-catalyzed dearomative 1,3-dipolar cycloaddition. Chem Commun (Camb) 2019; 55:553-556. [DOI: 10.1039/c8cc09226e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An intermolecular catalytic asymmetric dearomatization (CADA) reaction has been developed for the synthesis of chiral [2,3]-fused hydrobenzofurans.
Collapse
Affiliation(s)
- Lei Liang
- School of Environment
- Henan Normal University
- Xinxiang
- P. R. China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- P. R. China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Xin-He Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- P. R. China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
| |
Collapse
|
28
|
Yang WL, Sun ZT, Zhang J, Li Z, Deng WP. Enantioselective synthesis of 3-amino-hydrobenzofuran-2,5-diones via Cu(i)-catalyzed intramolecular conjugate addition of imino esters. Org Chem Front 2019. [DOI: 10.1039/c8qo01335g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed enantioselective intramolecular conjugate addition of imino esters for desymmetrization of cyclohexadienones was described, providing access to enantioenriched 3-amino-hydrobenzofuran-2,5-diones.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong-Tao Sun
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
29
|
Deng H, Jia R, Yang WL, Yu X, Deng WP. Ligand-controlled switch in diastereoselectivities: catalytic asymmetric construction of spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives. Chem Commun (Camb) 2019; 55:7346-7349. [DOI: 10.1039/c9cc03589c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An asymmetric [3+2] cycloaddition of azomethine ylides with four-membered ring-containing dipolarophiles was developed, and either exo or endo spirocyclic pyrrolidine-azetidine/oxe(thie)tanes were obtained.
Collapse
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Renmeng Jia
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xingxin Yu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
30
|
Homon AA, Hryshchuk OV, Trofymchuk S, Michurin O, Kuchkovska Y, Radchenko DS, Grygorenko OO. Synthesis of 3-Azabicyclo[3.2.0]heptane-Derived Building Blocks via [3+2] Cycloaddition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anton A. Homon
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Oleg Michurin
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Yuliya Kuchkovska
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
31
|
Domingo LR, Ríos-Gutiérrez M, Pérez P. A Molecular Electron Density Theory Study of the Role of the Copper Metalation of Azomethine Ylides in [3 + 2] Cycloaddition Reactions. J Org Chem 2018; 83:10959-10973. [PMID: 30052439 DOI: 10.1021/acs.joc.8b01605] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The copper metalation of azomethine ylides (AYs) in [3 + 2] cycloaddition (32CA) reactions with electron-deficient ethylenes has been studied within the Molecular Electron Density Theory (MEDT) at the MPWB1K/6-311G(d,p) level, in order to shed light on the electronic effect of the metalation in the course of the reaction. Analysis of the Conceptual Density Functional Theory reactivity indices indicates that the metalation of AYs markedly enhances the nucleophilicity of these species given the anionic character of the AY framework. These 32CA reactions take place through stepwise mechanisms characterized by the formation of a molecular complex. Both nonmetalated and metalated 32CA reactions present similar activation energies. While metalated 32CA reactions are completely regioselective, their stereoselectivity depends on the bulk of the ligand as well as the nature of the ethylene derivative. The metalation of the AY slightly increases the asynchronicity of the C-C single bond formation. Electron Localization Function topological analysis of the C-C bond formation processes makes it possible to characterize the mechanism of these 32CA reactions as a two-stage one-step mechanism. The present MEDT study rules out any catalytic role of the Cu(I) cation in the kinetics of the 32CA reactions of metalated AYs.
Collapse
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry , University of Valencia , Dr. Moliner 50 , 46100 Burjassot , Valencia , Spain
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry , University of Valencia , Dr. Moliner 50 , 46100 Burjassot , Valencia , Spain
| | - Patricia Pérez
- Universidad Andres Bello , Facultad de Ciencias Exactas, Departamento de Ciencias Químicas , Av. República 498 , 8370146 , Santiago , Chile
| |
Collapse
|
32
|
Deng H, Yang WL, Tian F, Tang W, Deng WP. Asymmetric Construction of 3-Azabicyclo[3.1.0]hexane Skeleton with Five Contiguous Stereogenic Centers by Cu-Catalyzed 1,3-Dipolar Cycloaddition of Trisubstituted Cyclopropenes. Org Lett 2018; 20:4121-4125. [DOI: 10.1021/acs.orglett.8b01686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fei Tian
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenjun Tang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|