1
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Wu X, Hou G. Recent advances in the enantioselective synthesis of chiral sulfones via asymmetric hydrogenation. Org Biomol Chem 2025; 23:255-268. [PMID: 39466666 DOI: 10.1039/d4ob01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Chiral sulfones are key structural motifs that extensively exist in natural products, drugs, and biologically active compounds. During the past few decades, rapid development has been made with respect to the highly enantioselective synthesis of chiral sulfones, in which the catalytic asymmetric hydrogenation of unsaturated sulfones provides an efficient and powerful methodology to construct chiral sulfones and their derivatives. This review highlights the progress achieved in transition metal (ruthenium, rhodium, iridium, and nickel) catalyzed direct asymmetric hydrogenation of a variety of unsaturated sulfones from the aspects of the substrate scope, catalytic mechanisms, and applications in the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.
- School of Chemistry & Environment, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China.
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
4
|
Xu H, Li X, Wang Y, Song X, Shi Y, Lv J, Yang D. Arylthianthrenium Salts as the Aryl Sources: Visible Light/Copper Catalysis-Enabled Intermolecular Azidosulfonylation of Alkenes. Org Lett 2024; 26:1845-1850. [PMID: 38408361 DOI: 10.1021/acs.orglett.4c00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The difunctionalization of alkenes using aryl thianthrenium salts as the aryl sources has been reported sporadically. However, the four-component difunctionalization of alkenes on the basis of aryl thianthrenium salts has not been reported thus far and still remains a challenge. Herein, a visible light/copper catalysis-enabled four-component reaction of aryl thianthrenium salts, DABCO·(SO2)2, alkenes, and TMSN3 is presented, which affords a facile approach to β-azidosulfones in good yields with broad substrate scope and excellent functional group tolerance. This strategy indirectly realizes the method for the synthesis of β-azidosulfones through site-selective aryl C-H bond functionalization and alkene difunctionalization. This developed method is an important complement to thianthrenium salts chemistry.
Collapse
Affiliation(s)
- Hao Xu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, China
| | - Yifei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuyan Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Kumar R, Bhadoria D, Kant R, Kumar A. Regio- and Stereoselective Intermolecular 1,2-Difunctionalization of Terminal Alkynes: An Approach to Access ( Z)-β-Amidovinylsulfones. J Org Chem 2024; 89:2873-2884. [PMID: 38354303 DOI: 10.1021/acs.joc.3c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed the first I2/base-catalyzed regio- and stereoselective intermolecular β-amidosulfonylation of terminal alkynes using sodium sulfinates and quinoxalinone derivatives. The present methodology is compatible with a broad spectrum of various heterocyclic amides, terminal alkynes, and sodium sulfinates. It provides rapid access to valuable (Z)-β-amidovinyl sulfones at mild conditions. Moreover, the synthetic application of this methodology was demonstrated by the late-stage functionalization of numerous bioactive molecules.
Collapse
Affiliation(s)
- Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Huang YW, Li JZ, Yang F, Zhang XY, Wang YJ, Meng XC, Leng BR, Wang DC, Zhu YL. Photocatalytic selective synthesis of ( E)-β-aminovinyl sulfones and ( E)-β-amidovinyl sulfones using Ru(bpy) 3Cl 2 as the catalyst. RSC Adv 2024; 14:700-706. [PMID: 38173585 PMCID: PMC10758941 DOI: 10.1039/d3ra08272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Selectively producing a variety of valuable compounds using controlled chemical reactions starting from a common material is an appealing yet complex concept. Herein, a photocatalytic approach for the selective synthesis of (E)-β-aminovinyl sulfones and (E)-β-amidovinyl sulfones from allenamides and sodium sulfinates was established. This reaction exhibits the traits of an eco-friendly solvent and adjustable amide cleavage, and can accommodate a diverse range of substrates with exceptional functional group tolerance. Based on control experiments and deuterium labeling experiments, a plausible radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Jia-Zhuo Li
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Feng Yang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xi-Yu Zhang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yan-Jing Wang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin-Chao Meng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Bo-Rong Leng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
- College of Life and Health, Nanjing Polytechnic Institute Nanjing 211816 P. R. China
| | - De-Cai Wang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yi-Long Zhu
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
7
|
Wu X, Su Y, Zi G, Ye W, Hou G. Rh-Catalyzed Asymmetric Hydrogenation of α-Substituted Alkenyl Sulfones: Highly Chemo- and Enantioselective Access to Chiral Sulfones. Org Lett 2023; 25:6858-6862. [PMID: 37703279 DOI: 10.1021/acs.orglett.3c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Rh-(R,R)-f-spiroPhos complex-catalyzed asymmetric hydrogenation of α-substituted alkenyl sulfones has been achieved, affording the chiral γ-keto sulfones and simple α-alkyl-substituted sulfones in high yields (96-99%) with excellent chemo-/enantioselectivities (86-96% ee) and high turnover numbers (TONs) of up to 4000. The method provides an efficient and high-enantioselectivity strategy for chiral γ-keto sulfones and simple α-substituted sulfones under mild conditions. Moreover, the obtained hydrogenation product was transformed into other important chiral α-substituted sulfones.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanhao Su
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Sang JW, Du P, Xia D, Zhang Y, Wang J, Zhang WD. EnT-Mediated Amino-Sulfonylation of Alkenes with Bifunctional Sulfonamides: Access to β-Amino Sulfone Derivatives. Chemistry 2023; 29:e202301392. [PMID: 37218305 DOI: 10.1002/chem.202301392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
β-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.
Collapse
Affiliation(s)
- Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peiyu Du
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dingding Xia
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| |
Collapse
|
9
|
Yang X, Liu G, Xiang X, Xie D, Han J, Han Z, Dong XQ. Ni-Catalyzed Asymmetric Hydrogenation of α-Substituted α,β-Unsaturated Phosphine Oxides/Phosphonates/Phosphoric Acids. Org Lett 2023; 25:738-743. [PMID: 36716390 DOI: 10.1021/acs.orglett.2c04105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient Ni/(S,S)-Ph-BPE-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated phosphine oxides/phosphonates/phosphoric acids has been successfully developed, and a wide range of chiral α-substituted phosphines hydrogenation products were obtained in generally high yields with excellent enantioselective control (92%-99% yields, 84%->99% ee). This method features a cheap transition metal nickel catalytic system, high functional group tolerance, wide substrate scope generality, and excellent enantioselectivity. A plausible catalytic cycle was proposed for this asymmetric hydrogenation according to the results of deuterium-labeling experiments.
Collapse
Affiliation(s)
- Xuanliang Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Gang Liu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xun Xiang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Dezheng Xie
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jinyu Han
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
10
|
Zhang Z, Wang J, Yu M, Ye S, Wu J. Construction of β-Amino Sulfones from Sodium Metabisulfite via a Radical 1,4-Amino Migration. Org Lett 2023; 25:304-308. [PMID: 36583507 DOI: 10.1021/acs.orglett.2c04291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A three-component reaction of alkenyl-tethered oxime ethers, sodium metabisulfite, and aryldiazonium tetrafluoroborates under mild conditions is developed. This reaction proceeds at room temperature without any oxidants or additives, affording β-amino sulfones with good functional group tolerance through aminosulfonylation of unactivated alkene. Mechanistic studies show that this transformation undergoes a radical process, including radical trapping with sulfur dioxide and radical 1,4-amino migration.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Mengxia Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies. Catalysts 2023. [DOI: 10.3390/catal13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The global E factor (EG factor) has recently been introduced, in the context of asymmetric organocatalysis, as a new green chemistry metric to take into consideration the synthesis of the catalyst in the overall economy of the synthetic process of a given chiral molecule in optically pure form. Herein, its further usefulness in comparing diverse catalytic systems, even different from organocatalysts, is shown by the analysis of four case studies.
Collapse
|
12
|
Huang J, Liu F, Zeng LH, Li S, Chen Z, Wu J. Accessing chiral sulfones bearing quaternary carbon stereocenters via photoinduced radical sulfur dioxide insertion and Truce-Smiles rearrangement. Nat Commun 2022; 13:7081. [PMID: 36400779 PMCID: PMC9674831 DOI: 10.1038/s41467-022-34836-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
From the viewpoint of synthetic accessibility and functional group compatibility, photoredox-catalyzed sulfur dioxide insertion strategy enables in situ generation of functionalized sulfonyl radicals from easily accessible starting materials under mild conditions, thereby conferring broader application potential. Here we present two complementary photoinduced sulfur dioxide insertion systems to trigger radical asymmetric Truce-Smiles rearrangements for preparing a variety of chiral sulfones that bear a quaternary carbon stereocenter. This protocol features broad substrate scope and excellent stereospecificity. Aside from scalability, the introduction of a quaternary carbon stereocenter at position β to bioactive molecule-derived sulfones further demonstrates the practicality and potential of this methodology.
Collapse
Affiliation(s)
- Jiapian Huang
- grid.440657.40000 0004 1762 5832School of Pharmaceutical and Chemical Engineering &Institute for Advanced Studies, Taizhou University, Taizhou, 318000 China
| | - Fei Liu
- grid.440657.40000 0004 1762 5832School of Pharmaceutical and Chemical Engineering &Institute for Advanced Studies, Taizhou University, Taizhou, 318000 China
| | - Ling-Hui Zeng
- grid.13402.340000 0004 1759 700XSchool of Medicine, Zhejiang University City College, Hangzhou, 310015 China
| | - Shaoyu Li
- grid.440657.40000 0004 1762 5832School of Pharmaceutical and Chemical Engineering &Institute for Advanced Studies, Taizhou University, Taizhou, 318000 China
| | - Zhiyuan Chen
- grid.13402.340000 0004 1759 700XSchool of Medicine, Zhejiang University City College, Hangzhou, 310015 China
| | - Jie Wu
- grid.440657.40000 0004 1762 5832School of Pharmaceutical and Chemical Engineering &Institute for Advanced Studies, Taizhou University, Taizhou, 318000 China ,grid.9227.e0000000119573309State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.462338.80000 0004 0605 6769School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
| |
Collapse
|
13
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
14
|
Sudhakaran S, Shinde PG, Aratikatla EK, Kaulage SH, Rana P, Parit RS, Kavale DS, Senthilkumar B, Punji B. Nickel-Catalyzed Asymmetric Hydrogenation for the Synthesis of a Key Intermediate of Sitagliptin. Chem Asian J 2022; 17:e202101208. [PMID: 34817131 DOI: 10.1002/asia.202101208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Nickel-catalyzed enantioselective hydrogenation of enamines leading to the efficient synthesis of 3-R-Boc-amino-4-(2,4,5-trifluorophenyl)butyric esters, the key intermediate of the blockbuster antidiabetic drug (R)-SITAGLIPTIN, is described. The sitagliptin motifs were isolated in more than 99% yield and with 75-92% ee using the earth-abundant nickel catalyst. Upon chiral resolution with (R)- and (S)-1-phenylethylamines, the partially enantioenriched (R)- and (S)-Boc-3-amino-4-(2,4,5-trifluorophenyl)butanoic acids provided >99.5% ee of the crucial sitagliptin intermediate. The asymmetric hydrogenation protocol was scaled up to 10 g with consistency in yield and ee, and has been reproduced in multiple batches.
Collapse
Affiliation(s)
- Shana Sudhakaran
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Prasad G Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Eswar K Aratikatla
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sandeep H Kaulage
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Priksha Rana
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ratan S Parit
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dattatry S Kavale
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
15
|
Yang J, Massaro L, Krajangsri S, Singh T, Su H, Silvi E, Ponra S, Eriksson L, Ahlquist MSG, Andersson PG. Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides. J Am Chem Soc 2021; 143:21594-21603. [PMID: 34905345 PMCID: PMC8719336 DOI: 10.1021/jacs.1c09573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a highly efficient convergent asymmetric hydrogenation of E/Z mixtures of enamides catalyzed by N,P-iridium complexes supported by mechanistic studies. It was found that reduction of the olefinic isomers (E and Z geometries) produces chiral amides with the same absolute configuration (enantioconvergent hydrogenation). This allowed the hydrogenation of a wide range of E/Z mixtures of trisubstituted enamides with excellent enantioselectivity (up to 99% ee). A detailed mechanistic study using deuterium labeling and kinetic experiments revealed two different pathways for the observed enantioconvergence. For α-aryl enamides, fast isomerization of the double bond takes place, and the overall process results in kinetic resolution of the two isomers. For α-alkyl enamides, no double bond isomerization is detected, and competition experiments suggested that substrate chelation is responsible for the enantioconvergent stereochemical outcome. DFT calculations were performed to predict the correct absolute configuration of the products and strengthen the proposed mechanism of the iridium-catalyzed isomerization pathway.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Hao Su
- School of Biotechnology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Emanuele Silvi
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
16
|
Sen A, Chikkali SH. C 1-Symmetric diphosphorus ligands in metal-catalyzed asymmetric hydrogenation to prepare chiral compounds. Org Biomol Chem 2021; 19:9095-9137. [PMID: 34617539 DOI: 10.1039/d1ob01207j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric hydrogenation has remained an important and challenging research area in industry as well as academia due to its high atom economy and ability to induce chirality. Among several types of ligands, chiral bidentate phosphine ligands have played a pivotal role in developing asymmetric hydrogenation. Although C2-symmetric chiral bidentate phosphine ligands have dominated the field, it has been found that several C1-symmetric ligands are equally effective and, in many cases, have outperformed their C2-symmetric counterparts. This review evaluates the possibility of the use of C1-symmetric diphosphorus ligands in asymmetric hydrogenation to produce chiral compounds. The recent strategies and advances in the application of C1-symmetric diphosphorus ligands in the metal-catalyzed asymmetric hydrogenation of a variety of CC bonds have been summarized. The potential of diphosphorus ligands in asymmetric hydrogenation to produce pharmaceutical intermediates, bioactive molecules, drug molecules, agrochemicals, and fragrances is discussed. Although asymmetric hydrogenation appears to be a problem that has been resolved, a deep dive into the recent literature reveals that there are several challenges that are yet to be addressed. The current asymmetric hydrogenation methods mostly employ precious metals, which are depleting at a fast pace. Therefore, scientific interventions to perform asymmetric hydrogenation using base metals or earth-abundant metals that can compete with established precious metals hold significant potential.
Collapse
Affiliation(s)
- Anirban Sen
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| | - Samir H Chikkali
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| |
Collapse
|
17
|
Zhou JS, Guo S, Zhao X, Chi YR. Nickel-catalyzed enantioselective umpolung hydrogenation for stereoselective synthesis of β-amido esters. Chem Commun (Camb) 2021; 57:11501-11504. [PMID: 34652359 DOI: 10.1039/d1cc05257h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel complexes ligated by strongly donating diphosphines catalyze enantioselective hydrogenation for the preparation of acyclic and cyclic β-amido esters. A combination of acetic acid and indium powder provides protons and electrons to form nickel hydrido complexes under umpolung hydrogenation conditions.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| | - Siyu Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiaohu Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
18
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
19
|
Zhao Y, Ding YX, Wu B, Zhou YG. Nickel-Catalyzed Asymmetric Hydrogenation for Kinetic Resolution of [2.2]Paracyclophane-Derived Cyclic N-Sulfonylimines. J Org Chem 2021; 86:10788-10798. [PMID: 34264081 DOI: 10.1021/acs.joc.1c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel-catalyzed asymmetric hydrogenation for kinetic resolution of [2.2]paracyclophane-derived cyclic N-sulfonylimines was successfully developed. High selectivity factors were observed in most cases (s up to 89), providing the recovered materials and hydrogenation products in good yields with high levels of enantiopurity. The recovered materials and hydrogenation products are useful synthetic intermediates for the synthesis of planar chiral [2.2]paracyclophane-based compounds.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
20
|
Li B, Liu D, Hu Y, Chen J, Zhang Z, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of Hydrazones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Dan Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
- College of Chemistry Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
21
|
Chen L, Zhou M, Shen L, He X, Li X, Zhang X, Lian Z. Metal- and Base-Free C(sp 2)-H Arylsulfonylation of Enamides for Synthesis of ( E)-β-Amidovinyl Sulfones via the Insertion of Sulfur Dioxide. Org Lett 2021; 23:4991-4996. [PMID: 34114465 DOI: 10.1021/acs.orglett.1c01419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A metal- and base-free C(sp2)-H direct arylsulfonylation of secondary and tertiary enamides with aryldiazonium salts and ex situ generated SO2 (from SOgen) is presented. This method runs smoothly to produce β-amidovinyl sulfones with excellent stereoselectivities in moderate to excellent yields. Moreover, this strategy features good functional group tolerance and environmentally benign reaction conditions. Mechanistic experiments indicate that this sulfonylation may proceed in a radical pathway.
Collapse
Affiliation(s)
- Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Lin Shen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Xiong Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
22
|
Li Z, Wang N, Mei H, Konno H, Soloshonok VA, Han J. Asymmetric Synthesis of α‐Difluorinated β‐Amino Sulfones through Detrifluoroacetylative Mannich Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyi Li
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Nana Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
- Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology 266042 Qingdao China
| | - Hiroyuki Konno
- Department of Biological Engineering Graduate School of Science and Engineering Yamagata University 992-8510 Yonezawa Yamagata Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE Basque Foundation for Science Alameda Urquijo 36–5, Plaza Bizkaia 48011 Bilbao Spain
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| |
Collapse
|
23
|
Huang Y, Li J, Chen H, He Z, Zeng Q. Recent Progress on the Synthesis of Chiral Sulfones. CHEM REC 2021; 21:1216-1239. [PMID: 33826228 DOI: 10.1002/tcr.202100023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Chiral sulfones extensively exist in drugs, agricultural chemicals, chiral organic intermediates, and functional materials. Their importance causes the rapid development of their synthetic methods in recent years. Many transition metal complex catalysts with chiral ligands and chiral organocatalysts are adopted in synthesis of chiral sulfones. Most of the methods to construct chiral sulfones are based on the reduction of unsaturated sulfones and the introduction of sulfone groups into unsaturated hydrocarbons. This review describes all classes of asymmetric reactions for synthesis of chiral sulfones.
Collapse
Affiliation(s)
- Youming Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Jinyao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Ze He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| |
Collapse
|
24
|
Trost BM, Zhu C, Ence CC. Pd-Catalyzed Regio-, Diastereo-, and Enantioselective [3 + 2] Cycloaddition Reactions: Access to Chiral Cyclopentyl Sulfones. Org Lett 2021; 23:2460-2464. [PMID: 33739110 DOI: 10.1021/acs.orglett.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The palladium-catalyzed [3 + 2] cycloaddition using in situ generated sulfone-TMM species to construct various chiral cyclopentyl sulfones in a highly regio-, diastereo- (dr >15:1), and enantioselective (up to 99% ee) manner is reported. The present strategy can tolerate different types of sulfone-TMM donors and acceptors, and enables the construction of three chiral centers in a single step, specifically with a chiral center bearing the sulfone moiety. The robust chiral diamidophosphite ligand is the key to the reactivity and selectivities of this transformation.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chuanle Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chloe Christine Ence
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
25
|
Liu G, Tian K, Li C, You C, Tan X, Zhang H, Zhang X, Dong XQ. Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[ b]thiophene 1,1-Dioxides, with Mechanistic Studies. Org Lett 2021; 23:668-675. [PMID: 33471538 DOI: 10.1021/acs.orglett.0c03723] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A highly efficient catalytic system based on the cheap transition metal nickel for the asymmetric hydrogenation of challenging cyclic alkenyl sulfones, 3-substituted benzo[b]thiophene 1,1-dioxides, was first successfully developed. A series of hydrogenation products, chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides, were obtained in high yields (95-99%) with excellent enantioselectivities (90-99% ee). According to the results of nonlinear effect studies, deuterium-labeling experiments, and DFT calculation investigations, a reasonable catalytic mechanism for this nickel-catalyzed asymmetric hydrogenation was provided, which displayed that the two added hydrogen atoms of the hydrogenation products could be from H2 through the insertion of Ni-H and subsequent hydrogenolysis.
Collapse
Affiliation(s)
- Gongyi Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Kui Tian
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chenzong Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Cai You
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefeng Tan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xumu Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
26
|
The Three-Component Synthesis of 4-Sulfonyl-1,2,3-triazoles via a Sequential Aerobic Copper-Catalyzed Sulfonylation and Dimroth Cyclization. Molecules 2021; 26:molecules26030581. [PMID: 33499353 PMCID: PMC7865689 DOI: 10.3390/molecules26030581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
4-Sulfonyl-1,2,3-triazole scaffolds possess promising bioactivities and applications as anion binders. However, these structures remain relatively unexplored and efficient synthetic procedures for their synthesis remain desirable. A practical room-temperature, aerobic copper-catalyzed three-component reaction of aromatic ketones, sodium sulfinates, and azides is reported. This procedure allows for facile access to 4-sulfonyl-1,5-disubstituted-1,2,3-triazoles in yields ranging from 34 to 89%. The reaction proceeds via a sequential aerobic copper(II)chloride-catalyzed oxidative sulfonylation and the Dimroth azide–enolate cycloaddition.
Collapse
|
27
|
Zhu C, Cai Y, Jiang H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Org Chem Front 2021. [DOI: 10.1039/d1qo00663k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recent development of strategies for the asymmetric synthesis of chiral sulfones with sulfone moieties directly connected to the stereocenters.
Collapse
Affiliation(s)
- Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 2021; 50:3211-3237. [DOI: 10.1039/d0cs00082e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on asymmetric direct and transfer hydrogenation with first-row transition metal complexes. The reaction mechanisms and the models of enantiomeric induction were summarized and emphasized.
Collapse
Affiliation(s)
- Jialin Wen
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fangyuan Wang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
29
|
Jagtap RA, Ankade SB, Gonnade RG, Punji B. Achiral and chiral NNN-pincer nickel complexes with oxazolinyl backbones: application in transfer hydrogenation of ketones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NNN-based achiral and chiral (oxazolinyl)amido-pincer nickel complexes are developed and employed for the catalytic transfer hydrogenation of ketones.
Collapse
Affiliation(s)
- Rahul A. Jagtap
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Rajesh G. Gonnade
- Centre for Material Characterization
- CSIR–National Chemical Laboratory
- Pune – 411 008
- India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| |
Collapse
|
30
|
|
31
|
Phansavath P, Ratovelomanana-Vidal V, Ponra S, Boudet B. Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThe catalytic asymmetric hydrogenation of prochiral olefins is one of the most widely studied and utilized transformations in asymmetric synthesis. This straightforward, atom economical, inherently direct and sustainable strategy induces chirality in a broad range of substrates and is widely relevant for both industrial applications and academic research. In addition, the asymmetric hydrogenation of enamides has been widely used for the synthesis of chiral amines and their derivatives. In this review, we summarize the recent work in this field, focusing on the development of new catalytic systems and on the extension of these asymmetric reductions to new classes of enamides.1 Introduction2 Asymmetric Hydrogenation of Trisubstituted Enamides2.1 Ruthenium Catalysts2.2 Rhodium Catalysts2.3 Iridium Catalysts2.4 Nickel Catalysts2.5 Cobalt Catalysts3 Asymmetric Hydrogenation of Tetrasubstituted Enamides3.1 Ruthenium Catalysts3.2 Rhodium Catalysts3.3 Nickel Catalysts4 Asymmetric Hydrogenation of Terminal Enamides4.1 Rhodium Catalysts4.2 Cobalt Catalysts5 Rhodium-Catalyzed Asymmetric Hydrogenation of Miscellaneous Enamides6 Conclusions
Collapse
Affiliation(s)
- Phannarath Phansavath
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | | - Sudipta Ponra
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | |
Collapse
|
32
|
Zhao Q, Chen C, Wen J, Dong XQ, Zhang X. Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis. Acc Chem Res 2020; 53:1905-1921. [PMID: 32852187 DOI: 10.1021/acs.accounts.0c00347] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Noncovalent interactions are ubiquitous in nature and are responsible for the precision control in enzyme catalysis via the cooperation of multiple active sites. Inspired by this principle, noncovalent interaction-assisted transition metal catalysis has emerged recently as a powerful tool and has attracted intense interest. However, it is still highly desirable to develop efficient and operationally convenient ligands along this line with new structural motifs. Based on the specific nature of hydrogen bonding and ion pairing interactions, we developed a series of noncovalent interaction-assisted chiral ferrocenyl phosphine ligands, including Zhaophos, Wudaphos, and miscellaneous SPO-Wudaphos. Due to the assistance of noncovalent interactions, this catalytic mode is capable of achieving transition metal catalyzed asymmetric hydrogenation and other transformations with remarkable improvement of reactivity and selectivity. In some specific challenging cases, this probably represents one of the most productive methods. Moreover, these ligands are easily prepared, air stable, and highly tunable, meeting the requirements of industrial application.In this Account, we give a concise review of recent advances in asymmetric catalysis. By means of hydrogen bonding interactions, Rh- and Ir-Zhaophos complexes exhibited excellent activities and enantioselectivities in asymmetric hydrogenation of a wide range of substrates: C═C bonds of substituted conjugate alkenes with neutral hydrogen bond acceptors, including nitro groups, carbonyl groups (ketones, esters, amides, maleinimides, and anhydrides), ethers, and sulfones; C═N bonds of substituted iminium salts with chloride as an anionic hydrogen bond acceptor, including N-H imines and cyclic imines; N-heteroaromatic compounds with HCl as an additive, including unprotected quinolines, isoquinolines, and indoles; carbocation of substituted oxocarbenium ions. By means of ion pairing interactions, Rh-Wudaphos complexes enabled the catalytic asymmetric hydrogenation of α-substituted unsaturated carboxylic acids, carboxy-directed α,α-disubstituted terminal olefins, and sodium α-arylethenylsulfonates. Rh-SPO-Wudaphos utilized both hydrogen bonding and ion pairing interactions in asymmetric hydrogenation of α-substituted unsaturated carboxylic acids and phosphonic acids. In addition, Zhaophos has achieved highly selective intramolecular reductive amination and inter- and intramolecular asymmetric decarboxylative allylation. Investigations into mechanism implied that noncovalent interactions were involved in the catalytic cycle and played a critical role for both high reactivity and selectivity. Notably, a rare ionic hydrogenation pathway has been proposed in some cases. Furthermore, these catalytic systems have been used in the gram-scale synthesis of natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Qingyang Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Caiyou Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, P.R. China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, P.R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, P.R. China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, P.R. China
| |
Collapse
|
33
|
Wei Z, Wang Y, Li Y, Ferraccioli R, Liu Q. Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zeyuan Wei
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong 529090, People’s Republic of China
| | - Raffaella Ferraccioli
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM) Via C. Golgi 19, 20133 Milan, Italy
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
34
|
Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chem Rev 2020; 120:6124-6196. [DOI: 10.1021/acs.chemrev.9b00682] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Andrew L. Clevenger
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan M. Stolley
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Justis Aderibigbe
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Maier TM, Sandl S, Melzl P, Zweck J, Jacobi von Wangelin A, Wolf R. Heterogeneous Olefin Hydrogenation Enabled by a Highly-Reduced Nickel(-II) Catalyst Precursor. Chemistry 2020; 26:6113-6117. [PMID: 32034810 PMCID: PMC7318650 DOI: 10.1002/chem.201905537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The hydrogenation of olefins, styrenes, enoates, imines, and sterically hindered tri-substituted olefins was accomplished using the pre-catalyst dilithiumbis(cycloocta-1,5-diene)nickelate(-II) (1). The mild conditions tolerate hydroxyl, halide, ester, and lactone functionalities. Mechanistic studies, including reaction progress analyses, poisoning experiments, and multinuclear NMR monitoring, indicate that a heterotopic (nickel nanoparticle) catalyst is in operation.
Collapse
Affiliation(s)
- Thomas M. Maier
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Sebastian Sandl
- University of HamburgDepartment of Chemistry20146HamburgGermany
| | - Peter Melzl
- University of RegensburgInstitute of Experimental and Applied Physics93040RegensburgGermany
| | - Josef Zweck
- University of RegensburgInstitute of Experimental and Applied Physics93040RegensburgGermany
| | | | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| |
Collapse
|
36
|
Liu G, Zhang X, Wang H, Cong H, Zhang X, Dong XQ. Synthesis of chiral α-substituted α-amino acid and amine derivatives through Ni-catalyzed asymmetric hydrogenation. Chem Commun (Camb) 2020; 56:4934-4937. [PMID: 32239044 DOI: 10.1039/d0cc01220c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly efficient Ni-catalyzed asymmetric hydrogenation of cyclic N-sulfonyl ketimino esters was, for the first time, successfully developed, providing various chiral α-monosubstituted α-amino acid derivatives with excellent results (97-99% yields, 90 to >99% ee). Cyclic N-sulfonyl ketimines were also hydrogenated well to afford chiral amine derivatives with 98-99% yields and 97 to >99% ee. The gram-scale asymmetric hydrogenation was performed well with 85% yield and 99% ee using only 0.2 mol% catalyst.
Collapse
Affiliation(s)
- Gongyi Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Xianghe Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Heng Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Hengjiang Cong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China. and Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
37
|
Massaro L, Zheng J, Margarita C, Andersson PG. Enantioconvergent and enantiodivergent catalytic hydrogenation of isomeric olefins. Chem Soc Rev 2020; 49:2504-2522. [PMID: 32202283 DOI: 10.1039/c9cs00138g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The asymmetric catalytic hydrogenation of olefins is one of the most widely studied and utilised transformations in asymmetric synthesis. This straightforward and atom-economical strategy can provide excellent enantioselectivity for a broad variety of substrates and is widely relevant for both industrial applications and academic research. In many instances the hydrogenation is stereospecific in the regard that the E-Z-geometry of the olefin governs the stereochemistry of the hydrogenation, producing an enantiodivergent outcome. Interestingly, the possibility to hydrogenate E- and Z-isomer mixtures to a single stereoisomer in an enantioconvergent manner has been reported. This avoids the need for synthesis of geometrically pure alkene starting materials and therefore constitutes a significant practical advantage. This review article aims to provide an overview of the different stereochemical outcomes in the hydrogenation of olefins. Although the field is well developed and selectivity models have been proposed for a number of catalytic systems, an organized collection of enantioconvergent results, as opposed to the more common enantiodivergent case, might promote new investigation into these phenomena.
Collapse
Affiliation(s)
- Luca Massaro
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of 2‐Amidoacrylates. Angew Chem Int Ed Engl 2020; 59:5371-5375. [DOI: 10.1002/anie.201916534] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yawen Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Bowen Li
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3-6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
39
|
Zhong H, Shevlin M, Chirik PJ. Cobalt-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carboxylic Acids by Homolytic H2 Cleavage. J Am Chem Soc 2020; 142:5272-5281. [DOI: 10.1021/jacs.9b13876] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael Shevlin
- Department of Process Research & Development, Merck & Company, Limited, Rahway, New Jersey 07065, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
40
|
Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of 2‐Amidoacrylates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yawen Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Bowen Li
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3-6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
41
|
Zhu T, Xie S, Rojsitthisak P, Wu J. Recent advances in the direct β-C(sp2)–H functionalization of enamides. Org Biomol Chem 2020; 18:1504-1521. [DOI: 10.1039/c9ob02649e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the direct β-C(sp2)–H functionalization of enamides, mainly including arylation, alkenylation, alkynylation, alkylation, acylation, sulfonylation, phosphorylation, and others, are reported.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Shimin Xie
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Patumwan
- Thailand
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
42
|
Zhao X, Zhang F, Liu K, Zhang X, Lv H. Nickel-Catalyzed Chemoselective Asymmetric Hydrogenation of α,β -Unsaturated Ketoimines: An Efficient Approach to Chiral Allylic Amines. Org Lett 2019; 21:8966-8969. [PMID: 31647669 DOI: 10.1021/acs.orglett.9b03365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient synthetic route to chiral allylic amines has been developed by nickel/(S,S)-Ph-BPE complex catalyzed chemoselective asymmetric hydrogenation of α,β-unsaturated ketoimines. Varieties of α,β-unsaturated ketoimines have been well tolerated in this transformation to give chiral allylic amines with high yields and excellent ee values (up to 99% yield, up to 99% ee). A gram-scale reaction with 0.2 mol % catalyst loading has also been achieved.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Scieneces , Wuhan University , Wuhan , Hubei 430072 , China
| | - Feng Zhang
- College of Science , Hunan Agricultural University , Changsha 410128 , China
| | - Kai Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Scieneces , Wuhan University , Wuhan , Hubei 430072 , China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Scieneces , Wuhan University , Wuhan , Hubei 430072 , China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
43
|
Du HQ, Hu XP. Rh-Catalyzed Asymmetric Hydrogenation of (Z)-β-Phosphorylated Enamides: Highly Enantioselective Access to β-Aminophosphines. Org Lett 2019; 21:8921-8924. [DOI: 10.1021/acs.orglett.9b03174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Quan Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
44
|
A Poly(ethylene glycol)-Supported Multiple Hydrogen Bond Catalyst for the Asymmetric Transfer Hydrogenation of β-Acylamino Nitroolefins. Catal Letters 2019. [DOI: 10.1007/s10562-019-02755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Li B, Chen J, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of
N
‐Sulfonyl Imines. Angew Chem Int Ed Engl 2019; 58:7329-7334. [DOI: 10.1002/anie.201902576] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 9808578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
46
|
Han Z, Liu G, Zhang X, Li A, Dong XQ, Zhang X. Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation. Org Lett 2019; 21:3923-3926. [DOI: 10.1021/acs.orglett.9b00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhengyu Han
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Gang Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xianghe Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Anqi Li
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
47
|
Zhu T, Zhang X, Cui X, Zhang Z, Jiang H, Sun S, Zhao L, Zhao K, Loh T. Direct C(
sp
2
)‐H Arylsulfonylation of Enamides
via
Iridium(III)‐Catalyzed Insertion of Sulfur Dioxide with Aryldiazonium Tetrafluoroborates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900257] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tong‐Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xiao‐Chen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xian‐Lu Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Ze‐Yu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Hui Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Shan‐Shan Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Li‐Li Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Teck‐Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
48
|
Li B, Chen J, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of
N
‐Sulfonyl Imines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 9808578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|