1
|
Burchell-Reyes K, Paquin JF. Fluorohydrins and where to find them: recent asymmetric syntheses of β-fluoro alcohols and their derivatives. Org Biomol Chem 2025; 23:4593-4615. [PMID: 40241682 DOI: 10.1039/d5ob00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fluorohydrins - or β-fluorinated alcohols - and their fluorinated group derivatives are a biologically relevant class of compounds, with applications ranging from PET tracers to cancer therapeutics. Recent efforts have unlocked asymmetric access to these related motifs through reactions of carbonyls, alkenes, organoboranes, and epoxides or transformations such as cyclizations or ring expansions. The present work provides an overview of synthetic approaches to various fluorohydrins that have been explored in the past decade, as well as selected examples of these syntheses applied to medicinal chemistry.
Collapse
Affiliation(s)
- Kelly Burchell-Reyes
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Qu P, Liu GQ. Recent progress in the organoselenium-catalyzed difunctionalization of alkenes. Org Biomol Chem 2025; 23:1552-1568. [PMID: 39810650 DOI: 10.1039/d4ob01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Selenium-based catalysts have recently been utilized to facilitate a variety of new organic transformations, owing to their intrinsic advantages, including low cost, low toxicity, stability in both air and water, and strong compatibility with diverse functional groups. The difunctionalization of alkenes-the process of incorporating two functional groups onto a carbon-carbon double bond-has garnered particular interest within the chemical community owing to its significant applications in organic synthesis. Recently, organoselenium-catalyzed difunctionalization of alkenes has emerged as an ideal and powerful route to obtain high-value vicinal difunctionalized molecules. This review emphasizes recent advancements in this rapidly evolving field, focusing on the scope, limitations, and mechanisms of various reactions.
Collapse
Affiliation(s)
- Pei Qu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
3
|
Yu J, Xia Y, Dey S, Zhu J, Cheung KS, Geib SJ, Wang YM. Iridium-Catalyzed Enantioselective Propargylic C-H Trifluoromethylthiolation and Related Processes. J Am Chem Soc 2024; 146. [PMID: 39352731 PMCID: PMC11487557 DOI: 10.1021/jacs.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
The trifluoromethylthio group (SCF3) has gained increasing prominence in the field of drug design and development due to its unique electronic properties, remarkable stability, and high lipophilicity, but its derivatives remain challenging to access, especially in an enantioselective manner. In this Communication, we present an enantioselective iridium-catalyzed trifluoromethylthiolation of the propargylic C(sp3)-H bonds of alkynes. This protocol demonstrates its efficacy across a diverse array of alkyne substrates, including B- and Si-protected terminal alkynes as well as those derived from natural products and pharmaceuticals, to give trifluoromethyl thioethers with good to excellent yield and stereoselectivity. Moreover, this protocol could be modified to access enantioenriched difluoromethyl and chlorodifluoromethyl thioethers (SCF2H and SCF2Cl derivatives), significantly expanding the space of synthetically accessible enantioenriched fluoroorganic compounds.
Collapse
Affiliation(s)
- Jiao Yu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Xia
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Shalini Dey
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jin Zhu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Kiu Sui Cheung
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yi-Ming Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Jian Y, Singh T, Andersson PG, Zhou T. Asymmetric Synthesis and Applications of Chiral Organoselenium Compounds: A Review. Molecules 2024; 29:3685. [PMID: 39125088 PMCID: PMC11314500 DOI: 10.3390/molecules29153685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The synthesis and application of organoselenium compounds have developed rapidly, and chiral organoselenium compounds have become an important intermediate in the field of medicine, materials, organic synthesis. The strategy of developing a green economy is still a challenge in the synthesis of chiral organoselenium compounds with enantioselective properties. This review covers in detail the synthesis of chiral organoselenium compounds from 1979 to 2024 and their application in the fields of asymmetric synthesis and catalysis.
Collapse
Affiliation(s)
- Yanyu Jian
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
| | - Thishana Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Pher G. Andersson
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
- Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
5
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Abstract
Catalysts play a major role in chemical synthesis, and catalysis is considered to be a green and economic process. Catalysis is dominated by covalent interactions between the catalyst and substrate. The design of non-covalent catalysts came into limelight only recently. Hydrogen bonding (HB) catalysts are well established among non-covalent catalysts, including asymmetric HB catalysts. Though halogen bonding (XB) catalysis and its asymmetric version are gaining admiration, non-covalent chalcogen bonding catalysis (ChB) is in the budding stage. This tutorial review will focus on the recently evolved chalcogen bonding catalysis and emphasis will be given to the chalcogen bonding of chiral molecules. Since successful enantioselective chalcogen bonding catalysis is yet to be reported, this review will focus on the basics of non-covalent bonding catalysis, chalcogen bonding catalysis, chiral chalcogenide synthesis, rigidification of transition states by ChB, stabilization of cations by chiral chalcogens, details of unsuccessful asymmetric chalcogen bonding catalysis, enantioseparation of racemic molecules using ChB, and the existence of ChB in chiral biomolecules.
Collapse
Affiliation(s)
- Govindasamy Sekar
- Department of Chemistry, IIT Madras, Chennai, Tamilnadu-600 036, India.
| | | | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Science and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Shen Q. A Toolbox of Reagents for Trifluoromethylthiolation: From Serendipitous Findings to Rational Design. J Org Chem 2023; 88:3359-3371. [PMID: 36795864 DOI: 10.1021/acs.joc.2c02777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Two types of electrophilic trifluoromethylthiolating reagents were developed in the past 10 years in our laboratory. The development of the first type of reagent, trifluoromethanesulfenate I, which is highly reactive toward a variety of nucleophiles, was based on an unexpected discovery in the initial design for the development of an electrophilic trifluoromethylthiolating reagent with a hypervalent iodine skeleton. A structure-activity study disclosed that α-cumyl trifluoromethanesulfenate (reagent II) without the iodo substituent is equally effective. Subsequent derivatization let us develop an α-cumyl bromodifluoromethanesulfenate III that could be used for the preparation of [18F]ArSCF3. To remediate the low reactivity of the type I electrophilic trifluoromethylthiolating reagent for Friedel-Crafts trifluoromethylthiolation of electron-rich (hetero)arenes, we designed and prepared N-trifluoromethylthiosaccharin IV, which exhibits broad reactivity toward various nucleophiles, including electron-rich arenes. A comparison of the structure of N-trifluoromethylthiosaccharin IV with that of N-trifluoromethylthiophthalimide showed that the replacement of one carbonyl group in N-trifluoromethylthiophthalimide with a sulfonyl group made N-trifluoromethylthiosaccharin IV much more electrophilic. Thus, the replacement of both carbonyls with two sulfonyl groups would further increase the electrophilicity. Such a rationale prompted us to design and develop the current most electrophilic trifluoromethylthiolating reagent, N-trifluoromethylthiodibenzenesulfonimide V, and its reactivity was much higher than that of N-trifluoromethylthiosaccharin IV. We further developed an optically pure electrophilic trifluoromethylthiolating reagent, (1S)-(-)-N-trifluoromethylthio-2,10-camphorsultam VI, for the preparation of optically active trifluoromethylthio-substituted carbon stereogenic centers. Reagents I-VI now constitute a powerful toolbox for the introduction of the trifluoromethylthio group into the target molecules.
Collapse
Affiliation(s)
- Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Huang J, Li X, Xu L, Wei Y. Three-Component Oxychalcogenation of Alkenes under Metal-Free Conditions: A Tetrabutylammonium Tribromide-Catalyzed System. J Org Chem 2023. [PMID: 36797219 DOI: 10.1021/acs.joc.2c02856] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A three-component oxychalcogenation reaction, from alkenes, diselenides/thiophenols, and H2O/alcohols, has been realized herein. Tetrabutylammonium tribromide (TBATB) and dimethylsulfoxide (DMSO) are utilized as the catalyst and the terminal oxidant, respectively, to enable this difunctionalization transformation. The metal-free reaction system shows good functional group compatibility, providing a unified and practical approach to access β-hydroxyl or β-alkoxy organochalcogenides.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Xiaoman Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| |
Collapse
|
11
|
Liao L, Zhao X. Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Acc Chem Res 2022; 55:2439-2453. [PMID: 36007167 DOI: 10.1021/acs.accounts.2c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric electrophilic reactions provide an ideal method for the construction of chiral molecules by incorporating one or more functional groups into the parent substrates under mild conditions. However, due to the issues of the reactivities of electrophilic species and the possible racemization of chiral intermediates as well as the restriction of the chiral scaffolds of chiral catalysts, many limitations remain in this field, such as the narrow scopes of substrates and electrophiles as well as the limited types of nucleophiles and reactions. To overcome the limitations in the synthesis of diversified chiral molecules, we developed a series of indane-based chiral amino aryl chalcogenide catalysts. These catalysts are easily prepared based on the privileged chiral indane scaffold. They can provide an appropriate H-bonding effect by varying the amino protecting groups as well as offer a proper Lewis basicity and steric hindrance by adjusting different substituents on the aryl chalcogenide motifs. These features allow for them to meet the requirements of reactivity and the chiral environment of the reactions. Notably, they have been successfully applied to various asymmetric electrophilic reactions of alkenes, alkynes, and arenes, expanding the field of electrophilic reactions.Using these catalysts, we realized the enantioselective CF3S-lactonization of olefinic carboxylic acids, enantioselective CF3S-aminocyclization of olefinic sulfonamides, desymmetrizing enantioselective CF3S-carbocyclization of gem-diaryl-tethered alkenes, enantioselective CF3S-oxycyclization of N-allylamides, enantioselective intermolecular trifluoromethylthiolating difunctionalization and allylic C-H trifluoromethylthiolation of trisubstituted alkenes, formally the intermolecular CF3S-oxyfunctionalization of aliphatic internal alkenes, intermolecular azidothiolation, oxythiolation, thioarylation of N-allyl sulfonamides, desymmetrizing enantioselective chlorocarbocyclization of aryl-tethered diolefins, enantioselective Friedel-Crafts-type electrophilic chlorination of N-allyl anilides, and enantioselective chlorocarbocyclization and dearomatization of N-allyl 1-naphthanilides. Additionally, the enantioselective electrophilic carbothiolation of alkynes to construct enantiopure carbon chirality center-containing molecules and axially chiral amino sulfide vinyl arenes and the electrophilic aromatic halogenation to produce P-chirogenic compounds can be accomplished. In these reactions, a bifunctional binding mode is proposed in the catalytic cycles, in which an acid-derived anion-binding interaction might exist and account for the high enantioselectivities of the reactions.In this Account, we demonstrate our achievements in asymmetric electrophilic reactions and share our thoughts on catalyst design, our understanding of asymmetric electrophilic reactions, and our perspectives in the field of chiral chalcogenide-catalyzed asymmetric electrophilic reactions. We hope that the experience we share will promote the design and development of other novel organocatalysts and new challenging reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Zhu D, Chen ZM. Application of Chiral Lewis Base/Brønsted Acid Synergistic Catalysis Strategy in Enantioselective Synthesis of Organic Sulfides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Kesavan A, Anbarasan P. Catalytic enantioselective oxysulfenylation of o-vinylanilides. Chem Commun (Camb) 2021; 58:282-285. [PMID: 34878444 DOI: 10.1039/d1cc05835e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tf2NH-assisted BINAM-derived thiophosphoramide catalysis has been accomplished for the enantioselective oxysulfenylation of o-vinylanilides with N-(aryl/alkylthio)imides. The developed reaction offers access to diverse substituted aryl/alkylthio tethered 3,1-benzoxazines in excellent yields and enantiomeric ratios. Furthermore, synthetic applications of benzoxazines and aryl/alkylthio moieties and a transition state model for the observed enantioselectivity are also discussed.
Collapse
Affiliation(s)
- Arunachalam Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
14
|
Yan-Mei L, Jin-Feng F, Long-Qiang H, Wei-Na L, Vessally E. Recent advances in intermolecular 1,2-difunctionalization of alkenes involving trifluoromethylthiolation. RSC Adv 2021; 11:24474-24486. [PMID: 35481061 PMCID: PMC9037010 DOI: 10.1039/d1ra02606b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Trifluoromethylthiolative difunctionalization of alkenes, a cheap and abundant feedstock, which installs a trifluoromethylthiol (SCF3) group and another unique functional group across the carbon-carbon double bonds, provides an ideal strategy for the preparation of β-functionalized alkyl trifluoromethyl sulfides and has become a hot topic recently. This review aims to summarize the major progress in this exciting research area, with particular emphasis on the mechanistic aspects of the reaction pathways.
Collapse
Affiliation(s)
- Li Yan-Mei
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Fu Jin-Feng
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - He Long-Qiang
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Li Wei-Na
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
15
|
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
16
|
Okuno K, Nakamura T, Shirakawa S. Asymmetric Catalysis of Chiral Bifunctional Selenides and Selenonium Salts Bearing a Urea Group. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ken Okuno
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Takumi Nakamura
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
17
|
New visible light organo(metal)-photocatalyzed fluoroalkylsulfanylation (RFS-) and fluoroalkylselenolation (RFSe-) reactions of organic substrates. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Matviitsuk A, Panger JL, Denmark SE. Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Jesse L. Panger
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Scott E. Denmark
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| |
Collapse
|
19
|
Matviitsuk A, Panger JL, Denmark SE. Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angew Chem Int Ed Engl 2020; 59:19796-19819. [PMID: 32452077 PMCID: PMC7936392 DOI: 10.1002/anie.202005920] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed a burgeoning of new methods for the enantioselective vicinal difunctionalization of alkenes initiated by electrophilic sulfenyl group transfer. The addition of sulfenium ions to alkenes results in the generation of chiral, non-racemic thiiranium ions. These highly reactive intermediates are susceptible to attack by a myriad of nucleophiles in a stereospecific ring-opening event to afford anti 1,2-sulfenofunctionalized products. The practical application of sulfenium ion transfer has been enabled by advances in the field of Lewis base catalysis. This Review will chronicle the initial discovery and characterization of thiiranium ion intermediates followed by the determination of their configurational stability and the challenges of developing enantioselective variants. Once the framework for the reactivity and stability of thiiranium ions has been established, a critical analysis of pioneering studies will be presented. Finally, a comprehensive discussion of modern synthetic applications will be categorized around the type of nucleophile employed for sulfenofunctionalization.
Collapse
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Jesse L Panger
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
20
|
Jiang Q, Liang Y, Zhang Y, Zhao X. Chalcogenide-Catalyzed Intermolecular Electrophilic Thio- and Halofunctionalization of gem-Difluoroalkenes: Construction of Diverse Difluoroalkyl Sulfides and Halides. Org Lett 2020; 22:7581-7587. [PMID: 32966094 DOI: 10.1021/acs.orglett.0c02784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thio- and halodifluoromethylated compounds are an important class of compounds in medicinal chemistry and organic synthesis. Herein, we report a facile method for the construction of these compounds via chalcogenide-catalyzed intermolecular electrophilic thio- and halofunctionalization of gem-difluoroalkenes. Simple treatment of gem-difluoroalkenes with electrophilic sulfur/halogen reagents and various O- or N-nucleophiles affords diverse multifunctionalized thio- and halodifluoromethylated compounds. This reaction features a relatively broad substrate scope, good functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
21
|
Song XF, Ding TM, Zhu D, Huang J, Chen ZM. Lewis-Acid-Mediated Intramolecular Trifluoromethylthiolation of Alkenes with Phenols: Access to SCF 3-Containing Chromane and Dihydrobenzofuran Compounds. Org Lett 2020; 22:7052-7056. [PMID: 32840107 DOI: 10.1021/acs.orglett.0c02744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Lewis-acid-mediated intramolecular trifluoromethylthiolation of alkenes with phenols that can offer direct access to SCF3-containing chromane and dihydrobenzofuran compounds was disclosed for the first time. Numerous SCF3-containing chromanes were obtained in moderate to good yields using γ-substituted 2-allyphenols as substrates. Meanwhile, various SCF3-containing dihydrobenzofurans with oxa-quaternary centers were also delivered in moderate to good yields using β-substituted 2-allyphenols as substrates.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
22
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
23
|
Yan J, Jiang M, Song L, Liu J. Oxytrifluoromethylthiolation of 2,3‐Allenoates with Trifluoromethanesulfinyl Chloride: A Synthetic Approach to Trifluoromethylthiolated 4‐Oxo‐2(E)‐alkenoates and Furans. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jun Yan
- Department of ChemistrySchool of ScienceShanghai University 99 Shangda Road Shanghai 200436 People's Republic of China
| | - Min Jiang
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Li‐Ping Song
- Department of ChemistrySchool of ScienceShanghai University 99 Shangda Road Shanghai 200436 People's Republic of China
| | - Jin‐Tao Liu
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
24
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020; 59:11010-11019. [DOI: 10.1002/anie.202003897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
25
|
Li S, Yang Q, Bian Z, Wang J. Rhodium-Catalyzed Enantioselective Hydroselenation of Heterobicyclic Alkenes. Org Lett 2020; 22:2781-2785. [PMID: 32195590 DOI: 10.1021/acs.orglett.0c00762] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient Rh(I)/(S)-xyl-Binap catalytic system is developed for the asymmetric hydroselenation of various nonpolar olefins with diselenides. Under these mild reaction conditions, a wide range of heterobicyclic alkenes give selenol-incorporated adducts in excellent enantioselectivities (up to 97%) along with high yields (up to 96%) by overcoming self-promoted racemic hydroselenation. The strategy is also applied for kinetic resolution of unsymmetric oxabenzonorbornadiene.
Collapse
Affiliation(s)
- Sifeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Qingjing Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Jun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Panger JL, Denmark SE. Enantioselective Synthesis of γ-Lactams by Lewis Base Catalyzed Sulfenoamidation of Alkenes. Org Lett 2020; 22:2501-2505. [PMID: 31858805 PMCID: PMC7127933 DOI: 10.1021/acs.orglett.9b04347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the catalytic, enantioselective, intramolecular 1,2-sulfenoamidation of alkenes is described. Lewis base activation of a suitable sulfur electrophile generates an enantioenriched, thiiranium ion intermediate from a β,γ-unsaturated sulfonyl carboxamide. This intermediate is subsequently intercepted by the sulfonamide nitrogen resulting in cyclization to form γ-lactams. Electron-poor alkenes required the use of a new selenophosphoramidate Lewis base catalyst. Subsequent manipulations of the products harness the latent reactivity of both the amide and thioether functionality.
Collapse
Affiliation(s)
- Jesse L. Panger
- Roger Adams Laboratory, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Scott E. Denmark
- Roger Adams Laboratory, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
27
|
Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfide‐Catalyzed Electrophilic Carbothiolation of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaoyan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
28
|
Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfide-Catalyzed Electrophilic Carbothiolation of Alkynes. Angew Chem Int Ed Engl 2020; 59:4959-4964. [PMID: 31967383 DOI: 10.1002/anie.201915470] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/07/2023]
Abstract
The enantioselective construction of axially chiral compounds by electrophilic carbothiolation of alkynes is disclosed for the first time. This enantioselective transformation is enabled by the use of a Ts-protected bifunctional sulfide catalyst and Ms-protected ortho-alkynylaryl amines (Ts=tosyl; Ms=mesyl). Both electrophilic arylthiolating and electrophilic trifluoromethylthiolating reagents are suitable for this reaction. The obtained products of axially chiral vinyl-aryl amino sulfides can be easily converted into biaryl amino sulfides, biaryl amino sulfoxides, biaryl amines, vinyl-aryl amines, and other valuable difunctionalized compounds.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaoyan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Nishiyori R, Maynard JRJ, Shirakawa S. Chiral Bifunctional Selenide Catalysts for Asymmetric Bromolactonization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - John R. J. Maynard
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
- Department of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ (UK
| | - Seiji Shirakawa
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
30
|
Wei W, Liao L, Qin T, Zhao X. Access to Saturated Thiocyano-Containing Azaheterocycles via Selenide-Catalyzed Regio- and Stereoselective Thiocyanoaminocyclization of Alkenes. Org Lett 2019; 21:7846-7850. [DOI: 10.1021/acs.orglett.9b02834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wei
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
31
|
Liang Y, Zhao X. Enantioselective Construction of Chiral Sulfides via Catalytic Electrophilic Azidothiolation and Oxythiolation of N-Allyl Sulfonamides. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
32
|
Hardy MA, Chachignon H, Cahard D. Advances in Asymmetric Di‐and Trifluoromethylthiolation, and Di‐ and Trifluoromethoxylation Reactions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Melissa A. Hardy
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
- Department of ChemistryUniversity of California Berkeley California 94720 United States
| | - Hélène Chachignon
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
| |
Collapse
|
33
|
Qin T, Jiang Q, Ji J, Luo J, Zhao X. Chiral selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated 2,5-disubstituted oxazolines. Org Biomol Chem 2019; 17:1763-1766. [PMID: 30427031 DOI: 10.1039/c8ob02575d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral selenide-catalyzed enantioselective trifluoromethylthiolation of 1,1-disubstituted alkenes is disclosed. By this method, a variety of chiral trifluoromethylthiolated 2,5-disubstituted oxazolines were obtained in good yields with high enantioselectivities. This work not only provides a new pathway for the synthesis of chiral oxazolines, but also expands the library of chiral trifluoromethylthiolated molecules.
Collapse
Affiliation(s)
- Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019; 58:1315-1319. [PMID: 30456895 DOI: 10.1002/anie.201811621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Indexed: 02/01/2023]
Abstract
An unprecendented chiral sulfide catalyzed desymmetrizing enantioselective chlorination is disclosed. Various aryl-tethered diolefins and diaryl-tethered olefins afforded teralins and tricyclic hexahydrophenalene derivatives, respectively, bearing multiple stereogenic centers in high yields with excellent enantio- and diastereoselectivities. In contrast, the tertiary amine catalyst (DHQD)2 PHAL led to a diastereomeric product. The products could be transformed into a variety of compounds, such as spiro-N-heterocycles.
Collapse
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| |
Collapse
|