1
|
Kim GY, Park S, Park G, Kang Y, Kim H, Kim J. Mn(acac) 3/Hydrazide-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Couplings of 1,2,3,4-Tetrahydroisoquinolines and Their Mechanistic Studies. J Org Chem 2025; 90:5966-5972. [PMID: 40254860 DOI: 10.1021/acs.joc.5c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Aerobic oxidative cross-dehydrogenative couplings of 1,2,3,4-tetrahydroisoquinolines were developed using a Mn(acac)3 and ethyl 2-(4-nitrophenyl)hydrazine-1-carboxylate cocatalytic system. Nucleophiles, including nitroalkanes, dialkyl malonates, acetophenones, indoles, phosphonates, and phosphine oxides, were successfully employed to produce α-functionalized 1,2,3,4-tetrahydroisoquinolines. Control experiments revealed that radical species are not involved in the mechanism. Additionally, 1H NMR and HRMS analyses in the stoichiometric reaction identified an aminal structure as a crucial intermediate. Computational studies further support the plausibility of a hydride transfer process in the oxidation of 1,2,3,4-tetrahydroisoquinolines instead of the triazane pathway, which was predominantly proposed in the DEAD-mediated reaction.
Collapse
Affiliation(s)
- Ga Young Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sehee Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Gayeong Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yeongyeong Kang
- Department of Chemistry, and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Kim SB, Park G, Park ES, Maiti S, Kim J. Mn-Catalyzed Aerobic Oxidative α-Cyanation of Tertiary Amines Using Azo/Hydrazide Redox. J Org Chem 2024; 89:14543-14548. [PMID: 39298278 DOI: 10.1021/acs.joc.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Azo compounds such as diethyl azodicarboxylate have been used in oxidative coupling reactions to generate iminium ions from tertiary amines. However, the requirement of stoichiometric amounts of azo compounds limits their large-scale applications. Herein, we present an aerobic oxidative α-cyanation of tertiary amines using catalytic amounts of an azo compound or hydrazine. The developed protocol provides a practical and ecofriendly route for α-cyanated tertiary amines, using molecular oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Su Been Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Gayeong Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Eun Sun Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Santanu Maiti
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Yang R, Xiong Y, Deng S, Bai J, Song XR, Xiao Q. NBS-mediated bromination and dehydrogenation of tetrahydro-quinoline in one pot: scope and mechanistic study. RSC Adv 2023; 13:33495-33499. [PMID: 38025860 PMCID: PMC10646511 DOI: 10.1039/d3ra06747e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
A facile and general approach was developed for the efficient construction of functionalized bromoquinolines by the dehydrogenation of tetrahydroquinolines using NBS as the electrophile and as oxidant. The cascade transformation proceeded with good functional group tolerance under metal-free conditions with a short reaction duration. Various tetrahydroquinolines bearing either electron-rich or electron-deficient groups at different positions were successfully converted into the corresponding target products in moderate to high yields under mild conditions. It is worth noting that the obtained polybromoquinolines could further undergo classic metal-catalyzed cross-coupling reactions with good regioselectivity. The Sonagashira coupling reaction occurred regioselectively in the C-6 position of the obtained products followed by a Suzuki coupling reaction to give multifunctionalized quinolines. The mechanism indicated that electrophilic bromination/radical dehydrogenation sequences occurred in one pot.
Collapse
Affiliation(s)
- Ruchun Yang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| | - Yongge Xiong
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| | - Si Deng
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry Nanchang 330013 Jiangxi Province China
| |
Collapse
|
4
|
Kim SB, Maiti S, Park ES, Kim GY, Choun Y, Ahn SK, Kim JK, Kim J. One-Pot Synthesis of 1,3,4-Oxadiazines from Acylhydrazides and Allenoates. Molecules 2023; 28:molecules28093815. [PMID: 37175225 PMCID: PMC10180079 DOI: 10.3390/molecules28093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The framework of 1,3,4-oxadiazine is crucial for numerous bioactive molecules, but only a limited number of synthetic methods have been reported for its production. In 2015, Wang's group developed a 4-(dimethylamino)pyridine (DMAP)-catalyzed [2 + 4] cycloaddition of allenoates with N-acyldiazenes, which provided an atom-efficient route for 1,3,4-oxadiazines. However, the practicality of this method was limited by the instability of N-acyldiazenes as starting materials. Building upon our ongoing research about the aerobic oxidation of hydrazides and their synthetic applications, we hypothesized that aerobic oxidative cycloadditions using acylhydrazides instead of N-acyldiazenes may provide a more practical synthetic route for 1,3,4-oxadiazines. In this manuscript, we describe a one-pot synthetic protocol for 1,3,4-oxadiazines from acylhydrazides and allenoates. The developed one-pot protocol consists of aerobic oxidations of acylhydrazides into N-acyldiazenes using NaNO2 and HNO3, followed by the DMAP-catalyzed cycloaddition of allenoate with the generated N-acyldiazenes. A variety of 1,3,4-oxadiazines were produced in good to high yields. In addition, the practicality of the developed method was demonstrated by a gram-scale synthesis of 1,3,4-oxadiazine.
Collapse
Affiliation(s)
- Su Been Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Santanu Maiti
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Sun Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Ga Young Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Yunji Choun
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
5
|
Rhenium Tricarbonyl Complexes of Azodicarboxylate Ligands. Molecules 2022; 27:molecules27238159. [PMID: 36500250 PMCID: PMC9740152 DOI: 10.3390/molecules27238159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The excellent π-accepting azodicarboxylic esters adcOR (R = Et, iPr, tBu, Bn (CH2-C6H5) and Ph) and the piperidinyl amide derivative adcpip were used as bridging chelate ligands in dinuclear Re(CO)3 complexes [{Re(CO)3Cl}2(µ-adcOR)] and [{Re(CO)3Cl}2(µ-adcpip)]. From the adcpip ligand the mononuclear derivatives [Re(CO)3Cl(adcpip)] and [Re(CO)3(PPh3)(µ-adcpip)]Cl were also obtained. Optimised geometries from density functional theory (DFT) calculations show syn and anti isomers for the dinuclear fac-Re(CO)3 complexes at slightly different energies but they were not distinguishable from experimental IR or UV-Vis absorption spectroscopy. The electrochemistry of the adc complexes showed reduction potentials slightly below 0.0 V vs. the ferrocene/ferrocenium couple. Attempts to generate the radicals [{Re(CO)3Cl}2(µ-adcOR)]•- failed as they are inherently unstable, losing very probably first the Cl- coligand and then rapidly cleaving one [Re(CO)3] fragment. Consequently, we found signals in EPR very probably due to mononuclear radical complexes [Re(CO)3(solv)(adc)]•. The underlying Cl-→solvent exchange was modelled for the mononuclear [Re(CO)3Cl(adcpip)] using DFT calculations and showed a markedly enhanced Re-Cl labilisation for the reduced compared with the neutral complex. Both the easy reduction with potentials ranging roughly from -0.2 to -0.1 V for the adc ligands and the low-energy NIR absorptions in the 700 to 850 nm range place the adc ligands with their lowest-lying π* orbital being localised on the azo function, amongst comparable bridging chelate N^N coordinating ligands with low-lying π* orbitals of central azo, tetrazine or pyrazine functions. Comparative (TD)DFT-calculations on the Re(CO)3Cl complexes of the adcpip ligand using the quite established basis set and functionals M06-2X/def2TZVP/LANL2DZ/CPCM(THF) and the more advanced TPSSh/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) for single-point calculations with BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) optimised geometries showed a markedly better agreement of the latter with the experimental XRD, IR and UV-Vis absorption data.
Collapse
|
6
|
Lim JH, Baek SE, Lad BS, Kim J. Synthesis of 2-Imino-1,3,4-oxadiazolines from Acylhydrazides and Isothiocyanates via Aerobic Oxidation and a DMAP-Mediated Annulation Sequence. ACS OMEGA 2022; 7:28148-28159. [PMID: 35990423 PMCID: PMC9386851 DOI: 10.1021/acsomega.2c02323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
In this work, an efficient synthesis of 2-imino-1,3,4-oxadiazolines from acylhydrazides and isothiocyanates is described. In the presence of 4-dimethylaminopyridine (DMAP) and molecular oxygen, various 2-imino-1,3,4-oxadiazolines were produced in good to high yields. The developed method showed a broad substrate scope and was effective on the gram scale. On the basis of the mechanistic studies and previous literature, it was proposed that the mechanism consists of an aerobic oxidation of acylhydrazides facilitated by DMAP and isothiocyanates, followed by a DMAP-mediated annulation of the in situ generated acyldiazenes with isothiocyanates.
Collapse
|
7
|
One‐pot synthesis of 2‐imino‐1,3,4‐thiadiazolines from acylhydrazides and isothiocyanates. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Lee S, Lee G, Park S, Yim D, Yim T, Kim J, Kim H. Theoretical Protocol Based on Long-Range Corrected Density Functional Theory and Tuning of Range-Split Parameter for Two-Electron Two-Proton Reduction of Phenylazocarboxylates. J Phys Chem A 2022; 126:2430-2436. [PMID: 35412306 DOI: 10.1021/acs.jpca.1c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical protocol based on long-range corrected density functional theory is suggested for a highly accurate estimation of the two-electron two-proton (2e2p) reduction potential of ethyl 2-phenylazocarboxylate derivatives. Geometry optimization and single-point energy refinement with ωB97X-D are recommended. The impact of polarization and diffusion functions in the basis sets on the 2e2p reduction potential is discussed. Further improvements can be achieved by tuning the range-split parameter based on the linear relationship between the Hammett constant of phenyl substituents and the optimal ω value that most accurately reproduces the experiments. The suggested protocol can accurately predict the 2e2p reduction potential of five ethyl 2-phenylazocarboxylate derivatives. Based on these findings, 22 additional candidates are suggested to enlarge the electrochemical window and to increase the selectivity of 2e2p reactions. This study contributes to the development of a theoretical approach to accurately estimate the 2e2p reduction potential of azo groups.
Collapse
Affiliation(s)
- Serin Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Giseung Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Sanggil Park
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Daniel Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Taeeun Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jinho Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Hyungjun Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
9
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
10
|
Wang J, Ma Z, Du W, Shao L. Hydrogen peroxide based oxidation of hydrazines using HBr catalyst. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Mao JH, Wang YB, Yang L, Xiang SH, Wu QH, Cui Y, Lu Q, Lv J, Li S, Tan B. Organocatalyst-controlled site-selective arene C-H functionalization. Nat Chem 2021; 13:982-991. [PMID: 34373595 DOI: 10.1038/s41557-021-00750-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Over the past three decades, organocatalysis has emerged as a powerful catalysis platform and has gradually been incorporated into the routine synthetic toolbox to obtain chiral molecules. However, its application in the site- and enantioselective functionalization of inactive aryl C-H bonds remains in its infancy. Here, we present an organocatalyst-controlled para-selective arene C-H functionalization strategy that addresses this issue, which remains an enduring challenge in arene functionalization chemistry. By emulating enzyme catalysis, the chiral phosphoric acid catalyst offers an ideal chiral environment for stereoinduction, and the projecting substituents give control of chemo- and site-selectivity. Various types of nucleophile are compatible with this method, affording more than 100 para-selective adducts with stereodefined carbon centres or axes in viable molecular contexts. This protocol is expected to provide a general strategy for para-selective functionalization of arene C-H bonds in a controlled manner.
Collapse
Affiliation(s)
- Jian-Hui Mao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Shao-Hua Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Quan-Hao Wu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Cui
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Qian Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Jie Lv
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyu Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
12
|
Affiliation(s)
- Junsu Kim
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Jinho Kim
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| |
Collapse
|
13
|
Cao Y, Wu Y, Zhang Y, Zhou J, Xiao W, Gu D. Highly Ordered Mesoporous Cobalt Oxide as Heterogeneous Catalyst for Aerobic Oxidative Aromatization of N‐Heterocycles. ChemCatChem 2021. [DOI: 10.1002/cctc.202100644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yue Cao
- The Institute for Advanced Studies Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| | - Yong Wu
- The Institute for Advanced Studies Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| | - Yuanteng Zhang
- The Institute for Advanced Studies Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| | - Jing Zhou
- The Institute for Advanced Studies Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| | - Wei Xiao
- Hubei Key Laboratory of Electrochemical Power Sources College of Chemistry and Molecular Sciences Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| | - Dong Gu
- The Institute for Advanced Studies Wuhan University No. 299, Bayi Road Wuhan 430072 P. R. China
| |
Collapse
|
14
|
Bera S, Bera A, Banerjee D. Nickel-Catalyzed Dehydrogenation of N-Heterocycles Using Molecular Oxygen. Org Lett 2020; 22:6458-6463. [DOI: 10.1021/acs.orglett.0c02271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sourajit Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Atanu Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debasis Banerjee
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
15
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
16
|
Jo G, Kim MH, Kim J. A practical route to azo compounds by metal-free aerobic oxidation of arylhydrazides using an NO x system. Org Chem Front 2020. [DOI: 10.1039/d0qo00043d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-free aerobic oxidation of aryl hydrazides catalyzed by NOx was developed for the practical and environment friendly synthesis of azo compounds.
Collapse
Affiliation(s)
- Giwon Jo
- Department of Chemistry
- and Research Institute of Basic Sciences
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Min Hye Kim
- Department of Chemistry
- and Research Institute of Basic Sciences
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Jinho Kim
- Department of Chemistry
- and Research Institute of Basic Sciences
- Incheon National University
- Incheon 22012
- Republic of Korea
| |
Collapse
|
17
|
Chung S, Kim J. Cu-catalyzed aerobic oxidative synthesis of sulfonamides from sulfonyl hydrazides and amines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|