1
|
Das S, Maiti S, Mondal S, Mondal S, Midya SP, Ghosh P. Visible-Light-Induced Decarboxylative Annulation of α,β-Unsaturated Acids with Amines and α-Keto Acids for 2,4-Diarylquinoline Synthesis. Org Lett 2025. [PMID: 39898463 DOI: 10.1021/acs.orglett.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
An efficient and sustainable approach for the synthesis of 2,4-diarylquinolines has been developed via a visible-light-promoted metal-free three-component decarboxylative annulation pathway. This one-pot protocol combines readily available feed-stock α,β-unsaturated acids, aromatic amines, and α-keto acids in a cascade manner to access substituted quinolines under eco-benign conditions. Moreover, mechanistic insights suggest initial C-C cross coupling followed by decarboxylative 6π electrocyclic annulation to afford the desired products. The broad substrates scope and excellent functional group tolerance make this protocol more attractive and synthetically applicable toward the construction of complex N-heterocycles.
Collapse
Affiliation(s)
- Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Souvik Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Siba P Midya
- Department of Chemistry, Rammohan College, Kolkata, West Bengal 700009, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
2
|
Gao Q, Wang B, Jiang H, Wu W. Palladium-Catalyzed Tandem Cyclization of Functional Diarylalkynes and Isocyanides for the Assembly of Isochromeno[4,3- c]quinolines. J Org Chem 2024; 89:18370-18383. [PMID: 39656089 DOI: 10.1021/acs.joc.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel strategy for the synthesis of various isochromeno[4,3-c]quinolines via palladium-catalyzed tandem cyclization of functional diarylalkynes with isocyanides has been developed. This approach features excellent chemo- and regioselectivities as well as good functional group tolerance. Notably, 6-phenylimino-6H-isochromeno[4,3-c]quinolin-11-amines and 11-amino-6H-isochromeno[4,3-c]quinolin-6-ones can be selectively constructed by employing different protecting groups of functional diarylalkynes. The gram-scale and late-stage modifications further demonstrate the synthetic value of this method.
Collapse
Affiliation(s)
- Qiushan Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Binbin Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Qi C, Shen X, Fang W, Chang J, Wang XN. TMSOTf-Catalyzed [4 + 2] Annulation of Ynamides and β-(2-Aminophenyl)-α,β-ynones for the Synthesis 2-Aminoquinolines. Org Lett 2024; 26:3503-3508. [PMID: 38661174 DOI: 10.1021/acs.orglett.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A metal-free TMSOTf-catalyzed [4 + 2] annulation of ynamides with β-(2-aminophenyl)-α,β-ynones enables the regiospecific and facile assembly of 2-aminoquinoline frameworks. The catalyst TMSOTf presented a remarkable advancement compared to previously reported transition-metal catalysts. A wide range of 3-aryl/alkyl-substituted 2-aminoquinolines were generated in moderate to excellent yields due to the mild conditions.
Collapse
Affiliation(s)
- Chaofan Qi
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoxiao Shen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wozheng Fang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
4
|
He J, Cao T, Chen K, Zhu S. Leveraging Nonstrained C-C Bonds for Selective Carboacylation of an Unactivated Alkyne via Transient Dearomatization. Org Lett 2024; 26:2596-2600. [PMID: 38535522 DOI: 10.1021/acs.orglett.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Carboacylation of an unsaturated bond represents a powerful transformation. However, only a few examples of carboacylation of alkyne have been reported through C-C bond scission and reconnection. Here, we report a method of carboacylation of an unactivated alkyne by utilizing nonstrained C-C bonds under gold(I) catalysis. The density functional theory computational and experimental studies reveal that the reaction proceeds through a C-to-C formal 1,3-acyl migration via a solvent cage-nested acylium cation.
Collapse
Affiliation(s)
- Jiamin He
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxiang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Zhang M, Zheng Y, Jin Y, Jiang H, Wu W. Palladium-catalyzed ligand-regulated divergent synthesis of pyrrole[2,3- b]indoles and ureas from 2-ethynylanilines and isocyanides. Chem Commun (Camb) 2024; 60:2950-2953. [PMID: 38375635 DOI: 10.1039/d3cc05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, a palladium-catalyzed and ligand-controlled protocol for the divergent synthesis of pyrrole[2,3-b]indole and urea derivatives has been described. Pyrrole[2,3-b]indoles ("cyclization on" products) via tandem cyclization of o-alkynylanilines with isocyanides in the absence of a ligand and ureas ("cyclization off" products) via oxidative amination of anilines with isocyanides in the presence of a ligand were obtained both in moderate to good yields with high selectivity. In this chemistry, cyclic and acyclic products were easily accessed with the same starting materials under the regulation of the ligand.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongpeng Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Kahar NM, Jadhav PP, Dawande SG. Rhodium(II)-catalyzed synthesis of 2-aminoquinoline derivatives from 2-quinolones and N-sulfonyl-1,2,3-triazoles. Org Biomol Chem 2023; 21:8267-8272. [PMID: 37807927 DOI: 10.1039/d3ob00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we disclose a rhodium(II) catalyzed efficient and convenient method for the synthesis of 2-aminoquinoline derivatives from 2-quinolones and N-sulfonyl-1,2,3-triazoles. The reaction provides rapid access to a series of 2-aminoquinolines with moderate to excellent yields. The reaction proceeds via quinolone-hydroxyquinoline tautomerization/O-H insertion to a rhodium(II)-aza vinyl carbene intermediate generated by denitrogenation of triazole followed by rearrangement to deliver the desired product. Furthermore, we demonstrated the iodine-mediated dealkylation of a 2-aminoquinoline derivative.
Collapse
Affiliation(s)
- Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India.
| |
Collapse
|
7
|
Fang S, Chen W, Jiang H, Ma R, Wu W. Palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chem Commun (Camb) 2022; 58:9666-9669. [PMID: 35946388 DOI: 10.1039/d2cc03298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to the synthesis of 3-bromoindoles via palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes has been described. This protocol features high atom economy, excellent chemo- and regioselectivities, and good functional group tolerance. Moreover, the resultant 3-bromoindoles can be transformed to various functionalized indole derivatives, which demonstrates the practicability of this method in organic synthesis.
Collapse
Affiliation(s)
- Songjia Fang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ruize Ma
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Vavsari VF, Nikbakht A, Balalaie S. Annulation of 2‐Alkynylanilines: The Versatile Chemical Compounds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vaezeh Fathi Vavsari
- KN Toosi: KN Toosi University of Technology Chemistry IRAN (ISLAMIC REPUBLIC OF)
| | - Ali Nikbakht
- K N Toosi University of Technology Faculty of General Science Chemistry Department of Chemistry, Kavian 9, Dr. Shariati Street 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Saeed Balalaie
- K N Toosi University of Technology Faculty of General Science Chemistry Department PO Box 15875-4416 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
9
|
Silva VLM, Pinto DCGA, Santos CMM, Rocha DHA. 15.4.5 Quinolinones and Related Systems (Update 2022). KNOWLEDGE UPDATES 2022/3 2022. [DOI: 10.1055/sos-sd-115-01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractQuinolinones, of which the quinolin-4(1H)-one ring system can be highlighted, represent an exciting class of nitrogen heterocycles. The quinolinone motif can be found in many natural compounds and approved drugs for several diseases. This chapter is a comprehensive survey of the methods for the synthesis of quinolin-2(1H)-ones, quinolin-4(1H)-ones, and their thio- and amino derivatives, and is an update to the previous Science of Synthesis chapter (Section 15.4), covering the period between 2003 and 2020.
Collapse
|
10
|
Liu N, Sun H, Wang J, Zhang Z, Wang T. Ag(I)‐Catalyzed Synthesis of 2‐Aminoquinolines from 1‐Aminobutadiynes and Anilines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ningning Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Junying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| |
Collapse
|
11
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
12
|
Chen D, Yang M, Li J, Cui P, Su L, Shan Y, You J, Rojsitthisak P, Liu JB, Qiu G. Palladium-Catalyzed Cycloaddition of Alkynylimines, Double Isocyanides, and H 2O/KOAc. J Org Chem 2020; 85:6441-6449. [PMID: 32321251 DOI: 10.1021/acs.joc.0c00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this work, a palladium-catalyzed cyclization of alkynylimines and double isocyanides is described. This facile procedure is efficient for synthesizing various 4-amidyl-2-aminopyrroles. Mechanism investigation indicates that a four-membered ring-fused pyrrole species is a key intermediate and the reaction involves [4 + 1] cycloaddition, protonation, nucleophilic addition, 1,4-addition of isocyanide, and rearomatization. Interestingly, the linear dipyrrole derivative is found to be an appropriate fluoride ion probe with a remarkable emission change, which could serve as a potential candidate for optoelectronic conjugated materials.
Collapse
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Min Yang
- Department of Forensic Science, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peiying Cui
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lei Su
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
13
|
Chen X, Qiu G, Liu R, Chen D, Chen Z. Divergent oriented synthesis (DOS) of aza-heterocyclic amides through palladium-catalyzed ketenimination of 2-iodo-N-(propa-1,2-dien-1-yl)anilines. Org Chem Front 2020. [DOI: 10.1039/c9qo01451a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium-catalyzed tandem reaction of N-(2-iodophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide with isocyanide is described to divergently produce aza-heterocyclic amides.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Renzhi Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Dianpeng Chen
- Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| |
Collapse
|
14
|
Li M, Fang S, Zheng J, Jiang H, Wu W. Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. Org Lett 2019; 21:8439-8443. [DOI: 10.1021/acs.orglett.9b03201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Chen D, Shan Y, Li J, You J, Sun X, Qiu G. External Reductant-Free Palladium-Catalyzed Reductive Insertion of Isocyanide: Synthesis of Polysubstituted Pyrroles and Its Applications as a Cysteine Probe. Org Lett 2019; 21:4044-4048. [DOI: 10.1021/acs.orglett.9b01220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuejun Sun
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| |
Collapse
|
16
|
Naruto H, Togo H. Preparation of 2-arylquinolines from β-arylpropionitriles with aryllithiums and NIS through iminyl radical-mediated cyclization. Org Biomol Chem 2019; 17:5760-5770. [DOI: 10.1039/c9ob00944b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of β-arylpropionitriles with aryllithiums, followed by the reaction with water and then with NIS under irradiation with a tungsten lamp gave 2-arylquinolines in good to moderate yields.
Collapse
Affiliation(s)
- Hiroki Naruto
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Hideo Togo
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|