1
|
Ji S, Kim S, Lee JK, Lee DH, Han SJ. Cleavage of the Robust Silicon-Fluorine σ-Bond Allows Silicon-Carbon Bond Formation: Synthetic Strategies Toward Ortho-Silyl Aryl Phosphonates. Angew Chem Int Ed Engl 2025; 64:e202413759. [PMID: 39235300 DOI: 10.1002/anie.202413759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
A straightforward, mild, and transition-metal-free three-component coupling reaction involving arynes, phosphites, and silyl fluorides was developed through Si-F bond activation. Although the Si-F bond is one of the strongest bonds, Si-C bond formation via Si-F bond cleavage with the assistance of bidentate silicon and phosphonium Lewis acids has been successfully achieved. This unprecedented strategy provides a facile approach for synthesizing ortho-silyl-substituted aryl phosphonates. Notably, this method allows the use of not only dialkylarylsilyl fluorides and diarylalkylsilyl fluorides but also triarylsilyl fluorides as coupling partners, which is uncommon in the field of arylsilane synthesis. Furthermore, a variety of ortho-silyl-substituted aryl phosphonates were produced in moderate to good yields with broad functional group tolerance. Additionally, the versatility of ortho-silyl-substituted aryl phosphonates was demonstrated by the elaboration of the products into a range of silicon-containing compounds.
Collapse
Affiliation(s)
- Suhyun Ji
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Soomin Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae Kyun Lee
- Neuro-Medicine Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Seo-Jung Han
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Gong S, Xie X, Sun H, Liu Y, Li J, Zhang Z. Recent Progress on Multi-Component Reactions Involving Nucleophile, Arynes and CO 2. Molecules 2024; 29:3152. [PMID: 38999103 PMCID: PMC11243390 DOI: 10.3390/molecules29133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Carbon dioxide (CO2) is a non-toxic, abundant and recoverable source of carbon monoxide. Despite its thermodynamically stable and kinetically inert nature, research on CO2 utilisation is ongoing. CO2-based aryne reactions, crucial for synthesising ortho-substituted benzoic acids and their cyclisation products, have garnered significant attention, and multi-component reactions (MCRs) involving CO2, aryne and nucleophilic reagents have been extensively studied. This review highlights recent advancements in CO2 capture reactions utilising phenylalkyne reactive intermediates. Mechanistic insights into these reactions are provided together with prospects for further development in this field.
Collapse
Affiliation(s)
- Shaoxuan Gong
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
| | - Xiumei Xie
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
| | - Hongxia Sun
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
| | - Yuting Liu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
| | - Junjie Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
| | - Zhen Zhang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant & School of Pharmacy, Chengdu University, Chengdu 610106, China; (S.G.); (X.X.); (H.S.); (Y.L.); (J.L.)
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Liu H, Jiang H, Qi C. Macrocyclization of carbon dioxide with 3-triflyloxybenzynes and tetrahydrofuran: straightforward access to 14-membered macrolactones. Chem Commun (Camb) 2024; 60:6639-6642. [PMID: 38855889 DOI: 10.1039/d4cc01229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A novel [2+2+5+5] macrocyclization of carbon dioxide with 3-triflyloxybenzynes and tetrahydrofuran has been disclosed for the first time under transition metal-free conditions. The reaction provides a facile method for the synthesis of a rare type of 14-membered macrocyclic lactone, which is potentially useful but difficult to access by existing methods.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
4
|
Luo Y, Huang W. Base-mediated carboxylation of C-nucleophiles with CO 2. Org Biomol Chem 2023; 21:8628-8641. [PMID: 37860946 DOI: 10.1039/d3ob01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dioxide (CO2) is an available, abundant, and renewable C1 resource, which could be converted into value-added chemicals. Due to its inherent thermodynamic stability and kinetic inertness, it is difficult to realize its efficient utilization. Nevertheless, many elegant strategies for the utilization of CO2 have been developed using Lewis bases, frustrated Lewis pairs, hydroxyl-containing compounds, amino-group-containing compounds or transition metal catalysis. Among them, base-mediated carboxylation of C-nucleophiles is an environmentally friendly strategy for CO2 conversion, which is operationally simple, using low-toxicity bases and economical available promoters, without the use of complex ligands or cocatalysts. This review summarizes related work on the base-mediated carboxylation of C-nucleophiles with CO2, based on the effects of nucleophiles, promoters, additives, and solvents. The types of pronucleophile are categorized as follows: hydrocarbon with C(sp3)-H, C(sp2)-H or C(sp)-H bonds, organosilanes, organotin, organoboron, and N-tosylhydrazones. Typical mechanisms and applications of these carboxylation reactions are also depicted. Moreover, mechanistic comprehension of CO2 activation and conversion at a molecular level aims to further expand the repertoire of carboxylation transformations mediated by bases.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenbin Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Liu S, Zhang K, Meng Y, Xu J, Chen N. Aryne and CO 2-based formal [2 + 2 + 2] annulation to access tetrahydroisoquinoline-fused benzoxazinones. Org Biomol Chem 2023; 21:6892-6897. [PMID: 37581250 DOI: 10.1039/d3ob01147j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Tetrahydroisoquinoline and its fused polyheterocycles are prevalent structural motifs found in numerous natural products. In this study, we report a highly efficient and convergent synthetic approach for the construction of tetrahydroisoquinoline-fused polyheterocycles through a three-component formal [2 + 2 + 2] annulation process by combining 3,4-dihydroisoquinolines, CO2, and benzynes. Notably, electron-rich 3,4-dihydroisoquinolines and electron-deficient benzynes exhibit greater reactivity in this annulation. Moreover, this method benefits from the convergent synthesis and the utilization of carbon dioxide, providing a valuable strategy for the facile synthesis of tetrahydroisoquinoline-fused polyheterocycles, with potential applications in the discovery and development of novel organic molecules.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Kun Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yutong Meng
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
6
|
Chen D, Yang C, Li M, Zhao G, Wang W, Wang X, Quan Z. Recent Progress on Arylation with Aryne through Three-Component Reaction. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Agudelo BC, Rigoulet F, Rodriguez J, Coquerel Y, Giorgi M, Sayah B. Synthesis of Axially Chiral Cationic Benzo[c]phenanthridinium Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCationic polycyclic aromatic compounds containing one or more nitrogen atom(s), also known as azonia polycyclic aromatic compounds, form a valuable class of molecules because of their fluorescent and/or medicinal properties. N-Arylated hydroisoquinoline derivatives were synthesized through an aryne aza-Diels–Alder cycloaddition/N-arylation sequence. A subsequent two-electron oxidation allowed the synthesis of some axially chiral cationic benzo[c]phenanthridinium derivatives. The structural and optical properties of some of these molecules were determined. Their chirality was evidenced experimentally by single-crystal X-ray diffraction and 1H NMR spectroscopy, and their conformational behavior was examined by computational DFT methods.
Collapse
|
8
|
Zhang Y, Liu S, Zang Z, Wang Z, Zhu T. Carbene catalyzed C(sp 3)–Cl activation of chlorinated solvents for benzyne chlorination. Org Chem Front 2022. [DOI: 10.1039/d2qo01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new mode of N-heterocyclic carbene (NHC) organocatalysis was discovered, in which the normally inert chlorinated solvents were activated by carbene to realize the chlorination of hexa-dehydro-Diels-Alder derived benzynes.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Song Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Zhenming Zang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ziyuan Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Bhattacharjee S, Deswal S, Manoj N, Jindal G, Biju AT. Aryne Three-Component Coupling Involving CS 2 for the Synthesis of S-Aryl Dithiocarbamates. Org Lett 2021; 23:9083-9088. [PMID: 34783570 DOI: 10.1021/acs.orglett.1c03378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile synthesis of biologically important S-aryl dithiocarbamates has been demonstrated by the aryne three-component coupling involving CS2 and aliphatic amines. This transition-metal-free and mild reaction is scalable and operates with good functional group compatibility. Preliminary mechanistic experiments, including density functional theory studies, are also provided. Moreover, with 3-triflyloxybenzynes, a unique four-component coupling incorporating tetrahydrofuran was observed.
Collapse
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Niket Manoj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Hutskalova V, Prescimone A, Sparr C. Synthesis of Helical and Planar Extended‐Phenanthridinium Salts. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valeriia Hutskalova
- Department of Chemistry University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| |
Collapse
|
11
|
Guin A, Bhattacharjee S, Biju AT. Transition-Metal-Free C2-Functionalization of Pyridines through Aryne Three-Component Coupling. Chemistry 2021; 27:13864-13869. [PMID: 34288154 DOI: 10.1002/chem.202102005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/29/2022]
Abstract
The direct C2-functionalization of pyridines through a transition-metal-free protocol by using aryne multicomponent coupling is demonstrated. The reaction allowed a broad-scope synthesis of C2-substituted pyridine derivatives bearing the -CF3 group in good yields with α,α,α-trifluoroacetophenones as the third component. Activated keto esters could also be employed as the third component in this formal 1,2-di(hetero)arylation of ketones. Performing the reaction under dilute conditions inhibited the competing pyridine-aryne polymerization pathway. Nucleophilic attack by the initially generated pyridylidene intermediate on the carbonyl followed by an SN Ar process resembling the Smiles rearrangement affords the desired products.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
Sparr C, Hutskalova V. The Versatility of the Aryne–Imine–Aryne Coupling for the Synthesis of Acridinium Photocatalysts. Synlett 2021. [DOI: 10.1055/s-0040-1720349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe increasing use of acridinium photocatalysts as sustainable alternative to precious metal-based counterparts encourages the design and efficient synthesis of distinct catalyst structures. Herein, we report our exploration of the scope of the aryne–imine–aryne coupling reaction combined with a subsequent acridane oxidation for a short two-step approach towards various acridinium salts. The photophysical properties of the novel photocatalysts were investigated and the practical value was demonstrated by a cation-radical accelerated nucleophilic aromatic substitution reaction.
Collapse
|
13
|
Xiong W, Wu B, Zhu B, Tan X, Wang L, Wu W, Qi C, Jiang H. One‐Pot Palladium‐Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem 2021. [DOI: 10.1002/cctc.202100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenfang Xiong
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Bowen Wu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Baiyao Zhu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Xiaobin Tan
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Chaorong Qi
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| |
Collapse
|
14
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
15
|
Neal EA, Werling AYR, Jones CR. A simple Hückel model-driven strategy to overcome electronic barriers to retro-Brook silylation relevant to aryne and bisaryne precursor synthesis. Chem Commun (Camb) 2021; 57:1663-1666. [PMID: 33463642 DOI: 10.1039/d0cc08283j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ortho-Silylaryl triflate precursors (oSATs) have been responsible for many recent advances in aryne chemistry and are most commonly accessed from the corresponding 2-bromophenol. A retro-Brook O- to C-silyl transfer is a key step in this synthesis but not all aromatic species are amenable to the transformation, with no functionalized bisbenzyne oSATs reported. Simple Hückel models are presented which show that the calculated aromaticity at the brominated position is an accurate predictor of successful retro-Brook reaction, validated synthetically by a new success and a predicted failure. From this, the synthesis of a novel difunctionalized bisaryne precursor has been tested, requiring different approaches to install the two C-silyl groups. The first successful use of a disubstituted o-silylaryl sulfonate bisbenzyne precursor in Diels-Alder reactions is then shown.
Collapse
Affiliation(s)
- Edward A Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | | | | |
Collapse
|
16
|
Sable DA, Vadagaonkar KS, Kapdi AR, Bhanage BM. Carbon dioxide based methodologies for the synthesis of fine chemicals. Org Biomol Chem 2021; 19:5725-5757. [PMID: 34132318 DOI: 10.1039/d1ob00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid environmental changes triggered by the increase in the concentration of heat-absorbing gases such as CO2 in the atmosphere have become a major cause of concern. One of the ways to counter this growing threat will be to efficiently convert atmospheric CO2 into value-added products via the development of efficient transition-metal-catalyzed processes. Conversion of CO2 into bulk products such as CH3OH and methane as well as its incorporation into commercial polyurethane synthesis has been achieved and reviewed extensively. However, the efficient transformation of CO2 into fine chemicals and value-added chemicals has many fold advantages. Recent years have seen a rapid rise in the number of metal-mediated protocols to achieve this goal of converting CO2 into fine chemicals. These are essential developments given the requirement of several commodities and fine chemicals in various industrial processes and the utilization of atmospheric CO2 will help provide a sustainable solution to the current environmental problems. Accordingly, we present here a comprehensive compilation of catalytic processes, involving CO2 as the C1 source for reacting with substrates such as alkanes, alkenes, alkynes, amines, acid chlorides, alcohols, allyl boronates, alkenyl triflates, and many others to provide easy access to a wide variety of useful molecules. Such a technology would certainly prove to be beneficial in solving the problems associated with the environmental accumulation of CO2.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India. and Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Kamlesh S Vadagaonkar
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Anant R Kapdi
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Bhalchandra M Bhanage
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| |
Collapse
|
17
|
Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Thiophenols as Protic Nucleophilic Triggers in Aryne Three-Component Coupling. Org Lett 2020; 22:9097-9101. [DOI: 10.1021/acs.orglett.0c03494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
|
20
|
Bhattacharjee S, Raju A, Gaykar RN, Gonnade RG, Roy T, Biju AT. Rapid Synthesis of Zwitterionic Phosphonium Benzoates by a Three-Component Coupling Involving Phosphines, Arynes and CO 2. Chem Asian J 2020; 15:2203-2207. [PMID: 32488981 DOI: 10.1002/asia.202000610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Indexed: 12/28/2022]
Abstract
A mild and easy to perform multicomponent coupling involving phosphines, arynes generated from 2-(trimethylsilyl)aryl triflates, and CO2 allowing the transition-metal-free synthesis of zwitterionic phosphonium benzoates has been developed. The reaction proceeds via the generation of 1 : 1 zwitterionic intermediates from phosphines and arynes followed by the interception with CO2 to deliver the carboxylates in moderate to good yields instead of the anticipated benzooxaphosphol-3(1H)-ones.
Collapse
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Anjali Raju
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rahul N Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajesh G Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Tony Roy
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
21
|
Xie P, Yang S, Guo Y, Cai Z, Dai B, He L. Multicomponent Reaction of Phosphines, Benzynes, and CO2: Facile Synthesis of Stable Zwitterionic Phosphonium Inner Salts. J Org Chem 2020; 85:8872-8880. [DOI: 10.1021/acs.joc.0c00745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pei Xie
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Shoushan Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Yuyu Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Zhihua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| |
Collapse
|
22
|
Xiong W, Shi F, Cheng R, Zhu B, Wang L, Chen P, Lou H, Wu W, Qi C, Lei M, Jiang H. Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixiang Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Cheng R, Xiong W, Qi C, Wang L, Ren Y, Jiang H. Macrocyclization of 3-triflyloxybenzynes with tetrahydrofuran via an anionic thia-Fries rearrangement. Chem Commun (Camb) 2020; 56:6495-6498. [PMID: 32409790 DOI: 10.1039/d0cc00135j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel and uncommon macrocyclization reaction between 3-triflyloxybenzynes and tetrahydrofuran has been developed for the first time, providing a direct method for the synthesis of a range of functionalized 19-membered polyether macrocycles in moderate to good yields. The process was proposed to proceed through an anionic thia-Fris rearrangement under transition metal-free conditions, leading to the formation of four new C-O bonds and one new C-S bond in a single step.
Collapse
Affiliation(s)
- Ruixiang Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China. and State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yanwei Ren
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
24
|
Gao Y, Nie J, Li Y, Liao G, Huo Y, Hu X. Rh(III)‐Catalyzed Selective
ortho
‐C−H Amination of Benzoic Acids with Anthranils: A Facile Access to Anthranilic Acid Derivatives (AAs). ChemCatChem 2020. [DOI: 10.1002/cctc.202000052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen Guangdong 529090 P. R. China
| | - Guilan Liao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Xiao‐Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science School of Chemistry and Materials Science South-Central University for Nationalities Wuhan 430074 P. R. China
| |
Collapse
|
25
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
26
|
Rahman M, Bagdi AK, Kopchuk DS, Kovalev IS, Zyryanov GV, Chupakhin ON, Majee A, Hajra A. Recent advances in the synthesis of fluorinated compounds via an aryne intermediate. Org Biomol Chem 2020; 18:9562-9582. [DOI: 10.1039/d0ob01638a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the usefulness of aryne intermediates for the synthesis of various fluorinated organic compounds during the last decade has been demonstrated.
Collapse
Affiliation(s)
- Matiur Rahman
- Department of Organic and Biomolecular Chemistry
- Chemical Engineering Institute
- Ural Federal University
- Yekaterinburg
- Russian Federation
| | | | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular Chemistry
- Chemical Engineering Institute
- Ural Federal University
- Yekaterinburg
- Russian Federation
| | - Igor S. Kovalev
- Department of Organic and Biomolecular Chemistry
- Chemical Engineering Institute
- Ural Federal University
- Yekaterinburg
- Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry
- Chemical Engineering Institute
- Ural Federal University
- Yekaterinburg
- Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry
- Chemical Engineering Institute
- Ural Federal University
- Yekaterinburg
- Russian Federation
| | - Adinath Majee
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| |
Collapse
|
27
|
Gaykar RN, Guin A, Bhattacharjee S, Biju AT. Three-Component Aminoselenation of Arynes. Org Lett 2019; 21:9613-9617. [DOI: 10.1021/acs.orglett.9b03789] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
28
|
Guin A, Gaykar RN, Bhattacharjee S, Biju AT. Selective Synthesis of N-H and N-Aryl Benzotriazoles by the [3 + 2] Annulation of Sodium Azide with Arynes. J Org Chem 2019; 84:12692-12699. [DOI: 10.1021/acs.joc.9b02198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
29
|
Sahoo T, Sen C, Singh H, Suresh E, Ghosh SC. Copper‐Catalyzed C‐4 Carboxylation of 1‐Naphthylamide Derivatives with CBr
4
/MeOH. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapan Sahoo
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Harshvardhan Singh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - E. Suresh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Analytical and Environmental Science Division and Centralized Instrument Facility CSIR-CSMCRI Bhavnagar 364002 Gujarat India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) G.B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
30
|
Zhao J, Li H, Li P, Wang L. Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. J Org Chem 2019; 84:9007-9016. [DOI: 10.1021/acs.joc.9b00893] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Zhao
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
31
|
Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Iodide as a Nucleophilic Trigger in Aryne Three-Component Coupling for the Synthesis of 2-Iodobenzyl Alcohols. Org Lett 2019; 21:4383-4387. [DOI: 10.1021/acs.orglett.9b01621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
32
|
Zhang Y, Xiong W, Cen J, Yan W, Wu Y, Qi C, Wu W, Jiang H. Direct bromocarboxylation of arynes using allyl bromides and carbon dioxide. Chem Commun (Camb) 2019; 55:12304-12307. [DOI: 10.1039/c9cc05495b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An unprecedented multicomponent reaction involving arynes, allyl bromides, and CO2 has been developed to construct various allyl o-bromobenzoate scaffolds.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jinghe Cen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wuxin Yan
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yaodan Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wanqing Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|