1
|
Ghosh A, Pawar AB. Harnessing sulfilimine as an oxidizing directing group in Cp*Co(III)-catalyzed [4+2] annulation with alkynes and 1,3-diynes. Chem Commun (Camb) 2025; 61:8240-8243. [PMID: 40337886 DOI: 10.1039/d5cc01230a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We have developed the first Cp*Co(III)-catalyzed [4+2] annulation utilizing sulfilimine as an oxidizing directing group in a redox-neutral fashion. The N-S bond of the sulfilimine serves as an internal oxidant, thereby eliminating the need for any internal oxidant. The reaction worked with various alkynes and also exhibited an excellent regioselectivity with 1,3-diynes furnishing the 3-alkynylated isoquinolones.
Collapse
Affiliation(s)
- Arijit Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
2
|
Hu TQ, Meng YN, Zheng YJ, Liu LG, Xu Z, Ye LW, Zhou B. Copper-Catalyzed Formal [4 + 1] Annulation of Diynes with Isoxazoles: Synthesis of Pyrrolo[3,4- b]indoles. Org Lett 2025; 27:5218-5223. [PMID: 40369717 DOI: 10.1021/acs.orglett.5c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Catalytic annulation of isoxazoles with alkynes is an efficient methodology for the assembly of N-heterocyclic architectures, and most reactions require noble-metal catalysts. Herein, we disclose a copper-catalyzed formal [4 + 1] annulation of 1,6-diynes with isoxazoles for the efficient and atom-economical construction of biologically important pyrrolo[3,4-b]indoles in high yields via vinyl cation intermediates, which is significantly different from previous annulations of alkynes with isoxazoles involving α-imino metal carbene intermediates. Interestingly, preliminary results have been obtained for the related catalytic atroposelective transformation. Computational mechanistic studies are employed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Tian-Qi Hu
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ya-Nan Meng
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Jie Zheng
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li-Gao Liu
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Long-Wu Ye
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Jaithum K, Tummatorn J, Theppitak C, Chainok K, Thongsornkleeb C, Ruchirawat S. Silver-Catalyzed and Base-Mediated Double Cyclization for the Streamlined Synthesis of Benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazole from ortho-Alkynylarylketones. Chem Asian J 2025. [PMID: 40079900 DOI: 10.1002/asia.202500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
We report a novel silver-catalyzed and base-mediated double cyclization strategy for the streamlined synthesis of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles from ortho-alkynylarylketones. The transformation proceeds through an initial ketonization step catalyzed by silver trifluoroacetate (AgTFA), generating a reactive 1,5-diketone intermediate, followed by a sequential double cyclization under basic conditions. This method affords a broad range of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles with good functional group tolerance in moderate-to-good yields. Moreover, this methodology also enhances the synthetic utility of ortho-alkynylarylketones, expanding their applicability in constructing diverse fused heterocycles.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
4
|
Zhu XQ, Meng ZX, Zhou B, Teng MY, Ye LW. Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis. Chem Soc Rev 2025; 54:2137-2153. [PMID: 39943861 DOI: 10.1039/d4cs01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Zhi-Xu Meng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ming-Yu Teng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Long-Wu Ye
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Mackenroth AV, Antoni PW, Shiri F, Bendel C, Mayer C, Gross JH, Rominger F, Rudolph M, Ariafard A, Hashmi ASK. Gold-Catalysed Intramolecular Reaction of Alkynes with Sulfoximines Acting as N- and O-Transfer Reagents. Angew Chem Int Ed Engl 2025; 64:e202420360. [PMID: 39661478 DOI: 10.1002/anie.202420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Among the nucleophilic oxidants employed in the gold-catalysed oxidation of alkynes, sulphur-based reagents have played a substantial role since the beginning, granting access to the respective gold carbene intermediates. Herein, we describe the first example of the substance class of sulfoximines being used as atom transfer reagents to alkynes in gold catalysis. Based on the transformation of N-(2-alkynylphenyl) sulfoximines to 3H-indol-3-ones, it is demonstrated that the sulfoximine functionality is capable of selectively transferring first its nitrogen moiety to the alkyne, forming the α-imino gold carbene, which is then oxidised by the released sulfoxide moiety in a second step via a pseudo-intramolecular mechanism-a distinctive feature that differentiates this work mechanistically from earlier studies. A combination of extensive experimental and theoretical studies provides evidence for this mechanistic rationale. As no external reagents for the 1,2-difunctionalisation of the alkyne unit are required, a wide variety of functional groups are tolerated in the transformation, affording the desired 3H-indol-3-ones in mostly good yields. It was further also showcased that it is possible to combine our methodology with additional transformations of the 3H-indol-3-one core in one-pot procedures, allowing facile access to C2-quaternary indolin-3-one structures.
Collapse
Affiliation(s)
- Alexandra V Mackenroth
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Patrick W Antoni
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Farshad Shiri
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Christoph Bendel
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christian Mayer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Valla L, Pitrat D, Mulatier JC, Le Bahers T, Jeanneau E, Ali LMA, Nguyen C, Gary-Bobo M, Andraud C, Bretonnière Y. Imidazo[1,2- a]pyridine and Imidazo[1,5- a]pyridine: Electron Donor Groups in the Design of D-π-A Dyes. J Org Chem 2024; 89:8407-8419. [PMID: 38853362 DOI: 10.1021/acs.joc.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This work investigates the electron-donating capabilities of two 10-π electron nitrogen bridgehead bicyclic [5,6]-fused ring systems, imidazo[1,2-a]pyridine and imidazo[1,5-a]pyridine rings. Eight compounds with varying positions of electron-withdrawing moieties (TCF or DCI) coupled to the imidazopyridine ring were synthesized and studied. DCI-containing compounds (Ib-IVb) exhibited a purely dipolar nature with broad absorption bands, weak fluorescence, large Stokes shifts, and strong solvatochromism. In contrast, TCF-containing compounds (Ia-IVa) demonstrated diverse properties. Imidazo[1,2-a]pyridine derivatives Ia and IIa were purely dipolar, while imidazo[1,5-a]pyridine derivatives IIIa and IVa displayed a cyanine-like character with intense absorption and higher quantum yields of emission. The observed gradual red shift in optical properties with changing electron-donor groups (IIb < Ib < IIIb < IVb) and (IIa < Ia < IIIa < IVa) underscores the stronger electron-donor character of imidazo[1,5-a]pyridine compared to that of imidazo[1,2-a]pyridine. Furthermore, crystalline powders of imidazo[1,2-a]pyridine derivatives exhibited fluorescence despite minimal emission in solution. Two compounds (Ib and IVa) were successfully formulated into nanoparticles for potential in vivo imaging applications in zebrafish embryos.
Collapse
Affiliation(s)
- Léa Valla
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Delphine Pitrat
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Tangui Le Bahers
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
- Institut Universitaire de France 5 Rue Descartes, Paris 75005, France
| | - Erwann Jeanneau
- Univ Lyon, Centre de Diffractométrie Henri Longchambon, Université Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Chantal Andraud
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Yann Bretonnière
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| |
Collapse
|
7
|
Zhao MN, Yang ZM, Li LQ. DMF as an amine source: iron-catalyzed cyclization of 2 H-azirines to imidazoles. Chem Commun (Camb) 2024. [PMID: 38258986 DOI: 10.1039/d3cc06147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CN double bonds and the construction of new C-N and CN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
Collapse
Affiliation(s)
- Mi-Na Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| | - Zi-Mo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lian-Qing Li
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| |
Collapse
|
8
|
Tong Z, Smith PJ, Pickford HD, Christensen KE, Anderson EA. Gold-Catalyzed Cyclization of Yndiamides with Isoxazoles via α-Imino Gold Fischer Carbenes. Chemistry 2023; 29:e202302821. [PMID: 37767940 PMCID: PMC10947298 DOI: 10.1002/chem.202302821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Gold catalysis is an important method for alkyne functionalization. Here we report the gold-catalyzed formal [3+2] aminative cyclization of yndiamides and isoxazoles in a direct synthesis of polysubstituted diaminopyrroles, which are important motifs in drug discovery. Key to this process is the formation, and subsequent cyclization, of an α-imino gold Fischer carbene, which represents a new type of gold carbene intermediate. The reaction proceeds rapidly under mild conditions, with high regioselectivity being achieved by introducing a subtle steric bias between the nitrogen substituents on the yndiamide. DFT calculations revealed that the key to this regioselectivity was the interconversion of isomeric gold keteniminiun ions via a low-barrier π-complex transition state, which establishes a Curtin-Hammett scenario for isoxazole addition. By using benzisoxazoles as substrates, the reaction outcome could be switched to a formal [5+2] cyclization, leading to 1,4-oxazepines.
Collapse
Affiliation(s)
- Zixuan Tong
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Philip J. Smith
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Helena D. Pickford
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Kirsten E. Christensen
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward A. Anderson
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
9
|
Sun Q, Hüßler C, Kahle J, Mackenroth AV, Rudolph M, Krämer P, Oeser T, Hashmi ASK. Cascade Reactions of Aryl-Substituted Terminal Alkynes Involving in Situ-Generated α-Imino Gold Carbenes. Angew Chem Int Ed Engl 2023:e202313738. [PMID: 37882411 DOI: 10.1002/anie.202313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
An efficient, highly selective and divergent synthetic method to construct 2-substituted indoles and aryl-annulated carbazoles via the intermolecular generation of α-imino gold carbenes from terminal alkynes or diynes in combination with sulfilimines is disclosed. Importantly, the tandem reaction is proposed to proceed through an intermolecular gold carbene generation/C-H annulation followed by the activation of a second alkyne leading to 6-endo-dig cyclization, which is significantly different from previous dual activation or 1,6-carbene shift approaches for diyne systems. In the case of ortho-alkynylaniline as starting material, an unexpected regioselective formation of the indole moiety via the intermolecular path, instead of intramolecular hydroamination was discovered. This reactivity paved the way for a one-pot synthesis of the 11H-indolo [3,2-c] quinoline scaffold by exploiting the formed amino indole for a subsequent Pictet-Spengler reaction with aldehydes. The photophysical properties of the carbazoles indicated good violet-blue emission with quantum yields up to 40 %.
Collapse
Affiliation(s)
- Qiaoying Sun
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christopher Hüßler
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Justin Kahle
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alexandra V Mackenroth
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Tang J, Lu F, Zhang X, Su Y, Zhang E, Yang Z. Copper-Catalyzed Chemodivergent Synthesis of Oxazoles and Imidazolidones by Selective C-O/C-N Cyclization. J Org Chem 2023. [PMID: 37433741 DOI: 10.1021/acs.joc.3c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Efficient synthesis of phenylalanine-derived oxazoles and imidazolidones can be achieved by copper-catalyzed reactions that are controlled by directing groups and proceed by selective C-O or C-N coupling. This strategy employs inexpensive commercial copper catalysts and readily available starting materials. It uses a convenient reaction procedure and provides a reliable approach to the versatile and flexible assembly of heterocyclic building blocks.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fengjie Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Su
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhiyu Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
11
|
Chen Y, Fang DM, Huang HS, Nie XK, Zhang SQ, Cui X, Tang Z, Li GX. Synthesis of Sulfilimines via Selective S-C Bond Formation in Water. Org Lett 2023; 25:2134-2138. [PMID: 36939573 DOI: 10.1021/acs.orglett.3c00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Sulfilimines are valuable compounds both in organic synthesis and in pharmaceuticals. Here we developed a mild and simplified method for preparation of sulfilimines via selective S-C bond formation rather than traditional S-N bond formation. The method is both attractive and useful for the following reasons: it uses a readily available alkylation reagent such alkyl bromide or alkyl iodide, it uses water as solvent, it is easy to perform, and it is convenient for late-stage diversification of drugs.
Collapse
Affiliation(s)
- Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Dong-Mei Fang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - He-Sen Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xiao-Kang Nie
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Shi-Qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Song L, Tian X, Farshadfar K, Shiri F, Rominger F, Ariafard A, Hashmi ASK. An unexpected synthesis of azepinone derivatives through a metal-free photochemical cascade reaction. Nat Commun 2023; 14:831. [PMID: 36788212 PMCID: PMC9929248 DOI: 10.1038/s41467-023-36190-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Azepinone derivatives are privileged in organic synthesis and pharmaceuticals. Synthetic approaches to these frameworks are limited to complex substrates, strong bases, high power UV light or noble metal catalysis. We herein report a mild synthesis of azepinone derivatives by a photochemical generation of 2-aryloxyaryl nitrene, [2 + 1] annulation, ring expansion/water addition cascade reaction without using any metal catalyst. Among the different nitrene precursors tested, 2-aryloxyaryl azides performed best under blue light irradiation and Brønsted acid catalysis. The reaction scope is broad and the obtained products underwent divergent transformations to afford other related compounds. A computational study suggests a pathway involving a step-wise aziridine formation, followed by a ring-expansion to the seven-membered heterocycle. Finally, water is added in a regio-selective manner, this is accelerated by the added TsOH.
Collapse
Affiliation(s)
- Lina Song
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany.
| | - Kaveh Farshadfar
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran ,grid.5373.20000000108389418Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, Aalto, Finland
| | - Farshad Shiri
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Frank Rominger
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran. .,School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - A. Stephen K. Hashmi
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany ,grid.412125.10000 0001 0619 1117Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Zhan G, Zhao H, Li DA, Wu Y, Fang H, Peng C, Han B. Synthesis of 2,3-bifunctional imidazo[1,2-a]pyridines through cycloadditions of pyridinium ylides with N-cyano-4-methyl-N-phenylbenzenesulfonamide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Liu J, Jia X, Huang L. Sulfilimines as Transformable and Retainable Directing Groups in Rhodium-Catalyzed ortho-C-H Bond Functionalization. Org Lett 2022; 24:6772-6776. [PMID: 36098745 DOI: 10.1021/acs.orglett.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shown herein is the first time that the sulfilimine is utilized as a directing group for Rh(III)-catalyzed C-H activation/annulation with intermolecular and intramolecular alkyne compounds. Sulfilimine serves as a transformable directing group, an internal oxidant, in the annulation with an alkyne moiety via N-S bond cleavage. Notably, the retention of sulfilimine as a directing group is also achieved in the Rh(III)-catalyzed ortho-alkynylation with alkyne bromides.
Collapse
Affiliation(s)
- Jiechun Liu
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoyan Jia
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Fang R, Liu K, Kirillov AM, Yang L. DFT Rationalization of Gold(I)-Catalyzed Couplings between Alkynyl Thioether and Nitrenoid Derivatives: Mechanism, Selectivity Patterns, and Effects of Substituents. J Org Chem 2022; 87:7193-7201. [PMID: 35579210 DOI: 10.1021/acs.joc.2c00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present work focuses on a theoretical investigation of mechanistic features, chemoselectivity, regioselectivity, and effect of substituents in the gold-catalyzed reactions of alkynyl thioethers and isoxazoles. The DFT calculations reveal that the nucleophilic attack of isoxazole to a β-position of catalyst-bound ynamide forms a vinyl intermediate. This undergoes cleavage of the N-O isoxazole bond and isomerizes to form an α-imino α'-sulfenyl gold carbene complex with stabilization of the Au-S interaction. For 3,5-dimethylisoxazole, the reaction follows a formal [3 + 2] cycloaddition pathway and a 1,3-H migration to give the pyrrole products. Replacement of 3,5-dimethylisoxazole by 3,5-dimethyl-4-phenylisoxazole leads to the formation of deacylative annulation products and desulfenylated 3-acylated pyrroles. Reactions with 4-methyl-3,5-diphenylisoxazoles induce the formation of N-acylated pyrroles and desulfenylated 3-acylated pyrroles. For the minor pathway, the α-addition and 1,2-S migration result in sulfur-substituted β-keto enamide derivatives. In addition, the unique features of regio- and chemoselectivity were rationalized by the distortion and interaction analysis. Apart from fully rationalizing the experimental results, the theoretical DFT data give an important support for comprehending related types of reaction mechanisms.
Collapse
Affiliation(s)
- Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Kunyang Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Brambilla E, Abbiati G, Caselli A, Pirovano V, Rossi E. Coinage metal carbenes in heterocyclic synthesis via formation of new carbon-heteroatom bonds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Jalani HB, Jeong J. p‐
Toluenesulfonic
acid Catalyzed,
Isocyanide‐Free
,
Groebke‐Blackburn‐Bienayme
(
GBB
) Type Multicomponent Synthesis of
3‐Anilino
‐imdazo[1,2‐a]pyridines. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hitesh B. Jalani
- College of Pharmacy Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak‐ro, Yeonsu‐gu Incheon South Korea
- Smart BioPharm, 310‐Pilotplant, Incheon Techno‐Park, 12‐Gaetbeol‐ro, Yeonsu‐gu Incheon South Korea
| | - Jin‐Hyun Jeong
- College of Pharmacy Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak‐ro, Yeonsu‐gu Incheon South Korea
| |
Collapse
|
18
|
Panda J, Raiguru BP, Mishra M, Mohapatra S, Nayak S. Recent Advances in the Synthesis of Imidazo[1,2‐
a
]pyridines: A Brief Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
19
|
Zhao M, Yang Z, Yang D. Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Weng CY, Zhu GY, Zhu BH, Qian PC, Zhu XQ, Zhou JM, Ye LW. Copper-catalyzed B−H bond insertion reaction of azide-ynamide with borane adducts via α-imino copper carbenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00457g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new copper-catalyzed B−H bond insertion reaction between azide-ynamides and borane adducts has been developed, which represents the first B−H bond insertion into α-imino metal carbenes. This protocol enables the...
Collapse
|
21
|
Understanding diversified chemoseletivities in Rh2(II)-catalyzed intramolecular annulation reactions of diazo and N-Sulfonyl-1,2,3-triazole compounds: A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Dong J, Fu D, Sheng D, Wang J, Xu J. Direct oxidation of N-ynylsulfonamides into N-sulfonyloxoacetamides with DMSO as a nucleophilic oxidant. RSC Adv 2021; 11:40243-40252. [PMID: 35494160 PMCID: PMC9044841 DOI: 10.1039/d1ra04816c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
N-Arylethynylsulfonamides are oxidized into N-sulfonyl-2-aryloxoacetamides directly and efficiently with dimethyl sulfoxide (DMSO) as both an oxidant and solvent with microwave assistance. DFT calculations indicate that DMSO nucleophilically attacks the ethylic triple bond and transfers its oxygen atom to the triple bond to form zwitterionic anionic N-sulfonyliminiums to trigger the reaction. Then it nucleophilically attacks the generated iminium intermediates to accomplish the oxidation via the second oxygen atom transfer. The current method provides a straightforward and efficient strategy to transform various N-arylethynylsulfonamides into N-sulfonyl-2-aryloxoacetamides, sulfonyl oxoacetimides, without any other electrophilic activators or oxidants.
Collapse
Affiliation(s)
- Jun Dong
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
- School of Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224007 People's Republic of China
| | - Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Dongning Sheng
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Jiayi Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China +86 10 64435565
| |
Collapse
|
23
|
Xie X, Sun J. [4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones. Org Lett 2021; 23:8921-8925. [PMID: 34723560 DOI: 10.1021/acs.orglett.1c03413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalyst-free [4+3]-cycloaddition reaction of N-aryl sulfilimines with cyclobutenones is described, which provides a straightforward protocol for synthesizing 1,5-dihydro-2H-benzo[b]azepin-2-ones under mild reaction conditions. This reaction features a broad substrate scope and good functional group tolerance and does not require catalysts or additives. Moreover, using N-pyridinyl sulfilimine as the substrate, a series of pyridoazepinones have also been prepared.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
24
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|
25
|
Computational Investigations on the Transition-Metal-Catalyzed Cross-Coupling of Enynones with Diazo Compounds. Top Catal 2021. [DOI: 10.1007/s11244-021-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zhang J, Li Y, Zhang C, Wang XN, Chang J. Metal-Free [3+2] Annulation of Ynamides with Anthranils to Construct 2-Aminoindoles. Org Lett 2021; 23:2029-2035. [PMID: 33645992 DOI: 10.1021/acs.orglett.1c00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel metal-free [3+2] annulation of ynamides with anthranils provides a facile, flexible, environmentally friendly, and atom-economical route to 2-aminoindoles. This synthetic process proceeds with efficiency, excellent regioselectivity, and wide functional group tolerance under mild conditions. Moreover, the obtained 2-aminoindole products represent a multifunctional platform for the construction of various 2-aminoindolyl frameworks.
Collapse
Affiliation(s)
- Jingyi Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ying Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
27
|
Hu YC, Zhao Y, Wan B, Chen QA. Reactivity of ynamides in catalytic intermolecular annulations. Chem Soc Rev 2021; 50:2582-2625. [PMID: 33367365 DOI: 10.1039/d0cs00283f] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ynamides are unique alkynes with a carbon-carbon triple bond directly attached to the nitrogen atom bearing an electron-withdrawing group. The alkyne is strongly polarized by the electron-donating nitrogen atom, but its high reactivity can be finely tempered by the electron-withdrawing group. Accordingly, ynamides are endowed with both nucleophilic and electrophilic properties and their chemistry has been an active research field. The catalytic intermolecular annulations of ynamides, featuring divergent assembly of structurally important amino-heterocycles in a regioselective manner, have gained much attention over the past decade. This review aims to provide a comprehensive summary of the advances achieved in this area involving transition metal and acid catalysis. Moreover, the intermolecular annulations of ynamide analogs including ynol ethers and thioalkynes are also discussed, which can provide insights into the reactivity difference caused by the heteroatoms.
Collapse
Affiliation(s)
- Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
28
|
Ma RJ, Xu WK, Sun JT, Chen L, Si CM, Wei BG. Synthesis of dihydro-[1,3]oxazino[4,3-a] isoindole and tetrahydroisoquinoline through Cu(OTf)2-catalyzed reactions of N-acyliminium ions with ynamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Song L, Tian X, Han C, Amanpur M, Rominger F, Hashmi ASK. Catalyst-free synthesis of oxazol-2(3 H)-ones from sulfilimines and diazo compounds through a tandem rearrangement/aziridination/ring-expansion reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo00473e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxazol-2(3H)-ones play a significant role in the fields of organic synthesis and drug development.
Collapse
Affiliation(s)
- Lina Song
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Xianhai Tian
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Chunyu Han
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Mehran Amanpur
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Frank Rominger
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - A. Stephen K. Hashmi
- Institute of Organic Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
- Chemistry Department
| |
Collapse
|
30
|
Saliyeva LN, Diachenko IV, Vas’kevich RI, Slyvka NY, Vovk MV. Imidazothiazoles and their Hydrogenated Analogs: Methods of Synthesis and Biomedical Potential. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
32
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Lv K, Dai P, Bao X. Mechanistic Understanding of the Pd(0)-Catalyzed Coupling Cyclization of 1,2-Allenyl Ketones with Aryl Halides: A Computational Study. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kang Lv
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, China
| | - Ping Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
34
|
Liu X, Wang Z, Zhai T, Luo C, Zhang Y, Chen Y, Deng C, Liu R, Ye L. Copper‐Catalyzed Azide–Ynamide Cyclization to Generate α‐Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N‐Heterocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tong‐Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yi‐Ping Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang‐Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Rai‐Shung Liu
- Department of Chemistry National Tsing-Hua University Hsinchu Taiwan 30013 Republic of China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
35
|
Liu X, Wang ZS, Zhai TY, Luo C, Zhang YP, Chen YB, Deng C, Liu RS, Ye LW. Copper-Catalyzed Azide-Ynamide Cyclization to Generate α-Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N-Heterocycles. Angew Chem Int Ed Engl 2020; 59:17984-17990. [PMID: 32621338 DOI: 10.1002/anie.202007206] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Indexed: 01/23/2023]
Abstract
Here an efficient copper-catalyzed cascade cyclization of azide-ynamides via α-imino copper carbene intermediates is reported, representing the first generation of α-imino copper carbenes from alkynes. This protocol enables the practical and divergent synthesis of an array of polycyclic N-heterocycles in generally good to excellent yields with broad substrate scope and excellent diastereoselectivities. Moreover, an asymmetric azide-ynamide cyclization has been achieved with high enantioselectivities (up to 98:2 e.r.) by employing BOX-Cu complexes as chiral catalysts. Thus, this protocol constitutes the first example of an asymmetric azide-alkyne cyclization. The proposed mechanistic rationale for this cascade cyclization is further supported by theoretical calculations.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Ping Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30013, Republic of China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
36
|
Ye LW, Zhu XQ, Sahani RL, Xu Y, Qian PC, Liu RS. Nitrene Transfer and Carbene Transfer in Gold Catalysis. Chem Rev 2020; 121:9039-9112. [PMID: 32786423 DOI: 10.1021/acs.chemrev.0c00348] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic transformations involving metal carbenes are considered one of the most important aspects of homogeneous transition metal catalysis. Recently, gold-catalyzed generation of gold carbenes from readily available alkynes represents a significant advance in metal carbene chemistry. This Review summarizes the advances in the gold-catalyzed nitrene-transfer reactions of alkynes with nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils, and gold-catalyzed carbene-transfer reactions, involving oxygen atom-transfer reactions of alkynes with nitro compounds, nitrones, sulfoxides, and pyridine N-oxides, through the presumable α-imino gold carbene and α-oxo gold carbene intermediates, respectively. Gold-catalyzed processes are reviewed by highlighting their product diversity, selectivity, and applicability, and the mechanistic rationale is presented where possible.
Collapse
Affiliation(s)
- Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rajkumar Lalji Sahani
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
37
|
Tian X, Song L, Hashmi ASK. Synthesis of Carbazoles and Related Heterocycles from Sulfilimines by Intramolecular C-H Aminations. Angew Chem Int Ed Engl 2020; 59:12342-12346. [PMID: 32045085 PMCID: PMC7384176 DOI: 10.1002/anie.202000146] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/28/2023]
Abstract
While direct nitrene insertions into C-H bonds have become an important tool for building C-N bonds in modern organic chemistry, the generation of nitrene intermediates always requires transition metals, high temperatures, ultraviolet or laser light. We report a mild synthesis of carbazoles and related building blocks through a visible light-induced intramolecular C-H amination reaction. A striking advantage of this new method is the use of more reactive aryl sulfilimines instead of the corresponding hazardous azides. Different catalysts and divergent light sources were tested. The reaction scope is broad and the product yield is generally high. An efficient gram-scale synthesis of Clausine C demonstrates the applicability and scalability of this new method.
Collapse
Affiliation(s)
- Xianhai Tian
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lina Song
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
38
|
Tian X, Song L, Hashmi ASK. Synthese von Carbazolen und Verwandten Heterocyclen aus Sulfiliminen durch Intramolekulare C‐H‐Aminierungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Lina Song
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
- Chemistry Department Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
39
|
Bhunia S, Ghosh P, Patra SR. Gold‐Catalyzed Oxidative Alkyne Functionalization by N−O/S−O/C−O Bond Oxidants. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sabyasachi Bhunia
- Department of Chemistry Central University of Jharkhand Ranchi Jharkhand 835205 India
| | - Partha Ghosh
- Department of Chemistry Central University of Jharkhand Ranchi Jharkhand 835205 India
| | - Snigdha Rani Patra
- Department of Chemistry Central University of Jharkhand Ranchi Jharkhand 835205 India
| |
Collapse
|
40
|
Pandit YB, Liu R. Gold‐Catalyzed Aminoaromatizations of 1,2‐Bis(alkynyl)benzenes with Anthranils to Yield 1‐Amino‐2‐napthaldehyde Products. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yashwant Bhaskar Pandit
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| | - Rai‐Shung Liu
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| |
Collapse
|
41
|
Antoni PW, Mackenroth AV, Mulks FF, Rudolph M, Helmchen G, Hashmi ASK. Dibenzothiophenesulfilimines: A Convenient Approach to Intermolecular Rhodium-Catalysed C-H Amidation. Chemistry 2020; 26:8235-8238. [PMID: 32428332 PMCID: PMC7383884 DOI: 10.1002/chem.202002371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/18/2022]
Abstract
A sulfilimine‐based Group 9 transition‐metal‐catalysed C−H amidation procedure is reported. Dibenzothiophene‐based sulfilimines were shown to constitute a class of novel amidation reagents which enable the transfer of a wide range of N‐sulfonyl and N‐acyl moieties. It was demonstrated that sulfilimines, which are easily accessible from cheap reagents, are safe‐to‐handle and represent broadly applicable amidation reagents. The dibenzothiophene can be recycled after use. The C−H amidation was shown to proceed with high selectivity and gave the mono‐amidated products, mostly in good to excellent yields.
Collapse
Affiliation(s)
- Patrick W Antoni
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alexandra V Mackenroth
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian F Mulks
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Günter Helmchen
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
42
|
Zang W, Wei Y, Shi M. Divergent Construction of Fully Substituted Pyrroles and Cyclopentadiene Derivatives by Ynamide Annulations: 1,2-Cyclopropyl Migration versus Proton Transfer. Org Lett 2020; 22:5466-5472. [DOI: 10.1021/acs.orglett.0c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenqing Zang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
43
|
Arce EM, Lamont SG, Davies PW. Sulfenyl Ynamides in Gold Catalysis: Synthesis of Oxo‐functionalised 4‐aminoimidazolyl Fused Compounds by Intermolecular Annulation Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elsa M. Arce
- Haworth Building, School of ChemistryUniversity of Birmingham, Edgbaston. Birmingham B15 2TT U.K
| | - Scott G. Lamont
- Medicinal Chemistry, Research and Early DevelopmentOncology R&D, AstraZeneca Cambridge CB10 1XL UK
| | - Paul W. Davies
- Haworth Building, School of ChemistryUniversity of Birmingham, Edgbaston. Birmingham B15 2TT U.K
| |
Collapse
|
44
|
Chen JY, Selvaraju M, Lin YT, Dhole S, Lin CY, Sun CM. Molecular Iodine-Promoted [3 + 2] Oxidative Cyclization for the Synthesis of Heteroarene-Fused [1,2,4] Thiadiazoles/Selenadiazoles. J Org Chem 2020; 85:5570-5579. [PMID: 32249566 DOI: 10.1021/acs.joc.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two new classes of heteroarene-fused [1,2,4]thiadiazole and [1,2,4]selenadiazole are synthesized through the iodine-mediated [3 + 2] oxidative cyclization of 2-aminoheteroarenes and isothiocyanates/isoselenocyanates. This oxidative [3 + 2] annulation strategy is highly regiospecific to proceed a selective C-N bond formation at the endo-nitrogen of 2-aminoheteroarenes followed by an intramolecular oxidative N-S/N-Se bond formation. It is the first example of an I2-mediated oxidative nitrogen-selenium (N-Se) bond formation.
Collapse
Affiliation(s)
- Jin-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan
| | - Manikandan Selvaraju
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yen-Tzu Lin
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan
| | - Sandip Dhole
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan
| | - Chih-Yu Lin
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
45
|
Tian X, Song L, Hashmi ASK. α-Imino Gold Carbene Intermediates from Readily Accessible Sulfilimines: Intermolecular Access to Structural Diversity. Chemistry 2020; 26:3197-3204. [PMID: 31793680 PMCID: PMC7154771 DOI: 10.1002/chem.201904869] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/01/2019] [Indexed: 11/16/2022]
Abstract
Catalytic approaches to pharmaceutically important bioactive skeletons through gold carbene intermediates have experienced a dramatic development in the last decade. Although various carbene precursors continue to play an important role in heterocyclic syntheses, these reagents are associated with some drawbacks in terms of functional group tolerance, synthetic methods and safety limitations. A new generation of nitrene transfer reagents was established in 2019: the sulfilimines. These are safe, inexpensive and readily available. They can conveniently be stored and handled, and thus represent ideal reagents for the fast and modular modification of scaffolds and the preparation of libraries by intermolecular reactions of two components. Both the practical methods for synthesizing sulfilimines and the versatility of these ylidic species in gold-catalyzed preparation of structural diversity, for both heterocycles and carbocycles, will be outlined in this Concept article.
Collapse
Affiliation(s)
- Xianhai Tian
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lina Song
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
46
|
Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi ASK. Acyl Migration versus Epoxidation in Gold Catalysis: Facile, Switchable, and Atom-Economic Synthesis of Acylindoles and Quinoline Derivatives. Angew Chem Int Ed Engl 2020; 59:471-478. [PMID: 31622542 PMCID: PMC6972584 DOI: 10.1002/anie.201912334] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 12/13/2022]
Abstract
We report a switchable synthesis of acylindoles and quinoline derivatives via gold-catalyzed annulations of anthranils and ynamides. α-Imino gold carbenes, generated in situ from anthranils and an N,O-coordinated gold(III) catalyst, undergo electrophilic attack to the aryl π-bond, followed by unexpected and highly selective 1,4- or 1,3-acyl migrations to form 6-acylindoles or 5-acylindoles. With the (2-biphenyl)di-tert-butylphosphine (JohnPhos) ligand, gold(I) carbenes experienced carbene/carbonyl additions to deliver quinoline oxides. Some of these epoxides are valuable substrates for the preparation of 3-hydroxylquinolines, quinolin-3(4H)-ones, and polycyclic compounds via facile in situ rearrangements. The reaction can be efficiently conducted on a gram scale and the obtained products are valuable substrates for preparing other potentially useful compounds. A computational study explained the unexpected selectivities and the dependency of the reaction pathway on the oxidation state and ligands of gold. With gold(III) the barrier for the formation of the strained oxirane ring is too high; whereas with gold(I) this transition state becomes accessible. Furthermore, energetic barriers to migration of the substituents on the intermediate sigma-complexes support the observed substitution pattern in the final product.
Collapse
Affiliation(s)
- Xianhai Tian
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lina Song
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Kaveh Farshadfar
- Department of ChemistryIslamic Azad University, Central Tehran Branch, PoonakTehranIran
| | - Matthias Rudolph
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Oeser
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Alireza Ariafard
- Department of ChemistryIslamic Azad University, Central Tehran Branch, PoonakTehranIran
- School of Physical SciencesUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - A. Stephen K. Hashmi
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
47
|
Zhou L, Yang L, Dai S, Gao Y, Fang R, Kirillov AM, Yang L. Insight into the reaction mechanism and chemoselectivity in the cycloaddition of ynamides and isoxazoles with H2O. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01964b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and chemoselectivity in the cycloaddition of ynamides and isoxazoles have been explored by the density functional theory (DFT) in model systems composed of a Brønsted acid (HNTf2), gold(i) [IPrAuNTf2] or platinum(ii) (PtCl2/CO) catalyst.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Li Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Songshan Dai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yuanyuan Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Alexander M. Kirillov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
48
|
Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1874-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Wang Q, Rudolph M, Rominger F, Hashmi ASK. Gold‐Catalyzed Intermolecular Oxidative Diyne Cyclizations via 1,6‐Carbene Transfer. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qian Wang
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of ScienceKing Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
50
|
Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi ASK. Acyl Migration versus Epoxidation in Gold Catalysis: Facile, Switchable, and Atom‐Economic Synthesis of Acylindoles and Quinoline Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912334] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lina Song
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kaveh Farshadfar
- Department of Chemistry Islamic Azad University, Central Tehran Branch, Poonak Tehran Iran
| | - Matthias Rudolph
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Thomas Oeser
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Alireza Ariafard
- Department of Chemistry Islamic Azad University, Central Tehran Branch, Poonak Tehran Iran
- School of Physical Sciences University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australia
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|