1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Guo X, Fan A, Qi X, Liu D, Huang J, Lin W. Indoloquinazoline alkaloids suppress angiogenesis and inhibit metastasis of melanoma cells. Bioorg Chem 2023; 141:106873. [PMID: 37734192 DOI: 10.1016/j.bioorg.2023.106873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Metastasis is the leading cause of cancer-related mortality, targeting angiogenesis emerges as a therapeutic strategy for the treatment of melanoma metastasis. Discovery of new antiangiogenic compounds with specific mechanism of action is still desired. In present study, a bioassay-guidance uncovers the EtOAc extract of a marine-derived fungus Aspergillus clavutus LZD32-24 with significant inhibitory activity against the angiogenesis in Tg (fli1a: EGFP) zebrafish model. Extensive chromatographic fractionation led to the isolation of 48 indoloquinazoline alkaloids, including 21 new analogues namely clavutoines A-U (1-21). Their structures were determined by the spectroscopic data, including the ECD, single crystal X-ray diffraction and quantum chemical calculation for the configurational assignments. Among the bioactive analogues, quinadoline B (QB) showed the most efficacy to suppress the zebrafish vascular outgrowth in zebrafish embryos. QB markedly inhibited the migration, invasion and tube formation with weak cytotoxicity in human umbilical vein endothelial cells (HUVECs). Investigation of the mode of action revealed QB suppressed the ROCK/MYPT1/MLC2/coffin and FAK /Src signaling pathways, and subsequently disrupted actin cytoskeletal organization. In addition, QB reduced the number of new vessels sprouting from the ex vivo chick chorioallantoic membrane (CAM), and inhibited the metastasis of B16F10 melanoma cells in lung of C57BL/6 mice through suppressing angiogenesis. These findings suggest that QB is a potential lead for the development of new antiangiogenic agent to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
3
|
Patel KD, Gulick AM. Structural and functional insights into δ-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Commun Biol 2023; 6:982. [PMID: 37752201 PMCID: PMC10522769 DOI: 10.1038/s42003-023-05362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Cationic homo-polyamino acid (CHPA) peptides containing isopeptide bonds of diamino acids have been identified from Actinomycetes strains. However, none has been reported from other bacteria. Here, we report a δ-poly-L-ornithine synthetase from Acinetobacter baumannii, which we name PosA. Surprisingly, structural analysis of the adenylation domain and biochemical assay shows L-ornithine as the substrate for PosA. The product from the enzymatic reaction was purified and identified as poly-L-ornithine composed of 7-12 amino acid units. Chemical labeling of the polymer confirmed the isopeptide linkage of δ-poly-L-ornithine. We examine the biological activity of chemically synthesized 12-mer δ-poly-L-ornithine, illustrating that the polymer may act as an anti-fungal agent. Structures of the isolated adenylation domain from PosA are presented with several diamino acids and biochemical assays identify important substrate binding residues. Structurally-guided genome-mining led to the identification of homologs with different substrate binding residues that could activate additional substrates. A homolog from Bdellovibrionales sp. shows modest activity with L-arginine but not with any diamino acids observed to be substrates for previously examined CHPA synthetases. Our study indicates the possibility that additional CHPAs may be produced by various microbes, supporting the further exploration of uncharacterized natural products.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Ning Y, Xu Y, Jiao B, Lu X. Application of Gene Knockout and Heterologous Expression Strategy in Fungal Secondary Metabolites Biosynthesis. Mar Drugs 2022; 20:705. [PMID: 36355028 PMCID: PMC9699552 DOI: 10.3390/md20110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
The in-depth study of fungal secondary metabolites (SMs) over the past few years has led to the discovery of a vast number of novel fungal SMs, some of which possess good biological activity. However, because of the limitations of the traditional natural product mining methods, the discovery of new SMs has become increasingly difficult. In recent years, with the rapid development of gene sequencing technology and bioinformatics, new breakthroughs have been made in the study of fungal SMs, and more fungal biosynthetic gene clusters of SMs have been discovered, which shows that the fungi still have a considerable potential to produce SMs. How to study these gene clusters to obtain a large number of unknown SMs has been a research hotspot. With the continuous breakthrough of molecular biology technology, gene manipulation has reached a mature stage. Methods such as gene knockout and heterologous expression techniques have been widely used in the study of fungal SM biosynthesis and have achieved good effects. In this review, the representative studies on the biosynthesis of fungal SMs by gene knockout and heterologous expression under the fungal genome mining in the last three years were summarized. The techniques and methods used in these studies were also briefly discussed. In addition, the prospect of synthetic biology in the future under this research background was proposed.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
7
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
8
|
Abstract
Ergometrine is widely used for the treatment of excessive postpartum uterine bleeding. Claviceps paspali is a common species for industrial production of ergometrine, which is often accompanied by lysergic acid α-hydroxyethylamide (LAH) and lysergic acid amide (LAA). Currently, direct evidence on the biosynthetic mechanism of LAH and LAA from lysergic acid in C. paspali is absent, except that LAH and LAA share the common precursor with ergometrine and LAA is spontaneously transformed from LAH. A comparison of the gene clusters between C. purpurea and C. paspali showed that the latter harbored the additional easO and easP genes. Thus, the knockout of easO and easP in the species should not only improve the ergometrine production but also elucidate the function. In this study, gene knockout of C. paspali by homologous recombination yielded two mutants ∆easOhetero-1 and ∆easPhetero-34 with ergometrine titers of 1559.36 mg∙L−1 and 837.57 mg∙L−1, which were four and two times higher than that of the wild-type control, respectively. While the total titer of LAH and LAA of ∆easOhetero-1 was lower than that of the wild-type control. The Aspergillus nidulans expression system was adopted to verify the function of easO and easP. Heterologous expression in A. nidulans further demonstrated that easO, but not easP, determines the formation of LAA.
Collapse
|
9
|
Wen YH, Chen TJ, Jiang LY, Li L, Guo M, Peng Y, Chen JJ, Pei F, Yang JL, Wang RS, Gong T, Zhu P. Unusual (2 R,6 R)-bicyclo[3.1.1]heptane ring construction in fungal α- trans-bergamotene biosynthesis. iScience 2022; 25:104030. [PMID: 35345459 PMCID: PMC8956814 DOI: 10.1016/j.isci.2022.104030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Bergamotenes are bicyclo[3.1.1]heptane sesquiterpenes found abundantly in plants and fungi. Known bergamotene derivatives all possess (2S,6S)-bergamotene backbone. In this study, two (+)-α-trans-bergamotene derivatives (1 and 2) with unusual (2R,6R) configuration were isolated and elucidated from marine fungus Nectria sp. HLS206. The first (+)-α-trans-bergamotene synthase NsBERS was characterized using genome mining and heterologous expression-based strategies. Based on homology search, we characterized another (+)-α-trans-bergamotene synthase LsBERS from Lachnellula suecica and an (+)-α-bisabolol synthase BcBOS from Botrytis cinerea. We proposed that the cyclization mechanism of (+)-α-trans-bergamotene involved endo-anti cyclization of left-handed helix farnesyl pyrophosphate by (6R)-bisabolyl cation, which was supported by molecular docking. The biosynthesis-based volatiles (3-6) produced by heterologous fungal expression systems elicited significant electroantennographic responses of Helicoverpa armigera and Spodoptera frugiperda, respectively, suggesting their potential in biocontrol of these pests. This work enriches diversity of sesquiterpenoids and fungal sesquiterpene synthases, providing insight into the enzymatic mechanism of formation of enantiomeric sesquiterpenes.
Collapse
Affiliation(s)
- Yan-Hua Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Long-Yu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui-Shan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. J Fungi (Basel) 2022; 8:jof8030320. [PMID: 35330322 PMCID: PMC8948627 DOI: 10.3390/jof8030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Fungal natural products (NPs) usually possess complicated structures, exhibit satisfactory bioactivities, and are an outstanding source of drug leads, such as the cholesterol-lowering drug lovastatin and the immunosuppressive drug mycophenolic acid. The fungal NPs biosynthetic genes are always arranged within one single biosynthetic gene cluster (BGC). However, a rare but fascinating phenomenon that a crosstalk between two separate BGCs is indispensable to some fungal dimeric NPs biosynthesis has attracted increasing attention. The hybridization of two separate BGCs not only increases the structural complexity and chemical diversity of fungal NPs, but also expands the scope of bioactivities. More importantly, the underlying mechanism for this hybridization process is poorly understood and needs further exploration, especially the determination of BGCs for each building block construction and the identification of enzyme(s) catalyzing the two biosynthetic precursors coupling processes such as Diels–Alder cycloaddition and Michael addition. In this review, we summarized the fungal NPs produced by functional crosstalk of two discrete BGCs, and highlighted their biosynthetic processes, which might shed new light on genome mining for fungal NPs with unprecedented frameworks, and provide valuable insights into the investigation of mysterious biosynthetic mechanisms of fungal dimeric NPs which are constructed by collaboration of two separate BGCs.
Collapse
|
11
|
Yan D, Wang K, Bai S, Liu B, Bai J, Qi X, Hu Y. Flavin-Dependent Monooxygenase-Mediated 1,2-Oxazine Construction via Meisenheimer Rearrangement in the Biosynthesis of Paeciloxazine. J Am Chem Soc 2022; 144:4269-4276. [PMID: 35192348 DOI: 10.1021/jacs.2c00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The [1,2]-Meisenheimer rearrangement is well known as the [1,2]-migration of an O-substituted hydroxylamine from a tertiary amine N-oxide, and it is frequently employed in organic synthesis to enforce adjacent carbon oxidation or install a 1,2-oxazine core, which is a prevalent structural feature and pharmacophore of many bioactive natural products. Although the [1,2]-Meisenheimer rearrangement was proposed to occur in the biosynthesis of a number of 1,2-oxazine-containing natural products, it has never been proved biosynthetically. Here, we identified the biosynthetic gene cluster of an insecticidal natural product, paeciloxazine (1), from Penicillium janthinellum and characterized a flavin-dependent monooxygenase, PaxA, as the first example that mediates the formation of a 1,2-oxazine moiety via Meisenheimer rearrangement. In vitro biochemical assays, site-directed mutations, docking and molecular dynamics simulations, and density functional theory calculations support the mechanism that PaxA first catalyzes N-oxidation to form an N-oxide intermediate, which undergoes [1,2]-Meisenheimer rearrangement with the assistance of an amino acid with proton transfer property. This study expands the repertoire of rearrangement reactions during the biosynthesis of natural products and provides a new strategy for discovering natural products with N-O tethers by genome mining.
Collapse
Affiliation(s)
- Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kunya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NHC Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Jaffett VA, Fitz-Henley JN, Khalifa MM, Guzei IA, Golden JE. Diastereoselective, Multicomponent Synthesis of Pyrrolopyrazinoquinazolinones via a Tandem Quinazolinone Rearrangement/Intramolecular Ring Closure of Tautomeric ( Z)-Benzamidines. Org Lett 2021; 23:5799-5803. [PMID: 34251832 PMCID: PMC8448149 DOI: 10.1021/acs.orglett.1c01955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An expedient route to enantiopure, diastereomeric pyrrolopyrazinoquinazolinones was developed following the discovery of a domino quinazolinone rearrangement-intramolecular cyclization of N-H benzamidines. A Ugi-Mumm-Staudinger sequence employing an optically pure proline derivative gave quinazolinones that, upon N-Boc deprotection, rearranged to tautomeric Z-benzamidines. Subsequent spontaneous cyclization afforded 15 diastereomeric pyrazinoquinazolinone pairs in up to 83% overall yield and 89:11 d.r which were separated easily via routine chromatographic purification-the only one required in the entire process.
Collapse
Affiliation(s)
- Victor A. Jaffett
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, Unites States
| | - Jhewelle N. Fitz-Henley
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, Unites States
| | - Muhammad M. Khalifa
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, Unites States
| | - Ilia A. Guzei
- Molecular Structure Laboratory, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, Unites States
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, Unites States
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, Unites States
| |
Collapse
|
13
|
Zheng L, Wang H, Ludwig-Radtke L, Li SM. Oxepin Formation in Fungi Implies Specific and Stereoselective Ring Expansion. Org Lett 2021; 23:2024-2028. [PMID: 33656898 DOI: 10.1021/acs.orglett.1c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxepinamides are fungal oxepine-pyrimidinone-ketopiperazine derivatives. In this study, we elucidated the biosynthetic pathway of oxepinamide D in Aspergillus ustus by gene deletion, heterologous expression, feeding experiments, and enzyme assays. We demonstrated that the cytochrome P450 enzymes catalyzed highly specific and stereoselective oxepin ring formation.
Collapse
Affiliation(s)
- Liujuan Zheng
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Haowen Wang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Lena Ludwig-Radtke
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
14
|
Gene mining and efficient biosynthesis of a fungal peptidyl alkaloid. CHINESE HERBAL MEDICINES 2021; 13:98-104. [PMID: 36117764 PMCID: PMC9476675 DOI: 10.1016/j.chmed.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 11/24/2022] Open
Abstract
Objective Peptidyl alkaloids, a series of important natural products can be assembled by fungal non-ribosomal peptide synthetases (NRPSs). However, many of the NRPSs associated gene clusters are silent under laboratory conditions, and the traditional chemical separation yields are low. In this study, we aim to discovery and efficiently prepare fungal peptidyl alkaloids assembled by fungal NRPSs. Methods Bioinformatics analysis of gene cluster containing NRPSs from the genome of Penicillium thymicola, and heterologous expression of the putative gene cluster in Aspergillus nidulans were performed. Isolation, structural identification, and biological evaluation of the product from heterologous expression were carried out. Results The putative tri-modular NRPS AncA was heterologous-expressed in A. nidulans to give anacine (1) with high yield, which showed moderate and selective cytotoxic activity against A549 cell line. Conclusion Heterologous expression in A. nidulans is an efficient strategy for mining fungal peptidyl alkaloids.
Collapse
|
15
|
Oxepinamide F biosynthesis involves enzymatic D-aminoacyl epimerization, 3H-oxepin formation, and hydroxylation induced double bond migration. Nat Commun 2020; 11:4914. [PMID: 33004788 PMCID: PMC7530659 DOI: 10.1038/s41467-020-18713-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Oxepinamides are derivatives of anthranilyl-containing tripeptides and share an oxepin ring and a fused pyrimidinone moiety. To the best of our knowledge, no studies have been reported on the elucidation of an oxepinamide biosynthetic pathway and conversion of a quinazolinone to a pyrimidinone-fused 1H-oxepin framework by a cytochrome P450 enzyme in fungal natural product biosynthesis. Here we report the isolation of oxepinamide F from Aspergillus ustus and identification of its biosynthetic pathway by gene deletion, heterologous expression, feeding experiments, and enzyme assays. The nonribosomal peptide synthase (NRPS) OpaA assembles the quinazolinone core with D-Phe incorporation. The cytochrome P450 enzyme OpaB catalyzes alone the oxepin ring formation. The flavoenzyme OpaC installs subsequently one hydroxyl group at the oxepin ring, accompanied by double bond migration. The epimerase OpaE changes the D-Phe residue back to L-form, which is essential for the final methylation by OpaF.
Collapse
|
16
|
Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides. Metabolites 2020; 10:metabo10060246. [PMID: 32549308 PMCID: PMC7344746 DOI: 10.3390/metabo10060246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed.
Collapse
|
17
|
Zaman KHAU, Hu Z, Wu X, Cao S. Tryptoquivalines W and X, two new compounds from a Hawaiian fungal strain and their biological activities. Tetrahedron Lett 2020; 61:151730. [PMID: 33281236 PMCID: PMC7709959 DOI: 10.1016/j.tetlet.2020.151730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two new compounds tryptoquivalines W (1) and X (2) were isolated from a Hawaiian soil fungal strain Aspergillus terreus FS107. The soil sample was collected on the top of Mauna Kea, the tallest mountain in Hawaii. The structures of compounds 1 and 2 were determined on the basis of MS spectroscopic and NMR analysis, and NMR calculation. The absolute configuration (AC) was determined by ECD calculations. Compounds 4 and 5 showed inhibition against NF-κB with IC50 values of 3.45 and 6.76 μM, respectively.
Collapse
Affiliation(s)
- KH Ahammad Uz Zaman
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, HI 96720, United States
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, People’s Republic of China
| | - Xiaohua Wu
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, HI 96720, United States
| | - Shugeng Cao
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, HI 96720, United States
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| |
Collapse
|
18
|
Lin S, Yu H, Yang B, Li F, Chen X, Li H, Zhang S, Wang J, Hu Y, Hu Z, Zhang Y. Reisolation and Configurational Reinvestigation of Cottoquinazolines E-G from an Arthropod-Derived Strain of the Fungus Neosartorya fischeri. JOURNAL OF NATURAL PRODUCTS 2020; 83:169-173. [PMID: 31920082 DOI: 10.1021/acs.jnatprod.9b01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reported fumiquinazoline-related alkaloids cottoquinazolines E-G (1-3) were reisolated from solid cultures of the fungus Neosartorya fischeri, which was isolated from the medicinal arthropod Cryptotympana atrata. The unresolved issues regarding the absolute configurations (for cottoquinazolines E and F) prompted a reinvestigation of the configurations for all three compounds, as enabled by extensive spectroscopic methods, comparisons of experimental electronic circular dichroism data, and X-ray crystallography. In addition, cottoquinazoline F (2) showed significant antibacterial activity against ESBL-producing Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecalis with MIC values of 8, 32, 32, and 16 μg/mL, respectively.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huimin Yu
- Department of Periodontics , Stomatological Hospital of Southern Medical University, Guangdong Provincial Stomatological Hospital , Guangzhou 510280 , People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
19
|
Chen Q, Gao J, Jamieson C, Liu J, Ohashi M, Bai J, Yan D, Liu B, Che Y, Wang Y, Houk KN, Hu Y. Enzymatic Intermolecular Hetero-Diels-Alder Reaction in the Biosynthesis of Tropolonic Sesquiterpenes. J Am Chem Soc 2019; 141:14052-14056. [PMID: 31461283 PMCID: PMC6944466 DOI: 10.1021/jacs.9b06592] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diels-Alder reactions are among the most powerful synthetic transformations to construct complex natural products. Despite that increasing of enzymatic intramolecular Diels-Alder reactions have been discovered, natural intermolecular Diels-Alderases are rarely described. Here, we report an intermolecular hetero-Diels-Alder reaction in the biosynthesis of tropolonic sesquiterpenes and functionally characterize EupfF as the first fungal intermolecular hetero-Diels-Alderase. We demonstrate that EupfF catalyzed the dehydration of a hydroxymethyl-containing tropolone (5) to generate a reactive tropolone o-quinone methide (6) and might further stereoselectively control the subsequent intermolecular hetero-Diels-Alder reaction with (1E,4E,8Z)-humulenol (8) to produce enantiomerically pure neosetophomone B (1). Our results reveal the biosynthetic pathway of 1 and expand the repertoire of activities of Diels-Alder cyclases.
Collapse
Affiliation(s)
- Qibin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Jie Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Daojian Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|