1
|
Martínez-Pascual R, Valera-Zaragoza M, Fernández-Bolaños JG, López Ó. Exploring the Chemistry and Applications of Thio-, Seleno-, and Tellurosugars. Molecules 2025; 30:2053. [PMID: 40363858 PMCID: PMC12073459 DOI: 10.3390/molecules30092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Given the crucial roles of carbohydrates in energy supply, biochemical processes, signaling events and the pathogenesis of several diseases, the development of carbohydrate analogues, called glycomimetics, is a key research area in Glycobiology, Pharmacology, and Medicinal Chemistry. Among the many structural transformations explored, the replacement of endo- and exocyclic oxygen atoms by carbon (carbasugars) or heteroatoms, such as nitrogen (aza- and iminosugars), phosphorous (phosphasugars), sulfur (thiosugars), selenium (selenosugars) or tellurium (tellurosugars) have garnered significant attention. These isosteric substitutions can modulate the carbohydrate bioavailability, stability, and bioactivity, while introducing new properties, such as redox activity, interactions with pathological lectins and enzymes, or cytotoxic effects. In this manuscript we have focused on three major families of glycomimetics: thio-, seleno-, and tellurosugars. We provide a comprehensive review of the most relevant synthetic pathways leading to substitutions primarily at the endocyclic and glycosidic positions. The scope includes metal-catalyzed reactions, organocatalysis, electro- and photochemical transformations, free-radical processes, and automated syntheses. Additionally, mechanistic insights, stereoselectivity, and biological properties are also discussed. The structural diversity and promising bioactivities of these glycomimetics underscore their significance in this research area.
Collapse
Affiliation(s)
- Roxana Martínez-Pascual
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - Mario Valera-Zaragoza
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| |
Collapse
|
2
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Romanò C, Bengtsson D, Infantino AS, Oscarson S. Synthesis of fluoro- and seleno-containing D-lactose and D-galactose analogues. Org Biomol Chem 2023; 21:2545-2555. [PMID: 36877217 DOI: 10.1039/d2ob02299k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Synthetic deoxy-fluoro-carbohydrate derivatives and seleno-sugars are useful tools in protein-carbohydrate interaction studies using nuclear magnetic resonance spectroscopy because of the presence of the 19F and 77Se reporter nuclei. Seven saccharides containing both these atoms have been synthesized, three monosaccharides, methyl 6-deoxy-6-fluoro-1-seleno-β-D-galactopyranoside (1) and methyl 2-deoxy-2-fluoro-1-seleno-α/β-D-galactopyranoside (2α and 2β), and four disaccharides, methyl 4-O-(β-D-galactopyranosyl)-2-deoxy-2-fluoro-1-seleno-β-D-glucopyranoside (3), methyl 4-Se-(β-D-galactopyranosyl)-2-deoxy-2-fluoro-4-seleno-β-D-glucopyranoside (4), and methyl 4-Se-(2-deoxy-2-fluoro-α/β-D-galactopyranosyl)-4-seleno-β-D-glucopyranoside (5α and 5β), the three latter compounds with an interglycosidic selenium atom. Selenoglycosides 1 and 3 were obtained from the corresponding bromo sugar by treatment with dimethyl selenide and a reducing agent, while compounds 2α/2β, 4, and 5α/5β were synthesized by the coupling of a D-galactosyl selenolate, obtained in situ from the corresponding isoselenouronium salt, with either methyl iodide or a 4-O-trifluoromethanesulfonyl D-galactosyl moiety. While benzyl ether protecting groups were found to be incompatible with the selenide linkage during deprotection, a change to acetyl esters afforded 4 in a 17% overall yield and over 9 steps from peracetylated D-galactosyl bromide. The synthesis of 5 was performed similarly, but the 2-fluoro substituent led to reduced stereoselectivity in the formation of the isoselenouronium salt (α/β ∼ 1 : 2.3). However, the β-anomer of the uronium salt could be obtained almost pure (∼98%) by precipitation from the reaction mixture. The following displacement reaction occurred without anomerisation, affording, after deacetylation, pure 5β.
Collapse
Affiliation(s)
- Cecilia Romanò
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Angela Simona Infantino
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Yamaguchi Y, Yamaguchi T, Kato K. Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR. ADVANCES IN NEUROBIOLOGY 2023; 29:163-184. [PMID: 36255675 DOI: 10.1007/978-3-031-12390-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbohydrate chains play critical roles in cellular recognition and subsequent signal transduction in the nervous system. Furthermore, gangliosides are targets for various amyloidogenic proteins associated with neurodegenerative disorders. To better understand the molecular mechanisms underlying these biological phenomena, atomic views are essential to delineate dynamic biomolecular interactions. Nuclear magnetic resonance (NMR) spectroscopy provides powerful tools for studying structures, dynamics, and interactions of biomolecules at the atomic level. This chapter describes the basics of solution NMR techniques and their applications to the analysis of 3D structures and interactions of glycoconjugates in the nervous system.
Collapse
Affiliation(s)
- Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan.
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
6
|
Raics M, Balogh ÁK, Kishor C, Timári I, Medrano FJ, Romero A, Go RM, Blanchard H, Szilágyi L, E. Kövér K, Fehér K. Investigation of the Molecular Details of the Interactions of Selenoglycosides and Human Galectin-3. Int J Mol Sci 2022; 23:2494. [PMID: 35269646 PMCID: PMC8910297 DOI: 10.3390/ijms23052494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022] Open
Abstract
Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(β-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(β-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.
Collapse
Affiliation(s)
- Mária Raics
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Álex Kálmán Balogh
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Chandan Kishor
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Francisco J. Medrano
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Antonio Romero
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Rob Marc Go
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Katalin E. Kövér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Fehér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| |
Collapse
|
7
|
Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. MEMBRANES 2021; 11:membranes11110823. [PMID: 34832053 PMCID: PMC8625833 DOI: 10.3390/membranes11110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.
Collapse
|
8
|
Fukuo H, Suzuki T, Shimabukuro J, Komura N, Tanaka H, Imamura A, Ishida H, Ando H. Synthesis of Diverse Seleno‐Glycolipids
via
the Transacetalization of Selenoacetals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hayata Fukuo
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Tatsuya Suzuki
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Current address: Faculty of Pharmaceutical Sciences Aomori University 2-3-1 Koubata Aomori-shi Aomori 030-0943 Japan
| | - Junpei Shimabukuro
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hide‐Nori Tanaka
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
9
|
Cañada FJ, Canales Á, Valverde P, de Toro BF, Martínez-Orts M, Phillips PO, Pereda A. Conformational and Structural characterization of carbohydrates and their interactions studied by NMR. Curr Med Chem 2021; 29:1147-1172. [PMID: 34225601 DOI: 10.2174/0929867328666210705154046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in many essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C boosts the resolution and detail that analyzed glycan structures can reach. In turn, structural information derived from NMR, complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional long-range observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.
Collapse
Affiliation(s)
- Francisco Javier Cañada
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ángeles Canales
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Pablo Valverde
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Beatriz Fernández de Toro
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Mónica Martínez-Orts
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Paola Oquist Phillips
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Amaia Pereda
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
10
|
Oroz P, Navo CD, Avenoza A, Busto JH, Corzana F, Jiménez-Osés G, Peregrina JM. Toward Enantiomerically Pure β-Seleno-α-amino Acids via Stereoselective Se-Michael Additions to Chiral Dehydroalanines. Org Lett 2021; 23:1955-1959. [PMID: 33373248 DOI: 10.1021/acs.orglett.0c03832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first totally chemo- and diastereoselective 1,4-conjugate additions of Se-nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. The methodology is simple and does not require any catalyst, providing exceptional yields at room temperature, and involves the treatment of the corresponding diselenide compound with NaBH4 in the presence of the Dha. These Se-Michael additions provide an excellent channel for the synthesis of enantiomerically pure selenocysteine (Sec) derivatives, which pose high potential for chemical biology applications.
Collapse
Affiliation(s)
- Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
11
|
Manna T, Misra AK. On-water synthesis of glycosyl selenocyanate derivatives and their application in the metal free organocatalytic preparation of nonglycosidic selenium linked pseudodisaccharide derivatives. RSC Adv 2021; 11:10902-10911. [PMID: 35423588 PMCID: PMC8695869 DOI: 10.1039/d1ra00711d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Glycosyl selenocyanate derivatives were prepared in very good yield by the treatment of glycosyl halide or triflate derivatives with potassium selenocyanate in water. A variety of selenium linked pseudodisaccharide derivatives were prepared in excellent yield using glycosyl selenocyanates as stable building blocks in the presence of hydrazine hydrate under metal-free organocatalytic reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| |
Collapse
|
12
|
Iadonisi A, Traboni S, Capasso D, Bedini E, Cuomo S, Di Gaetano S, Vessella G. Switchable synthesis of glycosyl selenides or diselenides with direct use of selenium as the selenating agent. Org Chem Front 2021. [DOI: 10.1039/d1qo00045d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemoselective synthesis of either diglycosyl selenides or diselenides. Elementary selenium as the selenating agent.
Collapse
Affiliation(s)
- Alfonso Iadonisi
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Serena Traboni
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Domenica Capasso
- Department of Pharmacy
- University of Naples Federico II
- 80134 Naples
- Italy
| | - Emiliano Bedini
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Sabrina Cuomo
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | | | - Giulia Vessella
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| |
Collapse
|
13
|
Zhu M, Alami M, Messaoudi S. Room-Temperature Pd-Catalyzed Synthesis of 1-(Hetero)aryl Selenoglycosides. Org Lett 2020; 22:6584-6589. [PMID: 32806176 DOI: 10.1021/acs.orglett.0c02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A general protocol for functionalization of an anomeric selonate anion at room temperature has been reported. By using the PdG3 XantPhos catalyst, the cross-coupling between the in situ-generated glycosyl selenolate and a broad range of (hetero)aryl and alkenyl iodides furnished a series of functionalized selenoglycosides in excellent yields with perfect control of the anomeric configuration.
Collapse
Affiliation(s)
- Mingxiang Zhu
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|