1
|
Liang X, Su W, Zhang W, Wang S, Wu X, Li X, Gao W. An overview of the research progress on Aconitum carmichaelii Debx.:active compounds, pharmacology, toxicity, detoxification, and applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118832. [PMID: 39306209 DOI: 10.1016/j.jep.2024.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. is the most widely distributed species of Aconitum plants in China and has a long history of medicinal use. Because of its toxicity, A. carmichaelii is classified as lower class in the Shennong Bencao Jing (Shennong's Classic of Materia Medica). According to the theory of Chinese medicine, the roots can be used to revive yang for resuscitation, dispel wind, remove dampness, and relieve pain. AIMS OF THE REVIEW This review focuses on summarizing the latest reports on the components, pharmacology, toxicity, detoxification mechanism and application of A. carmichaelii. It aims to provide ideas for in-depth research on activity mechanism of A. carmichaelii and expanding the value of exploitation and utilization. MATERIALS AND METHODS Information was collected from the following online scientific databases: PubMed, Web of Science, Wiley Online Library, SciFinder, Scopus, PubChem, China National Knowledge Internet (CNKI), etc. Additional data were obtained from other Chinese medicine books. RESULTS In this review, 224 compounds were categorized and new compounds discovered in the last five years were highlighted. The main components of A. carmichaelii are C19-diterpene alkaloids(C19-DAs), among which diester-type aconitine is the most toxic and also the main active ingredient, while monoester diterpene alkaloids (MDAs) and aminol diterpene alkaloids (ADAs) are greatly toxicity reduced due to the loss of ester bond. Heating and compatibility are the means to increase the efficiency and reduce the toxicity of A. carmichaelii. In addition, it also contains abundant C20-diterpene alkaloids (C20-DAs). Like C19-DAs, these compounds also have cardiotonic, anticancer, anti-inflammatory and analgesic pharmacological effects, but their toxicity is weaker. The above-ground part contains not only a variety of MDAs and ADAs, but also contains abundant non-diterpenoid alkaloids and active polysaccharides. In addition to pharmacological effects, we further summarized the mechanisms of cardiotoxicity, neurotoxicity and other toxicity of A. carmichaelii. What's more, the application prospects are also discussed. Polysaccharides and diterpenoid alkaloids in A. carmichaelii and related traditional prescriptions have great promising prospects for the development of new drugs. CONCLUSION A. carmichaelii has rich alkaloids and polysaccharides, but the new compounds discovered in recent years are only in the activity screening stage. The toxic differences between C19- and C20- DAs and the dose that affect toxicity of A. carmichaelii are still not clear. The non-traditional medicinal parts, such as stems and leaves, show great potential for development and utilization. More extensive and in-depth exploration of low-toxic active compounds, as well as the mechanism of efficacy-enhancement and toxicity-attenuation, will help A. carmichaelii to be better and safer used for clinical.
Collapse
Affiliation(s)
- Xv Liang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Wenya Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Weimei Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Shirui Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xipei Wu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Zheng J, Jiang H, Yan Y, Yin T. Overview of the chemistry and biological activities of natural atisine-type diterpenoid alkaloids. RSC Adv 2024; 14:22882-22893. [PMID: 39040692 PMCID: PMC11261430 DOI: 10.1039/d4ra03305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Atisine-type C20-diterpenoid alkaloids (DAs) are a very important class of diterpenoid alkaloids, which play an important role in the biosynthesis of DAs. To date, 87 atisine-type DAs and 11 bis-DAs containing an atisine unit have been reported from five genera in two families. The genus Spiraea in Rosaceae family could be regarded as the richest resource for atisine-type DAs, followed by the genera Delphinium and Aconitum in the Ranunculaceae family. Among the reported atisine-type DAs, several possess unprecedented skeletons. Natural atisine-type DAs have a wide range of biological activities, including antitumor, antiplatelet aggregation, biological control, and anti-inflammatory, analgesic, antiarrhythmic, and cholinesterase inhibitory effects, which are closely related to their structures. In particular, the antiparasitic effect of atisine-type DAs is more prominent than that of other types of DAs, which highlights their potential in antiparasite drug discovery. In summary, the high chemical and biological diversity of atisine-type DAs indicates their great potential as a vast resource for drug discovery.
Collapse
Affiliation(s)
- Jiaqi Zheng
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Hongjun Jiang
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Yuanfeng Yan
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Tianpeng Yin
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| |
Collapse
|
3
|
Wang X, Xin J, Sun L, Sun Y, Xu Y, Zhao F, Niu C, Liu S. Exploring the Biomedical Potential of Terpenoid Alkaloids: Sources, Structures, and Activities. Molecules 2024; 29:1968. [PMID: 38731459 PMCID: PMC11085545 DOI: 10.3390/molecules29091968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through β-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area.
Collapse
Affiliation(s)
- Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| |
Collapse
|
4
|
Yang HY, Wen ML, Fu SJ, Lu YB, Liu RL, Gao K, Chen JJ. ent-Atisane Diterpenoids from Euphorbia helioscopia and Their Anti-inflammatory Activities. Chem Biodivers 2023; 20:e202301454. [PMID: 37874779 DOI: 10.1002/cbdv.202301454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Phytochemical investigation on the anti-inflammatory fraction extracted from the whole plant of Euphorbia helioscopia L. led to the isolation of three new ent-atisane diterpenoids (1-3) and five known analogues (4-8). The structures and absolute configurations of the new compounds were elucidated by comprehensive analysis of the NMR, MS, IR, ECD, and X-ray crystallography. It is worth mentioning that compound 3 belongs to a rare class of ent-atisane diterpenoid featuring a hydroxyl group at C-9. Bioactivity investigation showed that compounds 4, 7, and 8 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Mei-Lian Wen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Shi-Jing Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yu-Bo Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ru-Ling Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
5
|
Wei J, Li Z, Shan M, Wu F, Li L, Ma Y, Wu J, Li X, Liu Y, Hu Z, Zhang Y, Wu Z. Discovery of two ent-atisane diterpenoid lactones with AChE inhibitory activity from the roots of Euphorbia fischeriana. Org Biomol Chem 2023; 21:6949-6955. [PMID: 37581482 DOI: 10.1039/d3ob01007d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Euphorlactone A (1), a rare rearranged ent-atisane norditerpenoid with an undescribed 3-nor-2,4-olide-ent-atisane scaffold, and euphorlactone B (2), a new ent-atisane diterpenoid with an unprecedented seven-membered lactone ring C, were isolated from the roots of Euphorbia fischeriana. Their planar structures with absolute configurations were extensively elucidated by analysis of 1D and 2D NMR data, electronic circular dichroism (ECD) calculations, Rh2(OCOCF3)4-induced ECD curves, and single-crystal X-ray diffraction. Euphorlactone A (ELA) showed a remarkable AChE (acetylcholinesterase) inhibitory activity (IC50 = 2.13 ± 0.06 μM and Ki = 0.058 μM), which was five times stronger than that of the positive control (rivastigmine, IC50 = 12.46 ± 0.82 μM), and further in vitro enzyme inhibition kinetic analysis and molecular docking studies were performed to investigate the AChE inhibitory mechanism.
Collapse
Affiliation(s)
- Jiangchun Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo 315800, Zhejiang Province, People's Republic of China
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Zhiyue Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo 315800, Zhejiang Province, People's Republic of China
| | - Min Shan
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100007, People's Republic of China
| | - Fengzhi Wu
- Beijing University of Chinese Medicine, Beijing 100105, People's Republic of China
| | - Limin Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
| | - Yucui Ma
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
| | - Junhong Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
| | - Xinping Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
| | - Yaqian Liu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong Province, People's Republic of China.
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo 315800, Zhejiang Province, People's Republic of China
| |
Collapse
|
6
|
Salehi A, Ghanadian M, Zolfaghari B, Jassbi AR, Fattahian M, Reisi P, Csupor D, Khan IA, Ali Z. Neuropharmacological Potential of Diterpenoid Alkaloids. Pharmaceuticals (Basel) 2023; 16:ph16050747. [PMID: 37242531 DOI: 10.3390/ph16050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the β-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Maryam Fattahian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Dezső Csupor
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
7
|
He G, Wang X, Liu W, Li Y, Shao Y, Liu W, Liang X, Bao X. Chemical constituents, pharmacological effects, toxicology, processing and compatibility of Fuzi (lateral root of Aconitum carmichaelii Debx): A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116160. [PMID: 36773791 DOI: 10.1016/j.jep.2023.116160] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lateral root of Aconitum carmichaelii Debx is known as Fuzi in Chinese. It is traditionally valued and used for dispelling cold, relieving pain effects, restoring 'Yang,' and treating shock despite its high toxicity. This review aims to provide comprehensive information on the chemical composition, pharmacological research, preparation, and compatibility of Fuzi to help reduce its toxicity and increase its efficiency, based on the scientific literature. In addition, this review will establish a new foundation for further studies on Fuzi. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS Fuzi extracts contain diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloids types, and have various pharmacological activities, such as strong heart effect, effect on blood vessels, and antidepressant, anti-diabetes, anti-inflammatory, pain-relieving, antitumor, immunomodulatory, and other therapeutic effects. However, these extracts can also lead to various toxicities such as cardiotoxicity, neurotoxicity, reproductive toxicity, hepatotoxicity, and embryonic toxicity. In vivo and in vitro experiments have demonstrated that different processing methods and suitable compatibility with other herbs can effectively reduce the toxicities and increase the efficiency of Fuzi. CONCLUSION The therapeutic potential of Fuzi has been demonstrated in conditions, such as heart failure, various pains, inflammation, and tumors, which is attributed to the diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloid types. In contrast, they are also toxic components. Proper processing and suitable compatibility can effectively reduce toxicity and increase the efficiency of Fuzi. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Deng M, Pu Y, Wan Z, Xu J, Huang S, Xie J, Zhou X. Nine undescribed oxidized ergosterols from the endophytic fungus Penicillium herquei and their cytotoxic activity. PHYTOCHEMISTRY 2023; 212:113716. [PMID: 37156435 DOI: 10.1016/j.phytochem.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
A chemical investigation of the EtOAc extract of the endophytic fungus Penicillium herquei led to the isolation of nine undescribed oxidized ergosterols, penicisterols A-I (1-9), along with ten known analogs (10-19). Their structures and absolute configurations were elucidated by a combination of spectroscopic data analysis, quantum-chemical electronic circular dichroism (ECD) calculations and comparisons, [Rh2(OCOCF3)4]-induced ECD experiments, DFT-calculated 13C chemical shifts and DP4+ probability analysis. Compound 1 was a rare example of ergosterol in which the bond between C-8 and C-9 is cleaved to form an enol ether. Moreover, compound 2 possessed a rare (2,5-dioxo-4-imidazolidinyl)-carbamic acid ester group substituted at C-3. All undescribed oxidized ergosterols (1-9) were evaluated for their cytotoxic activity against five cancer cell lines including 4T1 (mouse breast carcinoma), A549 (human pulmonary carcinoma), HCT-116 (human colorectal carcinoma), HeLa (human cervical carcinoma) and Hepg2 (human hepatoma carcinoma) cells. Compounds 2 and 3 displayed moderate cytotoxic activity against 4T1, A549 and HeLa cells, with IC50 values ranging from 17.22 to 31.35 μM.
Collapse
Affiliation(s)
- Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Yangli Pu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Zhenling Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jinbo Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China.
| |
Collapse
|
9
|
Wei JC, Gao YN, Huang HH, Zhang XY, Liu XL, Gao XX, Li N, Zhao Y, Wang AH, Jia JM. Euphorfinoids A and B, a pair of ent-atisane diterpenoid epimers from the roots of Euphorbia fischeriana, and their bioactivities. Nat Prod Res 2023; 37:1300-1309. [PMID: 34758696 DOI: 10.1080/14786419.2021.2003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Euphorfinoids A and B (1 and 2), a pair of ent-atisane diterpenoid epimers with a vicinal 2,3-diol moiety, together with four known analogues (3-6), were isolated from the roots of wild Euphorbia fischeriana. Their structures were elucidated by spectroscopic analysis, including extensive NMR, HR-ESIMS, NMR calculations, X-ray diffraction, and comparison with structurally related known analogues. Our bioassays have established that compound 1 displayed moderate anti-proliferative effects on Hcc1806 cell line with IC50 15.53 ± 0.21 μM, and compound 5 showed remarkable inhibitory effects against AChE with IC50 32.56 ± 2.74 μM by an in vitro screened experiment.
Collapse
Affiliation(s)
- Jiang-Chun Wei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu-Ning Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Hui-Hui Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiao-Yu Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xuan-Li Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiao-Xu Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Na Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yue Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
(+)/(-)-Yanhusamides A-C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharm Sin B 2023; 13:754-764. [PMID: 36873186 PMCID: PMC9979263 DOI: 10.1016/j.apsb.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A chemical investigation on the aqueous extract of Corydalis yanhusuo tubers led to the isolation and structural elucidation of three pairs of trace enantiomeric hetero-dimeric alkaloids, (+)/(-)-yanhusamides A-C (1-3), featuring an unprecedented 3,8-diazatricylco[5.2.2.02,6]undecane-8,10-diene bridged system. Their structures were exhaustively characterized by X-ray diffraction, comprehensive spectroscopic data analysis, and computational methods. Guided by the hypothetical biosynthetic pathway for 1-3, a gram-scale biomimetic synthesis of (±)-1 was achieved in 3 steps using photoenolization/Diels-Alder (PEDA) [4+2] cycloaddition. Compounds 1‒3 exhibited potent inhibition of NO production induced by LPS in RAW264.7 macrophages. The in vivo assay showed that oral administration of 30 mg/kg of (±)-1 attenuated the severity of rat adjuvant-induced arthritis (AIA). Additionally, (±)-1 induced a dose-dependent antinociceptive effect in the acetic acid-induced mice writhing assay.
Collapse
|
11
|
Wang M, Hu WJ, Zhou X, Yu K, Wang Y, Yang BY, Kuang HX. Ethnopharmacological use, pharmacology, toxicology, phytochemistry, and progress in Chinese crude drug processing of the lateral root of Aconitum carmichaelii Debeaux. (Fuzi): A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115838. [PMID: 36257343 DOI: 10.1016/j.jep.2022.115838] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lateral root of Aconitum carmichaelii Debeaux. (also known as Fuzi in Chinese) is a toxic Chinese medicine but widely used in clinical practice with remarkable effects. It is specifically used to treat cardiovascular diseases, rheumatoid arthritis, and other diseases, in Korea, Japan, and India. AIM OF THIS REVIEW This study aimed to summarize and discuss the effects of drug processing on toxicity, chemical composition, and pharmacology of the lateral root of Aconitum carmichaelii Debeaux. This review could provide feasible insights for further studies. MATERIALS AND METHODS Relevant information on phytochemistry, pharmacology, and toxicology of Fuzi was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and CNKI. RESULTS More than 100 chemical compounds, including alkaloids, flavonoids, and polysaccharides were revealed. Modern pharmacological studies show that these chemical components have good effects on anti-inflammatory, anti-tumor, anti-aging, treatment of cardiovascular diseases, and improving immunity. Di-ester alkaloids are the main source of Fuzi toxicity. Increasing studies have shown that Fuzi can induce multiple organ damage, especially cardiotoxicity and neurotoxicity. At present, most of the Fuzi used in clinical practice are processed. The processing affects the chemical structure, pharmacology, and toxicology of Fuzi. Moreover, different processing methods have different effects on Fuzi. CONCLUSIONS This review analyzed the effects of Fuzi processing methods on its toxicity and efficiency. The lateral roots of aconite are the known medicinal part of Fuzi; however, the aerial parts of aconite are understudied and require further research to expand its medicinal potential. Processing and compatibility are the primary means to reduce Fuzi toxicity. Nevertheless, establishing a reasonable unified safe dose range requires further discussion.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Kuo Yu
- Beidahuang Industry Group General Hospital, Harbin, 150000, China
| | - Yan Wang
- Beidahuang Industry Group General Hospital, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
12
|
Yu Y, Yao C, Wei W, Li H, Huang Y, Yao S, Qu H, Chen Q, Mei Q, Wu W, Guo DA. Integration of offline two-dimensional chromatography and mass defect filtering-based precursor ion list data acquisition for targeted characterization of diterpenoid alkaloids in the lateral roots of Aconitum carmichaelii. J Chromatogr A 2022; 1684:463554. [DOI: 10.1016/j.chroma.2022.463554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
|
13
|
Yu W, Fu C, Zhou H, Liu G, Zheng J, Liu H, Li M, Shen A, Liu Y, Liang X. Integrated strategy for identifying isoflavones in Belamcandae Rhizoma based on the combination of mass defect filtering and neutral-loss-triggered multistage fragmentation. J Chromatogr A 2022; 1679:463379. [DOI: 10.1016/j.chroma.2022.463379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
|
14
|
Zhang J, Lei X, Wei Y, Liu H, Guo Q, Zhang T, Shi J. Two unique C21-diterpenoid alkaloids from Aconitum carmichaelii. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Liu XY, Ke BW, Qin Y, Wang FP. The diterpenoid alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 87:1-360. [PMID: 35168778 DOI: 10.1016/bs.alkal.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diterpenoid alkaloids are a family of extremely important natural products that have long been a research hotspot due to their myriad of intricate structures and diverse biological properties. This chapter systematically summarizes the past 11 years (2009-2019) of studies on the diterpenoid alkaloids, including the "so-called" atypical ones, covering the classification and biogenetic relationships, phytochemistry together with 444 new alkaloids covering 32 novel skeletons and the corrected structures, chemical reactions including conversion toward toxoids, synthetic studies, as well as biological activities. It should be noted that the synthetic studies, especially the total syntheses of various diterpenoid alkaloids, are for the first time reviewed in this treatise. This chapter, in combination with our four previous reviews in volumes 42, 59, 67, and 69, will present to the readers a more completed and updated profile of the diterpenoid alkaloids.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bo-Wen Ke
- West China Hospital, Sichuan University, Chengdu, China
| | - Yong Qin
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Feng-Peng Wang
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Yin T, Zhang H, Zhang W, Jiang Z. Chemistry and biological activities of hetisine-type diterpenoid alkaloids. RSC Adv 2021; 11:36023-36033. [PMID: 35492752 PMCID: PMC9043348 DOI: 10.1039/d1ra07173d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hetisine-type C20-diterpenoid alkaloids (DAs) are one of the most important DA subtypes. During the past decades, a total of 157 hetisine-type DAs were obtained from plants from seven genera in three families, most of which were isolated from the genera Aconitum and Delphinium in the Ranunculaceae family. Structurally, hetisine-type DAs are characterized by a heptacyclic hetisane skeleton formed by the linkage of C(14)-C(20) and N-C(6) bonds in an atisine-type DA, and their structural diversity is created by the states of the N atom and various substituents. Pharmacological studies have revealed a wide range of pharmacological actions for hetisine-type DAs, including antiarrhythmic, antitumor, antimicrobial and insecticidal activities, as well as effects on peripheral vasculature, which are closely related to their chemical structures. In particular, the prominent antiarrhythmic effects and low toxicity of hetisine-type DAs highlight their potential in antiarrhythmic drug discovery. Hetisine-type DAs with diverse bioactivities are promising lead structures for further development as commercial agents in medicine.
Collapse
Affiliation(s)
- Tianpeng Yin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Taipa Macau 999078 China
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus Zhuhai 519041 China
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Taipa Macau 999078 China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Taipa Macau 999078 China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Taipa Macau 999078 China
| |
Collapse
|
17
|
Chen Y, Xu C, Wang W, Wang X, Guo Q, Shi J. Phthalide-derived oxaspiroangelioic acids A–C with an unprecedented carbon skeleton from an aqueous extract of the Angelica sinensis root head. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
19
|
Mi L, Li YC, Sun MR, Zhang PL, Li Y, Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin J Nat Med 2021; 19:505-520. [PMID: 34247774 DOI: 10.1016/s1875-5364(21)60050-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/24/2022]
Abstract
The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collected from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Aconitum alkaloids, as well as generic synonyms. Aconitum alkaloids are both bioactive compounds and toxic ingredients in Aconitum plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism and detoxification in vivo.
Collapse
Affiliation(s)
- Li Mi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Chen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Ru Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei-Lin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Liu H, Shao S, Xia H, Wu YZ, Zhu CG, Xu CB, Zhang TT, Guo QL, Shi JG. Denudatine-type diterpenoid alkaloids from an aqueous extract of the lateral root of Aconitum carmichaelii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:615-626. [PMID: 34080502 DOI: 10.1080/10286020.2021.1931141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Five new denudatine-type diterpenoid alkaloids (1-5), along with the known analogue aconicarmine (6), were isolated from an aqueous decoction of the lateral roots of Aconitum carmichaelii (fu-zi). Their structures were determined by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Compound 5 is the first denudatine-type diterpenoid alcohol iminium alkaloid, which could be partially transformed into the aza acetal form in pyridine-d5. Compound 5 inhibited mice writhing in an acetic acid-induced writhing assay.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Zhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Li RF, Zhu CG, Xu CB, Guo QL, Shi JG. Minor alkaloids from an aqueous extract of the hook-bearing stem of Uncaria rhynchophylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:513-526. [PMID: 33794715 DOI: 10.1080/10286020.2021.1906658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Seven new monoterpene alkaloids (1-7), along with 18 known analogues, were isolated from an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). Their structures were determined by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Compound 1 is the first monoterpene 22-norindoloquinolizidine alkaloid with a ketene unit, while 2 and 3 are unusual indoloquinolizidine alkaloids having an oxazinane ring.[Formula: see text].
Collapse
Affiliation(s)
- Ruo-Fei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
22
|
(+)-/(−)-Angelignanine, a pair of neolignan enantiomers with an unprecedented carbon skeleton from an aqueous extract of the Angelica sinensis root head. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Li RF, Guo QL, Zhu CG, Xu CB, Wei YZ, Cai J, Wang Y, Sun H, Zhang TT, Shi JG. Minor triterpenes from an aqueous extract of the hook-bearing stem of Uncaria rhynchophylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:307-317. [PMID: 33506714 DOI: 10.1080/10286020.2020.1870961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Six new triterpenes, uncarinic acids KP (1-6), along with 24 known analogues, were isolated as minor constituents of an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). By comprehensive spectroscopic data analysis, their structures were elucidated as derivatives of olean-12-en-28-oic acid and urs-12-en-28-oic acid with different oxidized forms at C-3, C-6, and/or C-23, respectively. Cell-based preliminary bioassay showed that the (E)-/(Z)-coumaroyloxy and (E)-/(Z)-feruloyloxy units at C-27 of olean-12-en-28-oic acid and urs-12-en-28-oic acid played roles in their bioactivities.[Formula: see text].
Collapse
Affiliation(s)
- Ruo-Fei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Zi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Cai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Wang Y, Zhang M, Zhou X, Xu C, Zhu C, Yuan Y, Chen N, Yang Y, Guo Q, Shi J. Insight into Medicinal Chemistry Behind Traditional Chinese Medicines: p-Hydroxybenzyl Alcohol-Derived Dimers and Trimers from Gastrodia elata. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:31-50. [PMID: 32761444 PMCID: PMC7933327 DOI: 10.1007/s13659-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
From an aqueous extract of "tian ma" (the steamed and dried rhizomes of Gastrodia elata), ten new compounds gastrodibenzins A-D (1-4) and gastrotribenzins A-F (5-10), along with known analogues (11-20), having structure features coupling between two and three p-hydroxybenzyl-derived units via carbon- and/or ether-bonds, were isolated and characterized by spectroscopic data analysis. Meanwhile, the new compounds 5a, 6a, 8a, 22, and 23, as well as the known derivatives 13a, 14a, 15, 17-21, 24, 25, and p-hydroxybenzyl aldehyde were isolated and identified from a refluxed aqueous solution of p-hydroxybenzyl alcohol. Methylation of 5a and 6a in methanol and ethylation of 6a, 8a, 13a, and 14a in ethanol produced 5 and 6 and 7, 8, 13, and 14, respectively. using ultra-performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UPLC-HRESIMS) analysis of the refluxed solutions of p-hydroxybenzyl alcohol and the refluxed extracts of the fresh G. elata rhizome and "tian ma" extracts indicated consistent production and variation of the dimeric and trimeric derivatives of p-hydroxybenzyl alcohol upon extracting solvents and refluxing time. In various assays, the dimeric and trimeric derivatives showed more potent activities than p-hydroxybenzyl alcohol itself and gastrodin, which are the main known active constituents of "tian ma". These results revealed for the first time that the more effective dimers and trimers can be produced through condensation of the co-occurring p-hydroxybenzyl alcohol during processing and decocting of the G. elata rhizomes, demonstrating insights into medicinal chemistry behind application protocols of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Min Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Xue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yongchun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
25
|
Aconapelsulfonines A and B, seco C20-diterpenoid alkaloids deriving via Criegee rearrangements of napelline skeleton from Aconitum carmichaelii. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2019. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1101-1120. [PMID: 33207951 DOI: 10.1080/10286020.2020.1844675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The new natural products reported in 2019 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2019 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Jiang ZB, Lu X, Chen JZ, Ma XL, Ke YH, Guo X, Liu H, Li CL, Wang F, Wu XL, Zhang DZ, Cao S. Identification of active chemical constituents of Asplenium ruprechtii Sa. Kurata based on in vitro neuroprotective activity evaluation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Guo Q, Xia H, Wu Y, Shao S, Xu C, Zhang T, Shi J. Structure, property, biogenesis, and activity of diterpenoid alkaloids containing a sulfonic acid group from Aconitum carmichaelii. Acta Pharm Sin B 2020; 10:1954-1965. [PMID: 33163346 PMCID: PMC7606178 DOI: 10.1016/j.apsb.2020.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Three new C20-diterpenoid alkaloids with a sulfonic acid unit, named aconicarmisulfonines B and C (1 and 2) and chuanfusulfonine A (3), respectively, were isolated from the Aconitum carmichaelii lateral roots ("fu zi" in Chinese). Structures of 1-3 were determined by spectroscopic data analysis. Intriguing chemical properties and reactions were observed for the C20-diterpenoid alkaloids: (a) specific selective nucleophilic addition of the carbonyl (C-12) in 1 with CD3OD; (b) interconversion between 1 and 2 in D2O; (c) stereo- and/or regioselective deuterations of H-11α in 1-3 and both H-11α and H-11β in aconicarmisulfonine A (4); (d) TMSP-2,2,3,3-d 4 promoted cleavage of the C-12-C-13 bond of 4 in D2O; (e) dehydrogenation of 4 in pyridine-d 5, and (f) Na2SO3-assisted dehydrogenation and N-deethylation of songorine (5, a putative precursor of 1-4). Biogenetically, 1 and 2 are correlated with 4, for which the same novel carbon skeleton is proposed to be derived from semipinacol rearrangements via migrations of C-13-C-16 and C-15-C-16 bonds of the napelline-type skeleton, respectively. Meanwhile, 3 is a highly possible precursor or a concurrent product in the biosynthetic pathways of 1, 2, and 4. In the acetic acid-induced mice writhing assay, at 1.0 mg/kg (i.p.), compounds 1, 2, 5, 5a, and 5b exhibited analgesic effects against mice writhing.
Collapse
Affiliation(s)
| | | | - Yuzhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Khan I, Zhang H, Liu W, Zhang L, Peng F, Chen Y, Zhang Q, Zhang G, Zhang W, Zhang C. Identification and bioactivity evaluation of secondary metabolites from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019. RSC Adv 2020; 10:20738-20744. [PMID: 35517746 PMCID: PMC9054296 DOI: 10.1039/d0ra03529g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023] Open
Abstract
Extracts from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019 showed potent antibacterial bioactivities. We report herein the isolation of chrysonin (1), a new compound containing a pair of enantiomers 6S- and 6R-chrysonin (1a and 1b) featuring an unprecedented eight-membered heterocycle fused with a benzene ring. Compound 2, a mixture consisting of a new zwitterionic compound chrysomamide (2a) and N-[2-trans-(4-hydroxyphenyl) ethenyl] formamide (2b) in a ratio around 1 : 2.8, was isolated together with seven known compounds 3-9. Chemical structures of all compounds were determined by comprehensive spectroscopic analyses. The isolated compounds were evaluated for antimicrobial, cytotoxic and alpha-glucosidase inhibition activities. Chrysonin (1) showed moderate alpha-glucosidase inhibitory activity. The dominant product xanthocillin X (4) displayed potent inhibition activities against Gram-negative pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa with MIC values at 0.125 μg mL-1. Xanthocillins X (4) and Y1 (5) also showed significant cytotoxicities against four cancer cell lines with IC50 values ranging from 0.26 to 5.04 μM. This study highlights that microorganisms from polar regions are emerging as a new resource for the discovery of natural products combating human pathogens.
Collapse
Affiliation(s)
- Imran Khan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Fang Peng
- Wuhan University, China Center for Type Culture Collection Wuhan 430072 China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| |
Collapse
|
30
|
Shao S, Xia H, Hu M, Chen C, Fu J, Shi G, Guo Q, Zhou Y, Wang W, Shi J, Zhang T. Isotalatizidine, a C 19-diterpenoid alkaloid, attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin A expression. J Neuroinflammation 2020; 17:13. [PMID: 31924228 PMCID: PMC6953278 DOI: 10.1186/s12974-019-1696-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Isotalatizidine is a representative C19-diterpenoid alkaloid extracted from the lateral roots of Aconitum carmichaelii, which has been widely used to treat various diseases on account of its analgesic, anti-inflammatory, anti-rheumatic, and immunosuppressive properties. The aim of this study was to evaluate the analgesic effect of isotalatizidine and its underlying mechanisms against neuropathic pain. Methods A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence. Results Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments. Conclusion Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Zhang M, Yan S, Liang Y, Zheng M, Wu Z, Zang Y, Yu M, Sun W, Liu J, Ye Y, Wang J, Chen C, Zhu H, Zhang Y. Talaronoids A–D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/6 ring system from the fungus Talaromyces stipitatus. Org Chem Front 2020. [DOI: 10.1039/d0qo00960a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Talaronoids A–D (1–4), four fusicoccane diterpenoids with an unexpected tricyclic 5/8/6 carbon skeleton from Talaromyces stipitatus, represent the first examples of natural products with a benzo[a]cyclopenta[d]cyclooctane skeleton.
Collapse
|
32
|
Two folate-derived analogues from an aqueous decoction of Uncaria rhynchophylla. Chin J Nat Med 2019; 17:928-934. [DOI: 10.1016/s1875-5364(19)30115-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 11/18/2022]
|
33
|
Xu CB, Guo QL, Wang YN, Lin S, Zhu CG, Shi JG. Gastrodin Derivatives from Gastrodia elata. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:393-404. [PMID: 31734866 PMCID: PMC6872707 DOI: 10.1007/s13659-019-00224-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 05/11/2023]
Abstract
Nine new gastrodin derivatives, including seven p-hydroxybenzyl-modified gastrodin ethers (1-7), 6'-O-acetylgastrodin (8), and 4-[α-D-glucopyranosyl-(1 →6)-β-D-glucopyranosyloxy]benzyl alcohol (9), together with seven known derivatives, were isolated from an aqueous extract of Gastrodia elata ("tian ma") rhizomes. Their structures were determined by spectroscopic and chemical methods as well as single crystal X-ray diffraction. Compounds 1-4, 7, 10, and 11 were also isolated from a reaction mixture by refluxing gastrodin and p-hydroxybenzyl alcohol in H2O. As both gastrodin and p-hydroxybenzyl alcohol exist in the plant, the reaction results provide evidence for the production and increase/decrease of potential effective/toxic components when "tian ma" is decocted solely or together with ingredients in Chinese traditional medicine formulations, though the isolates were inactive in the preliminarily cell-based assays at concentrations of 10 μM. Moreover, using ultra-performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UPLC-HRESIMS), 4, 7, 10, and 11, as well as component variations, were detectable in the freshly prepared extracts of different types of samples, including the freeze-dried fresh G. elata rhizomes.
Collapse
Affiliation(s)
- Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|