1
|
Hu WT, Wang ZX. Rhodium-Catalyzed Aromatic C-H Allylation with α,β-Unsaturated Imines. J Org Chem 2025; 90:6755-6767. [PMID: 40364617 DOI: 10.1021/acs.joc.5c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Reaction of 2-arylpyridines with α,β-unsaturated imines in the presence of 2.5 mol % of [Cp*RhCl2]2 and 10 mol % of AgSbF6 in acetone affords allylated 2-arylpyridines with an enamine unit located in the allyl segment. This method features ortho-monoallylation selectivity and Z-selectivity of the C-C double bonds, is applicable to a wide range of substrates, and is compatible with air and functional groups such as halides, CF3, COOMe, OH, MeO, and ketal groups.
Collapse
Affiliation(s)
- Wei-Tao Hu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Nie JJ, Wang ZX. Rh(III)-Catalyzed C-H Allylation of Aromatic Ketoximes with Vinylaziridines. J Org Chem 2024; 89:5764-5777. [PMID: 38578982 DOI: 10.1021/acs.joc.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The Rh(III)-catalyzed reaction of aromatic ketoximes with 2-vinylaziridines affords ortho-allylation products of the phenyl rings of aromatic ketoximes in moderate to excellent yields. The reaction requires 0.5 equiv of NaOAc as a base and occurs under mild conditions. The protocol exhibits ortho-monoallylation selectivity, wide scope of substrates, and good compatibility of functional groups.
Collapse
Affiliation(s)
- Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
4
|
Duan YT, Wang ZX. Ruthenium(II)-Catalyzed S(II)-Directed Aromatic C-H Allylation with Vinylaziridines. J Org Chem 2023; 88:16076-16090. [PMID: 37972295 DOI: 10.1021/acs.joc.3c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The ruthenium-catalyzed reaction of aryl methyl thioethers with vinylaziridines affords ortho-position mono- or bis-allylation products depending on substituents on the phenyl rings of sulfide substrates or the ratio of reactants. The reaction also features mild reaction conditions, good product yields, wide scope of substrates, good compatibility of functional groups, and the selective formation of E-configurated C-C double bonds.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Singh S, Parammal A, Kumar M, X JS, Subramanian P. Iso-Pentadienyl Carbonate as a Five Carbon Synthon in Manganese(I)-Catalyzed Selective Linear 1,3-Dienylation. Chemistry 2023; 29:e202301632. [PMID: 37518839 DOI: 10.1002/chem.202301632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Athira Parammal
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Manoj Kumar
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Joe Sam X
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Parthasarathi Subramanian
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
6
|
Parammal A, Singh S, Kumar M, Xavier JS, Subramanian P. Robust Synthesis of Terpenoid Scaffolds under Mn(I)-Catalysis. J Org Chem 2023. [PMID: 37463248 DOI: 10.1021/acs.joc.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The 6/6/5-fused tricyclic scaffold is a central feature of structurally complex terpenoid natural products. A step-economical cascade transformation that leads to a complex molecular skeleton is regarded as a sustainable methodology. Therefore, we report the first Mn(I)-catalyzed C(sp2)-H chemoselective in situ dienylation and diastereoselective intramolecular Diels-Alder reaction using iso-pentadienyl carbonate to access 6/6/5-fused tricyclic scaffolds. To the best of our knowledge, there is no such report thus far to utilize iso-pentadienyl carbonate as a substrate in C-H activation catalysis. Extensive mechanistic studies, such as the isolation of catalytically active organo-manganese(I) complexes, 1,3-dienyl-intermediates, and isotopic labeling experiments have supported the proposed mechanism of this cascade reaction.
Collapse
Affiliation(s)
- Athira Parammal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shubham Singh
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manoj Kumar
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Joe Sam Xavier
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
7
|
Chen S, Yang Y, Chen C, Wang C. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Shambhavi CN, Jeganmohan M. Rh(III)-Catalyzed Enone Carbonyl/Ketone-Directed Aerobic C-H Olefination of Aromatics with Unactivated Olefins. J Org Chem 2022; 87:13236-13258. [PMID: 36128804 DOI: 10.1021/acs.joc.2c01730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed weak enone carbonyl/ketone-assisted aerobic oxidative C-H olefination of aromatics with unactivated alkenes has been developed. This protocol involves cross-dehydrogenative Heck-type olefination reaction of various substituted biologically relevant chalcones and aromatic ketones such as acetophenones and chromones with various functionalized unactivated olefins in moderate to good yields. Further, ortho-alkylation of chalcones with norbornene is also demonstrated. A possible reaction mechanism involving weak chelation-assisted C-H activation/insertion/β-hydride elimination was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
9
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
10
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
11
|
Ali S, Rani A, Khan S. Manganese-Catalyzed C-H Functionalizations Driven via Weak Coordination: Recent Developments and Perspectives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ramachandran K, Anbarasan P. Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes. Chem Sci 2021; 12:13442-13449. [PMID: 34777763 PMCID: PMC8528013 DOI: 10.1039/d1sc03476f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| |
Collapse
|
13
|
Kumar Ghosh A, Kanta Das K, Hajra A. ortho
‐Allylation of 2‐Arylindazoles with Vinyl Cyclic Carbonate and Diallyl Carbonate
via
Manganese‐Catalyzed C−H Bond Activation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Krishna Kanta Das
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
14
|
Zhang SS, Zheng YC, Zhang ZW, Chen SY, Xie H, Shu B, Song JL, Liu YZ, Zeng YF, Zhang L. Access to Branched Allylarenes via Rhodium(III)-Catalyzed C-H Allylation of (Hetero)arenes with 2-Methylidenetrimethylene Carbonate. Org Lett 2021; 23:5719-5723. [PMID: 34286981 DOI: 10.1021/acs.orglett.1c01832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(III)-catalyzed C-H allylation of (hetero)arenes by using 2-methylidenetrimethylene carbonate as an efficient allylic source has been developed for the first time. Five different directing groups including oxime, N-nitroso, purine, pyridine, and pyrimidine were compatible, delivering various branched allylarenes bearing an allylic hydroxyl group in moderate to excellent yields.
Collapse
Affiliation(s)
- Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zi-Wu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Shao-Yong Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yan-Zhi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yao-Fu Zeng
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421000, P. R. China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Affiliation(s)
- Rui Yan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhong‐Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
16
|
Huo J, Yang Y, Wang C. Manganese-Catalyzed [3 + 2] Cyclization of Ketones and Isocyanates via Inert C-H Activation. Org Lett 2021; 23:3384-3388. [PMID: 33900094 DOI: 10.1021/acs.orglett.1c00857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stoichiometric cyclomanganation of aromatic ketones and further reactions of the thus-formed manganacycles with isocyanates were first reported by Kaesz and Liebeskind in 1975 and 1990, respectively. The buildup of a closed manganese catalytic cycle for the reaction of ketones and isocyanates remains an unsolved problem. Herein, an unprecedented trio of Me2Zn/AlCl3/AgOTf is developed to build up manganese catalysis, which enables the [3 + 2] cyclization of ketones with isocyanates via inert C-H activation to access 3-alkylidene phthalimidines in a straightforward manner unachieved by other transition metal catalyses.
Collapse
Affiliation(s)
- Jiaqi Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|
17
|
Abstract
AbstractTransition-metal-catalyzed nucleophilic C–H addition of hydrocarbons to polar unsaturated bonds could intrinsically avoid prefunctionalization of substrates and formation of waste byproducts, thus featuring high step- and atom-economy. As the third most abundant transition metal, manganese-catalyzed C–H addition to polar unsaturated bonds remains challenging, partially due to the difficulty in building a closed catalytic cycle of manganese. In the past few years, we have developed manganese catalysis to enable the sp2-hydrid C–H addition to polar unsaturated bonds (e.g., imines, aldehydes, nitriles), which will be discussed in this personal account.1 Introduction2 Mn-Catalyzed N-Directed C(sp2)–H Addition to Polar Unsaturated Bonds3 Mn-Catalyzed O-Directed C(sp2)–H Addition to Polar Unsaturated Bonds4 Conclusion
Collapse
Affiliation(s)
- Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
- University of Chinese Academy of Sciences
- Physical Science Laboratory, Huairou National Comprehensive Science Center
| | - Ting Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| |
Collapse
|
18
|
|
19
|
Wang Z, Wang C. Manganese/NaOPh co-catalyzed C2-selective C–H conjugate addition of indoles to α,β-unsaturated carbonyls. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
20
|
Kopf S, Neumann H, Beller M. Manganese-catalyzed selective C-H activation and deuteration by means of a catalytic transient directing group strategy. Chem Commun (Camb) 2021; 57:1137-1140. [PMID: 33410833 DOI: 10.1039/d0cc07675a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel manganese-catalyzed C-H activation methodology for selective hydrogen isotope exchange of benzaldehydes is presented. Using D2O as a cheap and convenient source of deuterium, the reaction proceeds with excellent functional group tolerance. High ortho-selectivity is achieved in the presence of catalytic amounts of specific amines, which in situ form a transient directing group.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany.
| | | | | |
Collapse
|
21
|
Aneeja T, Neetha M, Afsina CMA, Anilkumar G. Recent advances and perspectives in manganese-catalyzed C–H activation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02087g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Manganese-catalyzed C–H activation has become an emerging area in organic chemistry. These efficient and eco-friendly manganese catalysed reactions provides new opportunities in the field of synthetic organic chemistry.
Collapse
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - C. M. A. Afsina
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
22
|
Dodangeh M, Ramazani A, Maghsoodlou MT, Zarei A, Rezayati S. Application of Readily Available Metals for C-H Activation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200616114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic C-H activation is a powerful method for organic synthesis. In recent
years, scientists have made great progress by developing transitional metals for catalyzing CH
functionalization reaction. In this review, we summarized and highlighted recent progress
in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.
Collapse
Affiliation(s)
- Mohammad Dodangeh
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Malek-Taher Maghsoodlou
- Department of Chemistry, The University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| | - Armin Zarei
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Sobhan Rezayati
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
23
|
Biswas A, Maity S, Pan S, Samanta R. Transition Metal‐Catalysed Direct C−H Bond Functionalizations of 2‐Pyridone Beyond C3‐Selectivity. Chem Asian J 2020; 15:2092-2109. [PMID: 32500612 DOI: 10.1002/asia.202000506] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Saurabh Maity
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
- Current Address: Institute of Organic and Biomolecular ChemistryGeorg-August University Goettingen 37077 Germany
| | - Subarna Pan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| |
Collapse
|
24
|
Behera RR, Ghosh R, Panda S, Khamari S, Bagh B. Hydrosilylation of Esters Catalyzed by Bisphosphine Manganese(I) Complex: Selective Transformation of Esters to Alcohols. Org Lett 2020; 22:3642-3648. [PMID: 32271582 DOI: 10.1021/acs.orglett.0c01144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selective and efficient hydrosilylations of esters to alcohols by a well-defined manganese(I) complex with a commercially available bisphosphine ligand are described. These reactions are easy alternatives for stoichiometric hydride reduction or hydrogenation, and employing cheap, abundant, and nonprecious metal is attractive. The hydrosilylations were performed at 100 °C under solvent-free conditions with low catalyst loading. A large variety of aromatic, aliphatic, and cyclic esters bearing different functional groups were selectively converted into the corresponding alcohols in good yields.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Khamari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
25
|
Chen M, Doba T, Sato T, Razumkov H, Ilies L, Shang R, Nakamura E. Chromium(III)-Catalyzed C(sp 2)-H Alkynylation, Allylation, and Naphthalenation of Secondary Amides with Trimethylaluminum as Base. J Am Chem Soc 2020; 142:4883-4891. [PMID: 32068410 DOI: 10.1021/jacs.0c00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among base metals used for C-H activation reactions, chromium(III) is rather unexplored despite its natural abundance and low toxicity. We report herein chromium(III)-catalyzed C(sp2)-H functionalization of an ortho-position of aromatic and α,β-unsaturated secondary amides using readily available AlMe3 as a base and using bromoalkynes, allyl bromide, and 1,4-dihydro-1,4-epoxynaphthalene as electrophiles. This redox-neutral reaction taking place at 70-90 °C, requires as low as 1-2 mol % of CrCl3 or Cr(acac)3 as a catalyst without any added ligand, and tolerates functional groups such as aryl iodide, boronate, and thiophene groups. Stoichiometric and kinetics studies as well as kinetic isotope effects suggest that the catalytic cycle consists of a series of thermally stable but reactive intermediates bearing two molecules of the amide substrate on one chromium atom and also that one of these chromate(III) complexes takes part in the alkynylation, allylation, and naphthalenation reactions. The proposed mechanism accounts for the effective suppression of methyl group delivery from AlMe3 for ortho-C-H methylation.
Collapse
Affiliation(s)
- Mengqing Chen
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Doba
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takenari Sato
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hlib Razumkov
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Laurean Ilies
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rui Shang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Casali E, Kalra P, Brochetta M, Borsari T, Gandini A, Patra T, Zanoni G, Maiti D. Overriding ortho selectivity by template assisted meta-C–H activation of benzophenones. Chem Commun (Camb) 2020; 56:7281-7284. [DOI: 10.1039/d0cc03172k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A regioselective meta-C–H activation strategy for benzophenone was successfully developed by overriding the inherent ketone-directed ortho-selectivity.
Collapse
Affiliation(s)
- Emanuele Casali
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | | | | | - Tania Borsari
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | - Andrea Gandini
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | - Tuhin Patra
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | - Giuseppe Zanoni
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | | |
Collapse
|
27
|
Torabi S, Jamshidi M, Amooshahi P, Mehrdadian M, Khazalpour S. Transition metal-catalyzed electrochemical processes for C–C bond formation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03450a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive electro-organometallic review has been carried out on C–C bond formation via variety of metals between 1984 and 2019.
Collapse
Affiliation(s)
- Sara Torabi
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 65178-38683
- Iran
| | - Mahdi Jamshidi
- Department of Toxicology and Pharmacology
- School of Pharmacy
- Hamadan University of Medical Sciences
- Hamadan
- Iran
| | | | | | | |
Collapse
|
28
|
Waiba S, Jana SK, Jati A, Jana A, Maji B. Manganese complex-catalysed α-alkylation of ketones with secondary alcohols enables the synthesis of β-branched carbonyl compounds. Chem Commun (Camb) 2020; 56:8376-8379. [DOI: 10.1039/d0cc01460e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diverse β-functionalised carbonyl compounds were synthesized via a manganese(i) complex-catalysed α-alkylation of ketones with secondary alcohols.
Collapse
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Sayan K. Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Ayan Jati
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Akash Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
29
|
Kong GX, Han JN, Yang D, Niu JL, Song MP. Manganese-catalyzed cascade annulations of alkyne-tethered N-alkoxyamides: synthesis of polycyclic isoquinolin-1(2H)-ones. Org Biomol Chem 2019; 17:10167-10171. [PMID: 31782473 DOI: 10.1039/c9ob02364j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for the synthesis of isoxazolidine/1,2-oxazinane-fused isoquinolin-1(2H)-ones from alkyne-tethered N-alkoxyamides is described, in which cheap Mn(acac)2 is used as a catalyst to facilitate a radical cascade annulation. The method features mild conditions, additive-free reaction and broad substrate scope. It is the first example via manganese/air catalytic systems to construct isoquinolin-1(2H)-one heterocycles.
Collapse
Affiliation(s)
- Gui-Xian Kong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiao-Na Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|