1
|
Chen D, Cheng Y, Shi L, Gao X, Huang Y, Du Z. Design, Synthesis, and Antimicrobial Activity of Amide Derivatives Containing Cyclopropane. Molecules 2024; 29:4124. [PMID: 39274972 PMCID: PMC11397633 DOI: 10.3390/molecules29174124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
As an important small organic molecule, cyclopropane is widely used in drug design. In this paper, fifty-three amide derivatives containing cyclopropane were designed and synthesized by introducing amide groups and aryl groups into cyclopropane through the active splicing method, and their antibacterial and antifungal activities were evaluated in vitro. Among them, thirty-five compounds were new compounds, and eighteen compounds were known compounds (F14, F15, F18, F20-F26, F36, and F38-F44). Bioassay results disclosed that four, three, and nine of the compounds showed moderate activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, respectively. Three compounds were sensitive to Candida albicans, with excellent antifungal activity (MIC80 = 16 μg/mL). The molecular docking results show that compounds F8, F24, and F42 have good affinity with the potential antifungal drug target CYP51 protein.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, China
| | - Yu Cheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Lele Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xueting Gao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yuhang Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zhenting Du
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Yang L, Tao Z, Xu HD, Shen MH, Chu H. Synthesis of gem-Difluorinated Oxa/Azaspiro[2.4]heptanes via Palladium-Catalyzed Spirocyclopropanation. Org Lett 2024; 26:5782-5787. [PMID: 38940384 DOI: 10.1021/acs.orglett.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A palladium-catalyzed spirocyclopropanation of gem-difluoroalkenes with π-allylpalladium 1,4-dipoles has been successfully developed, which gives a powerful and straightforward synthetic strategy for the construction of novel gem-difluorinated spirocyclic compounds, 6,6-difluoro-5-oxa/azaspiro[2.4]heptanes. The scope of gem-difluoroalkenes can be extended to styrenes, acrylic esters, and acrylamides to realize the installment of various functional groups and different heteroatoms on the spirocyclic skeletons, which could be converted to valuable compounds with potential biological activity. The mechanistic investigations revealed the competition between spirocyclopropanation and β-F elimination of π-allylpalladium zwitterionic intermediates.
Collapse
Affiliation(s)
- Linhui Yang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhu Tao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Haoke Chu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
3
|
Xie R, Xu J, Shi H, Xiao C, Wang N, Huang N, Yao H. Stereocontrolled Synthesis of Aryl C-Nucleosides under Ambient Conditions. Org Lett 2024; 26:5162-5166. [PMID: 38832704 DOI: 10.1021/acs.orglett.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A stereocontrolled synthesis of an aryl C-nucleoside has been developed using D-ribals and arylboronic acids catalyzed by palladium without additional ligands in common solvents under an open-air atmosphere at room temperature. This protocol features very mild conditions, simplicity in operation, exclusive β-stereoselectivity, broad substrate scopes, and good compatibility with reactive amino and hydroxyl groups. The functionalization of unsaturated C-nucleosides and the late-stage glycosylation of natural products/drugs demonstrated the high practicality of this strategy.
Collapse
Affiliation(s)
- Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Chenyu Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
4
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
5
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
6
|
Cao J, Vincent SP. Synthesis of Spirocyclic Cyclopropyl Glycosyl-1-phosphate Analogues. Org Lett 2022; 24:4165-4169. [PMID: 35666228 DOI: 10.1021/acs.orglett.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general methodology allowing the preparation of phosphonylated 1-spirocyclopropyl analogues of glycosyl-1-phosphates is reported. The scope of this reaction has been assessed using various exo-glycals easily obtained from the corresponding pyranoses and furanoses. The cyclopropanation was found to be stereospecific, and the cis/trans selectivity only depends on the E/Z configuration of the starting exo-glycal. The four possible isomers of spirocyclopropyl ribose-1-phosphonate could thus be prepared in a controlled manner, protected and deprotected.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
7
|
Neouchy Z, Verhoeven J, Kong H, Zhao Y, Wang W, Brambilla M, Van Hecke K, Meerpoel L, Thuring JW, Verniest G, Winne J. Stereodivergent Synthesis of Biologically Active Spironucleoside Scaffolds via Catalytic Cyclopropanation of 4- exo-Methylene Furanosides. J Org Chem 2021; 86:17344-17361. [PMID: 34748342 DOI: 10.1021/acs.joc.1c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cyclopropane fusion of the only rotatable carbon-carbon bond in furanosyl nucleosides (i.e., exocyclic 4'-5') is a powerful design strategy to arrive at conformationally constrained analogues. Herein, we report a direct stereodivergent route toward the synthesis of the four possible configurations of 4-spirocyclopropane furanoses, which have been transformed into the corresponding 4'-spirocyclic adenosine analogues. The latter showed differential inhibition of the protein methyltransferase PRMT5-MEP50 complex, with one analogue inhibiting more effectively than adenosine itself, demonstrating the utility of rationally probing 4'-5' side chain orientations.
Collapse
Affiliation(s)
- Zeina Neouchy
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Jonas Verhoeven
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Hanchu Kong
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Yongbin Zhao
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Wenbin Wang
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Marta Brambilla
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Lieven Meerpoel
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Guido Verniest
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Johan Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Sharland JC, Wei B, Hardee DJ, Hodges TR, Gong W, Voight EA, Davies HML. Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. Chem Sci 2021; 12:11181-11190. [PMID: 34522315 PMCID: PMC8386643 DOI: 10.1039/d1sc02474d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study describes general methods for the enantioselective syntheses of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates through dirhodium tetracarboxylate-catalysed asymmetric cyclopropanation of vinyl heterocycles with aryl- or heteroaryldiazoacetates. The reactions are highly diastereoselective and high asymmetric induction could be achieved using either (R)-pantolactone as a chiral auxiliary or chiral dirhodium tetracarboxylate catalysts. For meta- or para-substituted aryl- or heteroaryldiazoacetates the optimum catalyst was Rh2(R-p-Ph-TPCP)4. In the case of ortho-substituted aryl- or heteroaryldiazoacetates, the optimum catalyst was Rh2(R-TPPTTL)4. For a highly enantioselective reaction with the ortho-substituted substrates, 2-chloropyridine was required as an additive in the presence of either 4 Å molecular sieves or 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Under the optimized conditions, the cyclopropanation could be conducted in the presence of a variety of heterocycles, such as pyridines, pyrazines, quinolines, indoles, oxadiazoles, thiophenes and pyrazoles.
Collapse
Affiliation(s)
- Jack C Sharland
- Department of Chemistry, Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Bo Wei
- Department of Chemistry, Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - David J Hardee
- Drug Discovery Science and Technology, AbbVie 1 North Waukegan Rd. North Chicago IL 60064 USA
| | - Timothy R Hodges
- Drug Discovery Science and Technology, AbbVie 1 North Waukegan Rd. North Chicago IL 60064 USA
| | - Wei Gong
- Drug Discovery Science and Technology, AbbVie 1 North Waukegan Rd. North Chicago IL 60064 USA
| | - Eric A Voight
- Drug Discovery Science and Technology, AbbVie 1 North Waukegan Rd. North Chicago IL 60064 USA
| | - Huw M L Davies
- Department of Chemistry, Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| |
Collapse
|
9
|
Barreiro-Costa O, Morales-Noboa G, Rojas-Silva P, Lara-Barba E, Santamaría-Aguirre J, Bailón-Moscoso N, Romero-Benavides JC, Herrera A, Cueva C, Ron-Garrido L, Poveda A, Heredia-Moya J. Synthesis and Evaluation of Biological Activities of Bis(spiropyrazolone)cyclopropanes: A Potential Application against Leishmaniasis. Molecules 2021; 26:4960. [PMID: 34443548 PMCID: PMC8398714 DOI: 10.3390/molecules26164960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the search and development of drugs that may become new alternatives to the commercial drugs currently available for treatment of leishmaniasis. We have designed and synthesized 12 derivatives of bis(spiropyrazolone)cyclopropanes. We then characterized their potential application in therapeutic use. For this, the in vitro biological activities against three eukaryotic models-S. cerevisiae, five cancer cell lines, and the parasite L. mexicana-were evaluated. In addition, cytotoxicity against non-cancerous mammalian cells has been evaluated and other properties of interest have been characterized, such as genotoxicity, antioxidant properties and, in silico predictive adsorption, distribution, metabolism, and excretion (ADME). The results that we present here represent a first screening, indicating two derivatives of bis(spiropyrazolone)cyclopropanes as good candidates for the treatment of leishmaniasis. They have good specificity against parasites with respect to mammalian cells.
Collapse
Affiliation(s)
- Olalla Barreiro-Costa
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| | - Gabriela Morales-Noboa
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Patricio Rojas-Silva
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| | - Eliana Lara-Barba
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Javier Santamaría-Aguirre
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Natalia Bailón-Moscoso
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | | | - Ana Herrera
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | - Cristina Cueva
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | - Lenin Ron-Garrido
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| |
Collapse
|
10
|
Kaspar F, Seeger M, Westarp S, Köllmann C, Lehmann AP, Pausch P, Kemper S, Neubauer P, Bange G, Schallmey A, Werz DB, Kurreck A. Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Felix Kaspar
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| | - Margarita Seeger
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| | - Christoph Köllmann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Anna P. Lehmann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Patrick Pausch
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, 35043 Marburg, Germany
| | - Sebastian Kemper
- Institute for Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, 35043 Marburg, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| |
Collapse
|
11
|
Yamaguchi T, Yamamoto C, Horiba M, Aoyama H, Obika S. Synthesis and duplex-forming ability of oligonucleotides modified with 4'-C,5'-C-methylene-bridged nucleic acid (4',5'-BNA). Bioorg Med Chem 2021; 46:116359. [PMID: 34391942 DOI: 10.1016/j.bmc.2021.116359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023]
Abstract
We describe herein the design and synthesis of 4'-C,5'-C-methylene-bridged nucleic acid (4',5'-BNA), a novel artificial nucleic acid with the torsion angle γ in a non-canonical +ac range. The 4',5'-BNA phosphoramidite bearing a thymine nucleobase was synthesized from a commercially available thymidine analog in 11 steps and successfully incorporated into oligonucleotides. The resulting oligonucleotides were evaluated for their duplex-forming ability toward single-stranded DNA and RNA.
Collapse
Affiliation(s)
- Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chika Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiko Horiba
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
12
|
Osawa T, Kawaguchi M, Jang YJ, Ito Y, Hari Y. Synthesis and properties of oligonucleotides bearing thymidine derivatives with 1,6-dioxaspiro[4.5]decane skeleton. Bioorg Med Chem 2021; 31:115966. [DOI: 10.1016/j.bmc.2020.115966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
|
13
|
Oka N, Mori A, Suzuki K, Ando K. Stereoselective Synthesis of Ribofuranoid exo-Glycals by One-Pot Julia Olefination Using Ribofuranosyl Sulfones. J Org Chem 2021; 86:657-673. [PMID: 33225690 DOI: 10.1021/acs.joc.0c02297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-pot Julia olefination using ribofuranosyl sulfones is described. The α-anomers of the ribofuranosyl sulfones were synthesized with complete α-selectivity via the glycosylation of heteroarylthiols using ribofuranosyl iodides as glycosyl donors and the subsequent oxidation of the resulting heteroaryl 1-thioribofuranosides with magnesium monoperphthalate (MMPP). The Julia olefination of the α-ribofuranosyl sulfones with aldehydes proceeded smoothly in one pot to afford the thermodynamically less stable (E)-exo-glycals with modest-to-excellent stereoselectivity (up to E/Z = 94:6) under the optimized conditions. The E selectivity was especially high for aromatic aldehydes. In contrast, the (Z)-exo-glycal was obtained as the main product with low stereoselectivity when the corresponding β-ribofuranosyl sulfone was used (E/Z = 41:59). The remarkable impact of the anomeric configuration of the ribofuranosyl sulfones on the stereoselectivity of the Julia olefination has been rationalized using density functional theory (DFT) calculations. The protected ribose moiety of the resulting exo-glycals induced completely α-selective cyclopropanation on the exocyclic carbon-carbon double bond via the Simmons-Smith-Furukawa reaction. The 2-cyanoethyl group was found to be useful for the protection of the exo-glycals, as it could be removed without affecting the exocyclic C═C bond.
Collapse
Affiliation(s)
- Natsuhisa Oka
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System Furo-cho, Gifu University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
14
|
Kumar R, Kumar M, Kumar V, Kumar A, Haque N, Kumar R, Prasad AK. Recent progress in the synthesis of C-4′-spironucleosides and its future perspectives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, R.D.S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Manish Kumar
- Department of Chemistry, Motilal Nehru College, University of Delhi, Delhi, India
| | - Vijay Kumar
- Department of Chemistry, L. S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Arbind Kumar
- Department of Chemistry, L. S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Navedul Haque
- University Department of Chemistry, B. R. A. Bihar University, Muzaffarpur, India
| | - Ram Kumar
- Department of Chemistry, R.D.S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Wang Y, Yao H, Hua M, Jiao Y, He H, Liu M, Huang N, Zou K. Direct N-Glycosylation of Amides/Amines with Glycal Donors. J Org Chem 2020; 85:7485-7493. [PMID: 32400156 DOI: 10.1021/acs.joc.0c00975] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Direct N-glycosylation between glycals and amides/amines was achieved with exclusive stereoselectivity in moderate to high yields. Various amides, amines, and 3,4-O-carbonate-glycals were tolerated, and unique β-N-glycosides were obtained. The strategy was based on palladium-catalyzed decarboxylative allylation, and the high 1,4-cis-selectivity was proposed because of the hydrogen bonding effect. Notably, all the synthesized products were subjected to preliminary bioactivity studies, revealing that three compounds were cytotoxic to tumor cells and nontoxic to normal human cells.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Min Hua
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Yang Jiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
16
|
Köllmann C, Sake SM, Jones PG, Pietschmann T, Werz DB. Protecting-Group-Mediated Diastereoselective Synthesis of C4'-Methylated Uridine Analogs and Their Activity against the Human Respiratory Syncytial Virus. J Org Chem 2020; 85:4267-4278. [PMID: 32036652 DOI: 10.1021/acs.joc.9b03425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adjusting the protecting group strategy, from an alkyl ether to a bidentate ketal at the carbohydrate backbone of uridine, facilitates a switchable diastereoselective α- or β-C4'/C5'-spirocyclopropanation. Using these spirocyclopropanated nucleosides as key intermediates, we synthesized a variety of C4'-methylated d-ribose and l-lyxose-configured uridine derivatives by a base-mediated ring-opening of the spirocyclopropanol moiety. Investigations of antiviral activity against the human respiratory syncytial virus were carried out for selected derivatives, showing moderate activity.
Collapse
Affiliation(s)
- Christoph Köllmann
- Technische Universität Braunschweig, Institute for Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institute for Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute for Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|