1
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Liu H, Shi L, Tan X, Kang B, Luo G, Jiang H, Qi C. Et 2 Zn-Mediated Gem-Dicarboxylation of Cyclopropanols with CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307633. [PMID: 38126667 PMCID: PMC10916615 DOI: 10.1002/advs.202307633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/23/2023]
Abstract
An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/β-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lei Shi
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Gen Luo
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
3
|
Zhi S, Yao H, Zhang W. Difunctionalization of Dienes, Enynes and Related Compounds via Sequential Radical Addition and Cyclization Reactions. Molecules 2023; 28:1145. [PMID: 36770814 PMCID: PMC9919800 DOI: 10.3390/molecules28031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Radical reactions are powerful in creating carbon-carbon and carbon-heteroatom bonds. Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons with two new functional groups is both synthetically and operationally efficient. Summarized in this paper is the recent development of reactions involving radical addition and cyclization of dienes, diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition metal-catalysis, photoredox, and electrochemical conditions are included.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Hongjun Yao
- College of Biological Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
4
|
Guo Y, Wei L, Wen Z, Jiang H, Qi C. Photoredox-catalyzed coupling of aryl sulfonium salts with CO 2 and amines to access O-aryl carbamates. Chem Commun (Camb) 2023; 59:764-767. [PMID: 36541669 DOI: 10.1039/d2cc06033g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient photoredox-catalyzed three-component coupling reaction of aryl sulfonium salts, carbon dioxide and amines has been developed for the first time. This reaction provides a new strategy for the synthesis of a range of valuable O-aryl carbamates from readily available arenes via a site-selective thianthrenation/carbamoyloxylation two-step process. Mild conditions, broad substrate scope and good functional group tolerance are the features of the transformation. The synthetic utility of the method was demonstrated by the late-stage modification of bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Yanhui Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Li Wei
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhonglin Wen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
5
|
Wang H, Huang Y, Wu Q, Lu J, Xu YL, Chen YY. Visible-Light-Promoted bis(Difluoromethylation)/Cyclization of 2-Vinyloxy Arylalkynes to Prepare Benzofuran Derivatives. J Org Chem 2022; 87:13288-13299. [PMID: 36166821 DOI: 10.1021/acs.joc.2c01938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-promoted difluoromethylation/cyclization of 2-vinyloxy arylalkynes was developed, providing a variety of bis(difluoromethyl)-substituted benzofurans in moderate to good yields. A plausible mechanism involving difluoromethyl radical cascade cyclization and solvent-promoted ionic addition was proposed. This protocol has the advantages of having mild reaction conditions, simple operation, and good functional group tolerance.
Collapse
Affiliation(s)
- Huan Wang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yao Huang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Jun Lu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Ji XS, Zuo HD, Shen YT, Hao WJ, Tu SJ, Jiang B. Electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes. Chem Commun (Camb) 2022; 58:10420-10423. [PMID: 36043317 DOI: 10.1039/d2cc03922b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes with disulfonimides and alcohols is reported, producing a series of functionalized benzofurans under catalyst- and oxidant-free conditions. The annulative aminoketalization proceeds with simple short-chain alcohols such as methanol, ethanol and n-propanol as O-nucleophilic reagents, while the reaction occurs in the annulative aminooxygenation direction in the presence of water and large steric sec-butyl alcohol (SBA).
Collapse
Affiliation(s)
- Xiao-Shuang Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China. .,School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
7
|
Wang L, Qi C, Xiong W, Jiang H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Hu BL, Wu CF, Zhang XG, Kim J. Direct synthesis of trifluoroethylated benzofurans from silver-catalyzed annulation of trifluoromethyl propynols with phenols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
10
|
Li M, Li Y, Jia WY, Sun GQ, Gao F, Zhao GX, Qiu YF, Wang XC, Liang YM, Quan ZJ. Directed Copper-Catalyzed Tandem Radical Cyclization Reaction of Alkyl Bromides and Unactivated Olefins. Org Lett 2022; 24:2738-2743. [PMID: 35357833 DOI: 10.1021/acs.orglett.2c00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free radical cyclization reaction is a promising strategy for ring framework formation. Herein, we report a copper-catalyzed tandem radical cyclization strategy for preparing substituted lactam derivatives. This reaction proceeds through a radical coupling approach, which not only allows a wide range of alkenes but also is quite compatible with the primary, secondary, and tertiary radicals. In addition, density functional theory calculations were performed to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wan-Yuan Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Xiao Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
11
|
Ji X, Fu R, Wang S, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch Reaction of Phenol/ Arylamine-Linked 1,6-Enynes with Perhalogenated Methane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
13
|
Cai T, Zhang Z, Li P, Sun T, Chen X, Ni Y, Chen J, Xu H, Xu Y, Wu C, Shen R, Gao Y. Radical Cascade Bicyclization/Aromatization of 1,7‐Enynes with 1,3‐Dicarbonyl Compounds towards 2,3‐Dihydro‐1
H
‐cyclopenta[
a
]naphthalenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Cai
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Zhebing Zhang
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
| | - Peiqin Li
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
| | - Tao Sun
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
| | - Yuqi Ni
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Yanfei Xu
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 People's Republic of China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin Shaoxing 312000 People's Republic of China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| |
Collapse
|
14
|
Zhang P, Yu G, Zhao N, Zhang S, Zhang M, Wang L, Li Z, Ying J, Gao X. Palladium-Catalyzed Cascade Difluoroalkylation and Phosphinoylation of 2-Vinyloxy Arylalkynes: Selective Synthesis of Difluoroalkyl-Containing Tetrasubstituted Alkenylphosphine Oxides. J Org Chem 2021; 86:10105-10117. [PMID: 34259510 DOI: 10.1021/acs.joc.1c00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd-catalyzed difluoroalkylation/cyclization/phosphinoylation of 2-vinyloxy arylalkynes with ethyl difluoroiodoacetate and diarylphosphine oxides has been successfully developed. This reaction allows the formation of Csp3-CF2, Csp3-Csp2, and Csp2-P(O) bonds in one step, providing a straightforward route to difluoroalkyl-containing tetrasubstituted alkenylphosphine oxides with complete stereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guo Yu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Ning Zhao
- Henan Institute of Technology, Xinxiang, Henan 453003, PR China
| | - Shanshan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Minghui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoting Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, No.818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
15
|
Mao K, Dai L, Chen A, Liu Y, Liu X, Wang C, Rong L. Radical Annulation for the Synthesis of Cyclopenta[c]chromene Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kaimin Mao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Ang Chen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Yun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| |
Collapse
|
16
|
Gu Y, Dai L, Zhang J, Lu X, Liu X, Wang C, Zhang J, Rong L. Silver-Catalyzed Radical Cascade Sulfonation/Cycloaddition for the Construction of Multifunctional Succimides Containing Separable Z/ E-Isomers. J Org Chem 2021; 86:2173-2183. [PMID: 33475351 DOI: 10.1021/acs.joc.0c02275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silver-catalyzed cascade cycloaddition of aza-1,6-enynes, affording multifunctional succimide frameworks initiated by the arylsulfonyl radical addition, has been developed. This process shows mild reaction conditions, excellent structural selectivity, and broad functional group tolerance. In addition, the Z/E-isomers can be easily separated, which provides an efficient method for obtaining pure Z/E-configuration products.
Collapse
Affiliation(s)
- Yan Gu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinghang Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xinchi Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinpeng Zhang
- College of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, People's Republic of China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
17
|
Ji WZ, Shi HN, Hao WJ, Wei P, Tu SJ, Jiang B. Generation of stereodefined (Z)-3,4-dihydronaphthalen-1(2H)-ones via copper-catalyzed annulation-cyanotrifluoromethylation of 1,7-enynes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Wang L, Wang P, Guo T, Xiong W, Kang B, Qi C, Luo G, Luo Y, Jiang H. Copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO 2: stereoselective synthesis of ( Z)-enol carbamates. Org Chem Front 2021. [DOI: 10.1039/d0qo01607a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO2 was disclosed, providing an efficient and straightforward access to a range of stereodefined (Z)-enol carbamates.
Collapse
Affiliation(s)
- Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Pan Wang
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tianzuo Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bangxiong Kang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology
- Anhui University
- Hefei 230601
- P. R. China
- State Key Lab of Fine Chemicals
| | - Yi Luo
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
19
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
20
|
Liu Q, Mei Y, Wang L, Ma Y, Li P. Visible‐Light‐Induced Radical Cascade Cyclizations of 1,7‐Enynes with Sulfinic Acids: Direct Access to Sulfonated Chromanes and Sulfonated Tetrahydroquinolines under Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qi Liu
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 People's Republic of China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 People's Republic of China
| | - Yousheng Mei
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 People's Republic of China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 People's Republic of China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| | - Pinhua Li
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| |
Collapse
|
21
|
Li X, Xu Z, Wang L, Wang F, Yang J, Li P. A Facile Synthesis of Functionalized Benzofurans via Visible‐Light‐Induced Tandem Cyclization of 1,6‐Enynes with Disulfides. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuezhi Li
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Zhaoliang Xu
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Fang Wang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou Zhejiang 318000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Pinhua Li
- Department of Chemistry Huaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Xiong TK, Li XJ, Zhang M, Liang Y. Organic synthesis of fixed CO 2 using nitrogen as a nucleophilic center. Org Biomol Chem 2020; 18:7774-7788. [PMID: 32966496 DOI: 10.1039/d0ob01590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, recent progress in the application of CO2 as an electrophilic reagent and nitrogen as a nucleophilic center under different catalytic conditions in organic synthesis is summarized. The used catalytic methods in the reactions of CO2 and nitrogen are classified as metal catalysis, metal-free catalysis, photocatalysis and electrocatalysis. Various catalytic conditions have been used to solve the problems of thermodynamic properties and stability of CO2. The transformation mechanisms of these reactions are discussed.
Collapse
Affiliation(s)
- Ting-Kai Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | | | | | | |
Collapse
|
23
|
Copper/DTBP-Promoted Oxyselenation of Propargylic Amines with Diselenides and CO 2: Synthesis of Selenyl 2-Oxazolidinones. J Org Chem 2020; 85:10924-10933. [PMID: 32786223 DOI: 10.1021/acs.joc.0c01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly efficient electrophilic oxyselenation of propargylic amines with diselenides and CO2 under atmospheric pressure promoted by copper/DTBP is reported. Various biologically important selenyl 2-oxazolidinones were produced in moderate to excellent yields. The developed method features a broad substrate scope, easy scalability, and mild reaction conditions.
Collapse
|
24
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
25
|
Ohno S, Arisawa M. Cyclizations of Benzo-Fused Substrates Involving Two Multiple Bonds, Including Heteroatom-Substituted Unsaturated Bonds. J Org Chem 2020; 85:6831-6843. [DOI: 10.1021/acs.joc.0c00452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shohei Ohno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Huang MH, Hong Y, Hu JQ, Yang SZ, Zhu YL, Wang DC, Jiang B. Iron(III)-promoted hydrofunctionalization/bicyclization of 1,7-enynes toward benzo[a]fluoren-5-ones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Zhang P, Wang C, Cui M, Du M, Li W, Jia Z, Zhao Q. Synthesis of Difluoroalkylated Benzofuran, Benzothiophene, and Indole Derivatives via Palladium-Catalyzed Cascade Difluoroalkylation and Arylation of 1,6-Enynes. Org Lett 2020; 22:1149-1154. [DOI: 10.1021/acs.orglett.9b04681] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453003, China
| | - Mengchao Cui
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengsi Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zexin Jia
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
28
|
Zhang T, Zang H, Gai F, Feng Z, Li M, Duan C. Photoswitchable Cu(ii)/Cu(i) catalyses assisted by enzyme-like non-covalent interactions in Cu(ii)–melamine coordination polymers for installing CO2/CS2 and CF3 groups in heterocycles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02154g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes photoswitchable Cu(ii)/Cu(i) catalyses and enzyme-like interactions in Cu–TDPAT for installing CO2/CS2 and CF3 groups in heterocycles.
Collapse
Affiliation(s)
- Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Hanbin Zang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Fangyuan Gai
- Advanced Institute of Materials Science
- School of Chemistry and Biology
- Changchun University of Technology
- Changchun
- P. R. China
| | - Zhi Feng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Mochen Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|