1
|
Prasad VS, Krishna SM, Ranga Rao V, Ravi D, Kumar CA, Adiyala PR. Visible Light-Induced Alkylation of Malononitrile-Assisted Ketones through Deaminative Couplings. J Org Chem 2025; 90:6244-6250. [PMID: 40281411 DOI: 10.1021/acs.joc.5c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The direct alkylation of carbonyl compounds at α & β positions represents a significant challenge. Here, we report a catalyst-free visible light-induced deaminative alkylation that efficiently produces α, β-alkylated malononitrile-assisted ketones. Mechanistic studies suggested an EDA complex is formed by the Katritzky salt and the α & β carbanion of malononitrile-aided ketones, which permits the disruption of C-N bonds and the generation of alkyl radicals. Remarkably, this strategy eliminates the need for metal catalysts, additives, and ligands offering enhanced environmental sustainability and features mild, catalyst-free, and broad functional group tolerance. Our optimized catalyst-free condition under blue LED light yielded regio isomers of malononitrile-assisted ketones in good to excellent yields with diverse electronic properties and substitutions. Implementation of the flow setup to this batch protocol enhanced the efficiency of the reaction, demonstrating robustness and sustainability in organic synthesis.
Collapse
Affiliation(s)
- Vadla Shiva Prasad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silari Mohana Krishna
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vadithya Ranga Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharavath Ravi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chelukalapally Anil Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Chen S, Yu Y, Chen M. Visible-light-promoted phosphine-mediated synthesis of thioesters and thioalkynes from sodium arylsulfinates. Org Biomol Chem 2025. [PMID: 40309970 DOI: 10.1039/d5ob00453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We herein report a facile method to access thioesters and thioalkynes via a visible-light-promoted phosphine-mediated radical deoxyfunctionalization of sodium arylsulfinates with activated acids and iodoalkynes, respectively. The introduction of acid additives could facilitate the generation of arylthiyl radicals via tuning the equilibrium between arylsulfinate salts and the corresponding sulfinic acids, which favours the formation of thioesters while disfavouring the formation of thioalkynes. This protocol also features readily available starting materials, good functional group tolerance and practical applicability, for example, in the late-stage functionalization of non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Sen Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Yu Yu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
3
|
Wang S, Wang L, Cui J, Zhang L, Zhang Q, Ke C, Huang S. Recent progress in C-S bond formation via electron donor-acceptor photoactivation. Org Biomol Chem 2025; 23:1794-1808. [PMID: 39831472 DOI: 10.1039/d4ob01951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent advancements in C-S bond formation via electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date. These reactions offer novel, environmentally friendly pathways for the synthesis of sulfur-containing compounds.
Collapse
Affiliation(s)
- Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Liting Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Jin Cui
- Low Permeability Oil and Gas Field Exploration and Development of the National Engineering Laboratory, Xi'an Changqing Chemical Group Co. Ltd of Changqing Oilfield Company, Xi'An, Shaanxi, 710021, China
| | - Liying Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qunzheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Liu Z, Hu Y, Wang S, Ding Y, Zhang Z, Qiu YF, Liu Z, Lei J. Visible-light-driven catalyst-free C-S cross-coupling of thiol derivatives and aryl halides. Org Biomol Chem 2024; 22:8967-8972. [PMID: 39420589 DOI: 10.1039/d4ob01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A mild, scalable, and high-yielding visible-light-promoted C-S cross-coupling between alkyl thiol derivatives and (hetero)aryl halides without the need for metals, ligands, or photocatalysts is reported, offering advantages over traditional C-S bond forming strategies. The formation of an electron donor-acceptor (EDA) complex is supported by experimental and computational mechanistic studies, which undergoes visible-light-induced charge transfer to initiate C-S bond formation in the absence of a photoredox catalyst.
Collapse
Affiliation(s)
- Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yansong Hu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
Liu Z, Wang S, Liu Z, Ding Y, Hu Y, Liu R, Zhang Z, Qiu YF, Lei J. DFT study of electron donor-acceptor (EDA) complexes: mechanism exploration and theoretical prediction. Org Biomol Chem 2024; 22:7834-7840. [PMID: 39037724 DOI: 10.1039/d4ob00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Organic synthesis methods initiated by visible light have received increasing attention from synthetic chemists. Reactions initiated by EDA complexes do not require the use of toxic or expensive photoredox catalysts, unlike traditional photoreaction processes. However, this kind of reaction requires a particular structure for the substrate, so it is important to study the detailed and systematic reaction mechanism for its design. EDA complexes of substituted 1H-indole and substituted benzyl bromide derivatives were studied by density functional theory (DFT). The difference between EDA complexes with substituents of different kinds and locations were compared by theoretical study and a new EDA complex was predicted.
Collapse
Affiliation(s)
- Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Runzhang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
Yoshizawa K, Li BX, Matsuyama T, Wang C, Uchiyama M. Visible-Light-Driven Germyl Radical Generation via EDA-Catalyzed ET-HAT Process. Chemistry 2024; 30:e202401546. [PMID: 38716768 DOI: 10.1002/chem.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/28/2024]
Abstract
We have established a facile and efficient protocol for the generation of germyl radicals by employing photo-excited electron transfer (ET) in an electron donor-acceptor (EDA) complex to drive hydrogen-atom transfer (HAT) from germyl hydride (R3GeH). Using a catalytic amount of EDA complex of commercially available thiol and benzophenone derivatives, the ET-HAT cycle smoothly proceeds simply upon blue-light irradiation without any transition metal or photocatalyst. This protocol also affords silyl radical from silyl hydride.
Collapse
Affiliation(s)
- Kaito Yoshizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chao Wang
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| |
Collapse
|
7
|
Xue JH, Li Y, Liu Y, Li Q, Wang H. Site-Specific Deaminative Trifluoromethylation of Aliphatic Primary Amines. Angew Chem Int Ed Engl 2024; 63:e202319030. [PMID: 38179851 DOI: 10.1002/anie.202319030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.
Collapse
Affiliation(s)
- Jiang-Hao Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Shi C, Guo L, Gao H, Luo M, Zhou X, Yang C, Xia W. Three-Component Aminoheteroarylation of Alkenes via Photoinduced EDA Complex Activation. Org Lett 2023; 25:7661-7666. [PMID: 37844134 DOI: 10.1021/acs.orglett.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A catalyst-free approach for the multicomponent aminoheteroarylation reaction of alkenes with N-aminopyridinium salts and heteroarenes is herein described. The reaction shows good functional group tolerance and allows the generation of valuable β-heteroarylethylamines in satisfying yields. In this transformation, N-aminopyridinium salts and heteroarenes are utilized to generate electron donor-acceptor complexes, which undergo a single-electron transfer process upon light irradiation to form key amidyl radicals and heteroaryl radical cations. The amidyl radical is subsequently captured by alkenes, followed by a Minisci-type reaction to yield the desired β-heteroarylamines as products.
Collapse
Affiliation(s)
- Chengcheng Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Han Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiao Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
van Dalsen L, Brown RE, Rossi‐Ashton JA, Procter DJ. Sulfonium Salts as Acceptors in Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2023; 62:e202303104. [PMID: 36959098 PMCID: PMC10952135 DOI: 10.1002/anie.202303104] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This "sulfonium tag" approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Department of ChemistryThe University of ManchesterManchesterUK
| | | | | |
Collapse
|
10
|
Song HY, Liu MY, Huang J, Wang D, Jiang J, Chen JY, Yang TB, He WM. Photosynthesis of 3-Alkylated Coumarins from Carboxylic Acids Catalyzed by a Na 2S-Based Electron Donor-Acceptor Complex. J Org Chem 2023; 88:2288-2295. [PMID: 36738288 DOI: 10.1021/acs.joc.2c02679] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A simple and practical electron donor-acceptor (EDA) strategy to synthesize various 3-alkylated coumarins from easily available coumarins and naturally abundant carboxylic acids under photocatalyst-, oxidant-, and additive-free and mild conditions is reported. Using Na2S as the catalytic electron donor, a series of primary, secondary, and tertiary carbon radicals can be efficiently generated, and the EDA complex can be regenerated without an alkaline additive.
Collapse
Affiliation(s)
- Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Mei-Yi Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Das M, Zamani L, Bratcher C, Musacchio PZ. Azolation of Benzylic C-H Bonds via Photoredox-Catalyzed Carbocation Generation. J Am Chem Soc 2023; 145:10.1021/jacs.2c12850. [PMID: 36757817 PMCID: PMC10409882 DOI: 10.1021/jacs.2c12850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A visible-light photoredox-catalyzed method is reported that enables the coupling between benzylic C-H substrates and N-H azoles. Classically, medicinally relevant N-benzyl azoles are produced via harsh substitution conditions between the azole and a benzyl electrophile in the presence of strong bases at high temperatures. Use of C-H bonds as the alkylating partner streamlines the preparation of these important motifs. In this work, we report the use of N-alkoxypyridinium salts as a critically enabling reagent for the development of a general C(sp3)-H azolation. The platform enables the alkylation of electron-deficient, -neutral, and -rich azoles with a range of C-H bonds, most notably secondary and tertiary partners. Moreover, the protocol is mild enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing SN2 and cross-coupling methods.
Collapse
Affiliation(s)
- Mrinmoy Das
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Leila Zamani
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Christopher Bratcher
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Patricia Z Musacchio
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
12
|
Qian B, Zhang L, Zhang G, Fu Y, Zhu X, Shen G. Thermodynamic Evaluation on Alkoxyamines of TEMPO Derivatives, Stable Alkoxyamines or Potential Radical Donors? ChemistrySelect 2022. [DOI: 10.1002/slct.202204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bao‐Chen Qian
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Lu Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Gao‐Shuai Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Xiao‐Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry Department of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
13
|
Zheng W, Xu Y, Luo H, Feng Y, Zhang J, Lin L. Light-Promoted Arylsilylation of Alkenes with Hydrosilanes. Org Lett 2022; 24:7145-7150. [PMID: 36137182 DOI: 10.1021/acs.orglett.2c02835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report light-promoted photo/hydrogen atom transfer dual catalysis for arylsilylation of alkenes via the radical-radical cross-coupling with diverse hydrosilanes, which provides a simple and efficient method to prepare various organosilicon compounds with a wide range of substrate scope and good functional group tolerance under transition-metal- and chemical-oxidant-free conditions. Furthermore, the arylsilylation of alkenes can also proceed via the possible electron donor-acceptor complex under exogenous photocatalyst-free conditions.
Collapse
Affiliation(s)
- Wanyao Zheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongjie Xu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hang Luo
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhui Feng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jinqiao Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Luqing Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
14
|
Liu MT, Liu DG, Qin ZW, Wang GZ. Visible light‐induced decarboxylative alkylations enabled by electron‐donnor acceptor complex. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng-Ting Liu
- USTC: University of Science and Technology of China institute of advanced technology, CHINA
| | - De-Guang Liu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Zhi-Wei Qin
- USTC: University of Science and Technology of China institute of advanced technology, CHINA
| | - Guang-Zu Wang
- USTC: University of Science and Technology of China Department of Chemistry ustc 230026 HEFEI CHINA
| |
Collapse
|
15
|
Gao Y, Jiang S, Mao ND, Xiang H, Duan JL, Ye XY, Wang LW, Ye Y, Xie T. Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C-C, C-B, and C-S Bonds. Top Curr Chem (Cham) 2022; 380:25. [PMID: 35585362 DOI: 10.1007/s41061-022-00381-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Since their discovery in 1970s, Katritzky salts have emerged as one of the most important classes of building blocks for use in organic synthesis and drug discovery. These bulky pyridinium salts derived from alkylamine can readily generate alkyl radical and undergo a variety of organic transformation reactions such as alkylation, arylation, alkenylation, alkynylation, carbonylation, sulfonylation, and borylation. Through these transformations, complexed molecules bearing new C-C, C-B, or C-S bonds can be constructed in easy ways and in simple steps. This review aims to summarize recent advances in these versatile building blocks in well-classified categories. Representative examples and their reaction mechanisms are discussed. The hope is to provide the scientific community with convenient access to collective information and accelerate further research.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.,School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510000, Guangdong, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| |
Collapse
|
16
|
Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. A practical and sustainable two-component Minisci alkylation via photo-induced EDA-complex activation. Chem Sci 2022; 13:5701-5706. [PMID: 35694363 PMCID: PMC9116295 DOI: 10.1039/d2sc01363k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
An operationally simple, open-air, and efficient light-mediated Minisci C-H alkylation method is described, based on the formation of an electron donor-acceptor (EDA) complex between nitrogen-containing heterocycles and redox-active esters. In contrast to previously reported protocols, this method does not require a photocatalyst, an external single electron transfer agent, or an oxidant additive. Achieved under mildly acidic and open-air conditions, the reaction incorporates primary-, secondary-, and tertiary radicals, including bicyclo[1.1.1]pentyl (BCP) radicals, along with various heterocycles to generate Minisci alkylation products in moderate to good yields. Additionally, the method is exploited to generate a stereo-enriched, hetereoaryl-substituted carbohydrate.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Eugénie Romero
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
17
|
Ma Q, Buchon L, Magné V, Graff B, Morlet‐Savary F, Xu Y, Benltifa M, Lakhdar S, Lalevée J. Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromol Rapid Commun 2022; 43:e2200314. [DOI: 10.1002/marc.202200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Ma
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Loïc Buchon
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | - Valentin Magné
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Bernadette Graff
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | | | - Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu 241002 P. R. China
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies CERTE BP 273 Soliman 8020 Tunisia
| | - Sami Lakhdar
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Jacques Lalevée
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| |
Collapse
|
18
|
Yang J, Yang L, Gu J, Shuai L, Wang H, Ouyang Q, Li YL, Liu H, Gong L. Nickel-Catalyzed Reductive Cascade Arylalkylation of Alkenes with Alkylpyridinium Salts. Org Lett 2022; 24:2376-2380. [PMID: 35319219 DOI: 10.1021/acs.orglett.2c00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe a nickel-catalyzed reductive deaminative arylalkylation of tethered alkenes with pyridinium salts as C(sp3) electrophiles. This two-component dicarbofunctionalization reaction enables the efficient synthesis of various benzene-fused cyclic compounds bearing all-carbon quaternary centers. The approach presented in this paper proceeds under mild conditions, tolerating a wide variety of functional groups and heterocycles. It has been used to functionalize complicated molecules at a late stage.
Collapse
Affiliation(s)
- Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lina Yang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Jing Gu
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Li Shuai
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Hui Wang
- School of Biological & Chemical Engineering, Chongqing University of Education, Nanan, Chongqing 400065, China
| | - Qin Ouyang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Haibin Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong'E E-Jiao Co. Ltd., Dong'E 252201, China
| | - Liang Gong
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
19
|
Cui P, Li S, Wang X, Li M, Wang C, Wu L. Visible-Light-Promoted Unsymmetrical Phosphine Synthesis from Benzylamines. Org Lett 2022; 24:1566-1570. [PMID: 35157457 DOI: 10.1021/acs.orglett.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, by applying visible-light photoredox catalysis, we have achieved the catalytic deaminative alkylation of diphenylphosphine and phenyl phosphine with benzylamine-derived Katritzky salts at room temperature. The use of Eosin Y as photoredox catalyst and visible light can largely promote the reaction. A series of unsymmetrical tertiary phosphines were successfully synthesized, including phosphines with three different substituents that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Penglei Cui
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Tanaka T, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S, Hasegawa E. A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS OMEGA 2022; 7:4655-4666. [PMID: 35155957 PMCID: PMC8829864 DOI: 10.1021/acsomega.1c06857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
A new photocatalytic system was developed for carrying out desulfonylative α-oxyamination reactions of α-sulfonylketones in which α-ketoalkyl radicals are generated. The catalytic system is composed of benzimidazolium aryloxide betaines (BI+-ArO-), serving as visible light-absorbing electron donor photocatalysts, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), playing dual roles as an electron donor for catalyst recycling and a reagent to capture the generated radical intermediates. Information about the detailed nature of BI+-ArO- and the photocatalytic processes with TEMPO was gained using absorption spectroscopy, electrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
- Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-ya Takizawa
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
21
|
Tao M, Wang A, Guo P, Li W, Zhao L, Tong J, Wang H, Yu Y, He C. Visible‐Light‐Induced Regioselective Deaminative Alkylation of Coumarins via Photoredox Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - An‐Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Weipiao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| | - Jie Tong
- School of Medicine Yale University New Haven Connecticut 06510 United States
| | - Haoyang Wang
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Yanbo Yu
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Chun‐Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| |
Collapse
|
22
|
Cu-catalyzed coupling of unactivated tertiary alkyl alcohols with thiols via C–O bond cleavage. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Li H, Liu Y, Chiba S. Leveraging of Sulfur Anions in Photoinduced Molecular Transformations. JACS AU 2021; 1:2121-2129. [PMID: 34977884 PMCID: PMC8715496 DOI: 10.1021/jacsau.1c00363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 05/25/2023]
Abstract
This perspective describes recent advances in the use of sulfur anions to promote molecular transformations under irradiation with visible light. The topics are classified by the following reaction modes performed by the key sulfur anions: (1) C-S coupling via electron donor-acceptor (EDA) interactions, (2) photoinduced molecular transformation via sulfur anion EDA catalysis, (3) sulfur anions as photoredox and hydrogen atom transfer (HAT) catalysts, and 4) dithiocarbamate and xanthate as nucleophilic catalysts for photoinduced radical cascade reactions.
Collapse
Affiliation(s)
- Haoyu Li
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuliang Liu
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
25
|
Wang JX, Ge W, Xing WL, Fu MC. Photoinduced Deaminative Alkylation for the Synthesis of γ-Ketoesters via Electron Donor-Acceptor Complex Formation. J Org Chem 2021; 86:18224-18231. [PMID: 34846880 DOI: 10.1021/acs.joc.1c02499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-induced deaminative alkylation of Katritzky salts with silyl enol ethers has been developed. The reaction can proceed efficiently through electron donor-acceptor complex formation, avoiding the use of precious metal complexes or synthetically elaborate organic dyes. A series of functionalized γ-ketoesters was successfully obtained with good functional group tolerance and compatibility under mild and straightforward conditions.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Wei Ge
- Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Long Xing
- Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Chen Fu
- Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
27
|
Ferko B, Marčeková M, Detková KR, Doháňošová J, Berkeš D, Jakubec P. Visible-Light-Promoted Cross-Coupling of N-Alkylpyridinium Salts and Nitrostyrenes. Org Lett 2021; 23:8705-8710. [PMID: 34723544 DOI: 10.1021/acs.orglett.1c03122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective, denitrative cross-coupling of β-nitrostyrenes with N-alkylpyridinium salts for the preparation of functionalized styrenes has been developed. The visible-light-induced reaction proceeds without any catalyst at ambient temperature. Broad in scope and tolerant to multiple functional groups, the moderately yielding transformation is orthogonal to several traditional metal-catalyzed cross-couplings.
Collapse
Affiliation(s)
- Branislav Ferko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Michaela Marčeková
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Katarína Ráchel Detková
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Jana Doháňošová
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Dušan Berkeš
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Pavol Jakubec
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| |
Collapse
|
28
|
Baker KM, Tallon A, Loach RP, Bercher OP, Perry MA, Watson MP. α-Chiral Amines via Thermally Promoted Deaminative Addition of Alkylpyridinium Salts to Sulfinimines. Org Lett 2021; 23:7735-7739. [PMID: 34570516 DOI: 10.1021/acs.orglett.1c02708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A deaminative reaction of Katritzky alkylpyridinium salts and sulfinimines has been developed to deliver enantiopure α-chiral amines. The success of this method relied on the discovery of a thermally promoted deamination via single-electron transfer of an anion-π complex of the alkylpyridinium cation with potassium carbonate. This method boasts excellent diastereoselectivity over the α-stereocenter as well as broad functional group and heterocycle tolerance.
Collapse
Affiliation(s)
- Kristen M Baker
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Amanda Tallon
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Richard P Loach
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Olivia P Bercher
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew A Perry
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mary P Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Wang S, Wang H, König B. Light-Induced Single-Electron Transfer Processes involving Sulfur Anions as Catalysts. J Am Chem Soc 2021; 143:15530-15537. [PMID: 34542279 DOI: 10.1021/jacs.1c07785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoredox catalysis has evolved as an attractive approach to enable a wide variety of chemical reactions with high selectivity under mild conditions. The development of novel photocatalytic systems is key to obtaining new reactivity and improving their catalytic performances. In this context, cost-effective organic anion-based photocatalysts have recently attracted increasing interest. In particular, sulfur-based anionic catalysts are of interest due to their unique redox properties. This Perspective highlights and discusses recent advances in light-induced single-electron-transfer processes directly involving sulfur anions as catalysts. The content of this Perspective is organized along the different photoinduced electron-transfer pathways between catalysts and substrates.
Collapse
Affiliation(s)
- Shun Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Hua Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
30
|
Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN 2 pincer ligand. Nat Commun 2021; 12:4904. [PMID: 34385455 PMCID: PMC8361081 DOI: 10.1038/s41467-021-25222-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals. Alkynes are amongst the most valuable functional groups in organic chemistry, however, the preparation of alkyl-substituted alkynes still remains elusive. Here the authors show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
31
|
de Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. A General Organocatalytic System for Electron Donor-Acceptor Complex Photoactivation and Its Use in Radical Processes. J Am Chem Soc 2021; 143:12304-12314. [PMID: 34320312 PMCID: PMC8361436 DOI: 10.1021/jacs.1c05607] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report herein a modular class of organic catalysts that, acting as donors, can readily form photoactive electron donor-acceptor (EDA) complexes with a variety of radical precursors. Excitation with visible light generates open-shell intermediates under mild conditions, including nonstabilized carbon radicals and nitrogen-centered radicals. The modular nature of the commercially available xanthogenate and dithiocarbamate anion organocatalysts offers a versatile EDA complex catalytic platform for developing mechanistically distinct radical reactions, encompassing redox-neutral and net-reductive processes. Mechanistic investigations, by means of quantum yield determination, established that a closed catalytic cycle is operational for all of the developed radical processes, highlighting the ability of the organic catalysts to turn over and iteratively drive every catalytic cycle. We also demonstrate how the catalysts' stability and the method's high functional group tolerance could be advantageous for the direct radical functionalization of abundant functional groups, including aliphatic carboxylic acids and amines, and for applications in the late-stage elaboration of biorelevant compounds and enantioselective radical catalysis.
Collapse
Affiliation(s)
- Eduardo de Pedro Beato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Davide Spinnato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Wei Zhou
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,ICREA-Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
32
|
Rani S, Dash SR, Bera A, Alam MN, Vanka K, Maity P. Phosphite mediated asymmetric N to C migration for the synthesis of chiral heterocycles from primary amines. Chem Sci 2021; 12:8996-9003. [PMID: 34276927 PMCID: PMC8261767 DOI: 10.1039/d1sc01217g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
A phosphite mediated stereoretentive C-H alkylation of N-alkylpyridinium salts derived from chiral primary amines was achieved. The reaction proceeds through the activation of the N-alkylpyridinium salt substrate with a nucleophilic phosphite catalyst, followed by a base mediated [1,2] aza-Wittig rearrangement and subsequent catalyst dissociation for an overall N to C-2 alkyl migration. The scope and degree of stereoretention were studied, and both experimental and theoretical investigations were performed to support an unprecedented aza-Wittig rearrangement-rearomatization sequence. A catalytic enantioselective version starting with racemic starting material and chiral phosphite catalyst was also established following our understanding of the stereoretentive process. This method provides efficient access to tertiary and quaternary stereogenic centers in pyridine systems, which are prevalent in drugs, bioactive natural products, chiral ligands, and catalysts.
Collapse
Affiliation(s)
- Soniya Rani
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune 411008 India
| | - Asish Bera
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Md Nirshad Alam
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune 411008 India
| | - Pradip Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
| |
Collapse
|
33
|
Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Ye JH, Ju T, Huang H, Liao LL, Yu DG. Radical Carboxylative Cyclizations and Carboxylations with CO 2. Acc Chem Res 2021; 54:2518-2531. [PMID: 33956436 DOI: 10.1021/acs.accounts.1c00135] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon dioxide (CO2) is not only a greenhouse gas and a common waste product but also an inexpensive, readily available, and renewable carbon resource. It is an important one-carbon (C1) building block in organic synthesis for the construction of valuable compounds. However, its utilization is challenging owing to its thermodynamic stability and kinetic inertness. Although significant progress has been achieved, many limitations remain in this field with regard to the substrate scope, reaction system, and activation strategies.Since 2015, our group has focused on CO2 utilization in organic synthesis. We are also interested in the vast possibilities of radical chemistry, although the high reactivity of radicals presents challenges in controlling selectivity. We hope to develop highly useful CO2 transformations involving radicals by achieving a balance of reactivity and selectivity under mild reaction conditions. Over the past 6 years, we along with other experts have disclosed radical-type carboxylative cyclizations and carboxylations using CO2.We initiated our research by realizing the Cu-catalyzed radical-type oxytrifluoromethylation of allylamines and heteroaryl methylamines to generate valuable 2-oxazolidones with various radical precursors. Apart from Cu catalysis, visible-light photoredox catalysis is also a powerful method to achieve efficient carboxylative cyclization. In these cases, single-electron-oxidation-promoted C-O bond formation between benzylic radicals and carbamates is the key step.Since carboxylic acids exist widely in natural products and bioactive drugs and serve as important bulk chemicals in industry, we realized further visible-light-promoted carboxylations with CO2 to construct such chemicals. We have achieved the selective umpolung carboxylations of imines, enamides, tetraalkylammonium salts, and oxime esters by successive single-electron-transfer (SSET) reduction. Using this strategy, we have also realized the dearomative arylcarboxylation of indoles with CO2. In addition to the incorporation of 1 equiv of CO2 per substrate, we have recently developed a visible-light photoredox-catalyzed dicarboxylation of alkenes, allenes, and (hetero)arenes via SSET reduction, which allows the incorporation of two CO2 molecules into organic compounds to generate valuable diacids as polymer precursors.In addition to the two-electron activation of CO2, we sought to develop new strategies to realize efficient and selective transformations via single-electron activation of CO2. Inspired by the hypothetical electron-transfer mechanism of iron-sulfur proteins, we have realized the visible-light-driven thiocarboxylation of alkenes with CO2 using catalytic iron salts as promoters. The in-situ-generated Fe/S complexes are likely able to reduce CO2 to its radical anion, which could react with alkenes to give a stabilized carbon radical. Moreover, we have also disclosed charge-transfer complex (CTC) formation between thiolate and acrylate/styrene to realize the visible-light-driven hydrocarboxylation of alkenes with CO2 via generation of a CO2 or alkene radical anion. On the basis of this novel CTC, the visible-light-driven organocatalytic hydrocarboxylation of alkenes with CO2 has also been realized using a Hantzsch ester as an effective reductant.
Collapse
Affiliation(s)
- Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - He Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
35
|
Yang Z, Liu Y, Cao K, Zhang X, Jiang H, Li J. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J Org Chem 2021; 17:771-799. [PMID: 33889219 PMCID: PMC8042489 DOI: 10.3762/bjoc.17.67] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The reversible, weak ground-state aggregate formed by dipole-dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor-acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
Collapse
Affiliation(s)
- Zhonglie Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610100, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
36
|
Kim M, You E, Park S, Hong S. Divergent reactivity of sulfinates with pyridinium salts based on one- versus two-electron pathways. Chem Sci 2021; 12:6629-6637. [PMID: 34040737 PMCID: PMC8132931 DOI: 10.1039/d1sc00776a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
One of the main goals of modern synthesis is to develop distinct reaction pathways from identical starting materials for the efficient synthesis of diverse compounds. Herein, we disclose the unique divergent reactivity of the combination sets of pyridinium salts and sulfinates to achieve sulfonative pyridylation of alkenes and direct C4-sulfonylation of pyridines by controlling the one- versus two-electron reaction manifolds for the selective formation of each product. Base-catalyzed cross-coupling between sulfinates and N-amidopyridinium salts led to the direct introduction of a sulfonyl group into the C4 position of pyridines. Remarkably, the reactivity of this set of compounds is completely altered upon exposure to visible light: electron donor-acceptor complexes of N-amidopyridinium salts and sulfinates are formed to enable access to sulfonyl radicals. In this catalyst-free radical pathway, both sulfonyl and pyridyl groups could be incorporated into alkenes via a three-component reaction, which provides facile access to a variety of β-pyridyl alkyl sulfones. These two reactions are orthogonal and complementary, achieving a broad substrate scope in a late-stage fashion under mild reaction conditions.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
37
|
Xu H, Ye R, Li Z, Han M, Meng L. Multicomponent Assembly of α,α‐Bis‐Sulfonyl Arylketones and Multiple Substituted Conjugated Dienes Induced by Visible‐Light Irradiation without Additives and Photocatalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Man‐Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| |
Collapse
|
38
|
Fu Y, Duan F, Du Z. Visible Light Driven Oxidative Coupling of Amines and P(O)−H/P−OR Compounds under Photocatalyst‐Free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Fei Duan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
39
|
Zheng L, Cai L, Tao K, Xie Z, Lai Y, Guo W. Progress in Photoinduced Radical Reactions using Electron Donor‐Acceptor Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yin‐Long Lai
- College of Chemistry and Civil Engineering Shaoguan University Shaoguan 512005 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
40
|
Photogenerated electrophilic radicals for the umpolung of enolate chemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Zhu T, Shen J, Sun Y, Wu J. Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chem Commun (Camb) 2021; 57:915-918. [PMID: 33393531 DOI: 10.1039/d0cc07632e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A convenient and efficient approach to (E)-alkylsulfonyl olefins via a metal/light-free three-component reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts is described. This alkylsulfonylation proceeds smoothly with a broad substrate scope, leading to diverse (E)-alkylsulfonyl olefins in moderate to good yields. During the process, excellent functional group tolerance is observed and sodium metabisulfite is used as the source of sulfur dioxide. Mechanistic studies show that the alkyl radical generated in situ from Katritzky salt via a single electron transfer with alkenylboronic acid or DIPEA is the key step for providing an alkyl radical intermediate, which undergoes further alkylsulfonylation with sulfur dioxide.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jia Shen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Yuyuan Sun
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China and School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
42
|
|
43
|
Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021; 19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While primary aliphatic amines are ubiquitous in natural products, they are traditionally considered inert to substitution chemistry. This review highlights historical and recent advances in the field of aliphatic deamination chemistry which demonstrate these moieties can be harnessed as valuable C(sp3) synthons. Cross-coupling and photocatalyzed transformations proceeding through polar and radical mechanisms are compared with oxidative deamination and other transition metal catalyzed reactions.
Collapse
Affiliation(s)
- Kathleen J Berger
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
44
|
Zhao F, Wu XF. Deaminative carbonylative thioesterification of activated alkylamines with thiophenols under transition-metal-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01479f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A transition-metal-free radical carbonylation of activated alkylamines with thiophenols has been successfully developed. Various thioesters were selectively produced with moderate to good yields.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
| |
Collapse
|
45
|
Lai SZ, Yang YM, Xu H, Tang ZY, Luo Z. Photoinduced Deaminative Coupling of Alkylpyridium Salts with Terminal Arylalkynes. J Org Chem 2020; 85:15638-15644. [PMID: 33118349 DOI: 10.1021/acs.joc.0c01928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel and simple Z-alkene synthesis by the photocatalyzed coupling reactions of alkylpyridium salts, which were prepared from primary amines, with terminal aryl alkynes at room temperature is reported here. A wide range of primary amines, which contain different functional groups, were tolerated under these conditions. The mild reaction conditions, broad substrate scope, functional group tolerance, and operational simplicity make this deaminative coupling reaction a valuable method in organic syntheses.
Collapse
Affiliation(s)
- Shu-Zhen Lai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yu-Ming Yang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hai Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhen-Yu Tang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuangzhu Luo
- School of Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Shi W, Ma F, Li P, Wang L, Miao T. Visible-Light-Induced Decarboxylative Cyclization/Hydrogenation Cascade Reaction to Access Phenanthridin-6-yl(aryl)methanol by an Electron Donor-Acceptor Complex. J Org Chem 2020; 85:13808-13817. [PMID: 33063514 DOI: 10.1021/acs.joc.0c01916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and efficient visible-light-induced decarboxylative cyclization/hydrogenation cascade reaction of α-oxocarboxylic acids and 2-isocyanobiaryls has been developed. Without the need of any external photosensitizer, oxidant, and reductant, this method offers a mild and green approach for the synthesis of diverse alcohols in moderate to good yields. A mechanism indicated that an electron donor-acceptor complex-driven decarboxylation, radical addition/cyclization, and in situ photochemical reduction of ketones to alcohols could be involved in the reaction.
Collapse
Affiliation(s)
- Wei Shi
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fang Ma
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Tao Miao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
47
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
48
|
McClain EJ, Monos TM, Mori M, Beatty JW, Stephenson CRJ. Design and Implementation of a Catalytic Electron Donor–Acceptor Complex Platform for Radical Trifluoromethylation and Alkylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03837] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward J. McClain
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Timothy M. Monos
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mayuko Mori
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel W. Beatty
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
49
|
Ashley MA, Rovis T. Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines. J Am Chem Soc 2020; 142:18310-18316. [DOI: 10.1021/jacs.0c08595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Melissa A. Ashley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
50
|
Li Z, Wang KF, Zhao X, Ti H, Liu XG, Wang H. Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines. Nat Commun 2020; 11:5036. [PMID: 33028818 PMCID: PMC7542462 DOI: 10.1038/s41467-020-18834-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Alkyl carboxylic acids as well as primary amines are ubiquitous in all facets of biological science, pharmaceutical science, chemical science and materials science. By chemical conversion to redox-active esters (RAE) and Katritzky's N-alkylpyridinium salts, respectively, alkyl carboxylic acids and primary amines serve as ideal starting materials to forge new connections. In this work, a Mn-mediated reductive decarboxylative/deaminative functionalization of activated aliphatic acids and primary amines is disclosed. A series of C-X (X = S, Se, Te, H, P) and C-C bonds are efficiently constructed under simple and mild reaction conditions. The protocol is applicable to the late-stage modification of some structurally complex natural products or drugs. Preliminary mechanistic studies suggest the involvement of radicals in the reaction pathway.
Collapse
Affiliation(s)
- Zhan Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke-Feng Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|