1
|
Tian K, Jin Z, Liu XL, He L, Liu HF, Yu PK, Chang X, Dong XQ, Wang CJ. Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis. Chem Sci 2025; 16:1233-1240. [PMID: 39677940 PMCID: PMC11635979 DOI: 10.1039/d4sc05852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance. Scale-up experiments and synthetic transformations further demonstrated the potential for synthetic applications. Mechanistic experiments support the envisioned bimetallic relay catalytic mechanism, and the key role of Cs2CO3 in promoting lactonization was also revealed.
Collapse
Affiliation(s)
- Kui Tian
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin-Lian Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Hong-Fu Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Pin-Ke Yu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
2
|
Tian M, Li J, Mou Q, Liu M. Selective Oxyfunctionalization of Benzylic C-H with No Solvent. J Org Chem 2024; 89:16645-16652. [PMID: 39504509 DOI: 10.1021/acs.joc.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The direct selective oxyfunctionalization of C-H into C═O represents a highly useful, yet challenging, synthetic methodology. Herein, a one-step oxyfunctionalization of benzylic C-H into aryl ketone, with no overoxidation of the -OH functional group, is reported through mechanochemistry. The substrate scope is also tolerant of a wide range of different functional groups, providing a particularly sustainable yet widely adaptable route for the synthesis of aryl ketones, which represent both a classic synthetic precursor and a useful strategy for lignin monomer valorization. A series of mechanistic and spectroscopic investigations were also conducted to shed light on the unique C-H over -OH selectivity, opening up new avenues for oxidation chemistry.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Du Y, Lv X, Feng C, Ma Y, Wang Y. Simultaneously Enhanced Catalytic Activity and Thermostability of a Baeyer-Villiger Monooxygenase from Oceanicola granulosus by Reshaping the Binding Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15778-15787. [PMID: 38951118 DOI: 10.1021/acs.jafc.4c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enzymatic oxygenation of various cyclic ketones into lactones via Baeyer-Villiger monooxygenases (BVMOs) could provide a promising route for synthesizing fragrances and pharmaceutical ingredients. However, unsatisfactory catalytic activity and thermostability restricted their applications in the pharmaceutical and food industries. In this study, we successfully improved the catalytic activity and thermostability of a Baeyer-Villiger monooxygenase (OgBVMO) from Oceanicola granulosus by reshaping the binding pocket. As a result, mutant OgBVMO-Re displayed a 1.0- to 6.4-fold increase in the activity toward branched cyclic ketones tested, accompanied by a 3 °C higher melting point, and a 2-fold longer half-life time (t1/2 (45 °C)). Molecular dynamics simulations revealed that reshaping the binding pocket achieved strengthened motion correlation between amino acid residues, appropriate size of the substrate-binding pocket, beneficial surface characteristics, lower energy barriers, and shorter nucleophilic distance. This study well demonstrated the trade-off between the enzyme activity and thermostability by reshaping the substrate-binding pocket, paving the way for further engineering other enzymes.
Collapse
Affiliation(s)
- Yu Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiang Lv
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214129, China
| | - Chenhao Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd, Foshan 528012, China
| |
Collapse
|
4
|
G.-Simonian N, Spieß P, Riomet M, Maryasin B, Klose I, Beaton Garcia A, Pollesböck L, Kaldre D, Todorovic U, Minghua Liu J, Kaiser D, González L, Maulide N. Stereodivergent Synthesis of 1,4-Dicarbonyl Compounds through Sulfonium Rearrangement: Mechanistic Investigation, Stereocontrolled Access to γ-Lactones and γ-Lactams, and Total Synthesis of Paraconic Acids. J Am Chem Soc 2024; 146:13914-13923. [PMID: 38741029 PMCID: PMC11117187 DOI: 10.1021/jacs.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Although simple γ-lactones and γ-lactams have received considerable attention from the synthetic community, particularly due to their relevance in biological and medicinal contexts, stereoselective synthetic approaches to more densely substituted derivatives remain scarce. The in-depth study presented herein, showcasing a straightforward method for the stereocontrolled synthesis of γ-lactones and γ-lactams, builds on and considerably expands the stereodivergent synthesis of 1,4-dicarbonyl compounds by a ynamide/vinyl sulfoxide coupling. A full mechanistic and computational study of the rearrangement was conducted, uncovering the role of all of the reaction components and providing a rationale for stereoselection. The broad applicability of the developed tools to streamlining synthesis is demonstrated by concise enantioselective total syntheses of (+)-nephrosteranic acid, (+)-rocellaric acid, and (+)-nephromopsinic acid.
Collapse
Affiliation(s)
- Nicolas G.-Simonian
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Philipp Spieß
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Margaux Riomet
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Boris Maryasin
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Alexander Beaton Garcia
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Laurin Pollesböck
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Dainis Kaldre
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Uroš Todorovic
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Julia Minghua Liu
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Yang H, Yu H, Stolarzewicz IA, Tang W. Enantioselective Transformations in the Synthesis of Therapeutic Agents. Chem Rev 2023; 123:9397-9446. [PMID: 37417731 DOI: 10.1021/acs.chemrev.3c00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The proportion of approved chiral drugs and drug candidates under medical studies has surged dramatically over the past two decades. As a consequence, the efficient synthesis of enantiopure pharmaceuticals or their synthetic intermediates poses a profound challenge to medicinal and process chemists. The significant advancement in asymmetric catalysis has provided an effective and reliable solution to this challenge. The successful application of transition metal catalysis, organocatalysis, and biocatalysis to the medicinal and pharmaceutical industries has promoted drug discovery by efficient and precise preparation of enantio-enriched therapeutic agents, and facilitated the industrial production of active pharmaceutical ingredient in an economic and environmentally friendly fashion. The present review summarizes the most recent applications (2008-2022) of asymmetric catalysis in the pharmaceutical industry ranging from process scales to pilot and industrial levels. It also showcases the latest achievements and trends in the asymmetric synthesis of therapeutic agents with state of the art technologies of asymmetric catalysis.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanxiao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Izabela A Stolarzewicz
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Yang F, Xie JH, Zhou QL. Highly Efficient Asymmetric Hydrogenation Catalyzed by Iridium Complexes with Tridentate Chiral Spiro Aminophosphine Ligands. Acc Chem Res 2023; 56:332-349. [PMID: 36689780 DOI: 10.1021/acs.accounts.2c00764] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusCatalytic asymmetric hydrogenation is one of the most reliable, powerful, and environmentally benign methods for the synthesis of chiral molecules with high atom economy and has been successfully applied in the industrial production of pharmaceuticals, agrochemicals, and fragrances. The key to achieving highly efficient and highly enantioselective hydrogenation reactions is the design and synthesis of chiral catalysts.Our recent studies involving iridium complexes of bidentate chiral spiro aminophosphine ligands (Ir-SpiroAP) have revealed that adding another coordinating group on the nitrogen atom to form a tridentate ligand can provide catalysts with markedly higher stability, enantioselectivity, and efficiency. Specifically, chiral Ir-SpiroAP catalysts bearing an added pyridine group (designated Ir-SpiroPAP) exhibit high activity and excellent enantioselectivity in the asymmetric hydrogenation of a wide range of carbonyl compounds, including aryl ketones, β- and δ-ketoesters, α,β-unsaturated ketones and esters, and racemic α-substituted lactones, as well as highly electron-deficient alkenes such as α,β-unsaturated malonates and analogues. The efficiency of the Ir-SpiroPAP catalysts is extremely high: in the hydrogenation of aryl ketones, turnover numbers reach 4.5 million, which is the highest value reported to date for a molecular catalyst. Moreover, when a thioether or a bulky triarylphosphine group is added to afford tridentate ligands designated SpiroSAP and SpiroPNP, respectively, the resulting iridium catalysts show high efficiency and enantioselectivity for asymmetric hydrogenation of β-alkyl-β-ketoesters and dialkyl ketones, which are challenging substrates. Furthermore, chiral spiro catalysts containing an added oxazoline moiety (Ir-SpiroOAP) show high enantioselectivity for asymmetric hydrogenation of α-keto amides and racemic α-aryloxy lactones. The above-described catalysts have been used for enantioselective synthesis of chiral pharmaceuticals and other bioactive compounds.We have shown that chiral spiro ligands that combine a rigid skeleton with tridentate coordination stabilize iridium catalysts. The careful tailoring of the substituents on the ligand creates a chiral environment around the active metal center of the catalyst that can precisely discriminate between the two faces of a substrate carbonyl group. These factors are key for controlling the activity, enantioselectivity, and turnover numbers of asymmetric hydrogenation catalysts. We expect that catalysts based on iridium, and other transition metals, coordinated by tridentate chiral ligands with a rigid skeleton will find more applications in asymmetric hydrogenation and other asymmetric transformations.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin300071, China
| |
Collapse
|
7
|
Manganese(I)-Catalyzed Asymmetric (Transfer) Hydrogenation of Ketones: An Insight into the Effect of Chiral PNN and NN ligands. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org Lett 2022; 24:2722-2727. [PMID: 35363497 DOI: 10.1021/acs.orglett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient asymmetric hydrogenation of a series of γ-keto acid derivatives, including γ-keto acids, esters, and amides, using a Ni-(R,R)-QuinoxP* complex as the catalyst has been developed to afford chiral γ-hydroxy acid derivatives with excellent enantioselectivities, up to 99.9% ee. This method provides not only an economical one-pot approach for the synthesis of chiral γ-lactones but also access to (S)-norfluoxetine, an inhibitor of neural serotonin reuptake and an essential intermediate for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
9
|
Deng CQ, Deng J. Ni-Catalyzed Asymmetric Hydrogenation of Aromatic Ketoacids for the Synthesis of Chiral Lactones. Org Lett 2022; 24:2494-2498. [PMID: 35349293 DOI: 10.1021/acs.orglett.2c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly efficient Ni-catalyzed asymmetric hydrogenation of aromatic γ- and δ-ketoacids has been developed, affording a series of γ- and δ-aryl lactones in high yields and excellent enantioselectivities (≤98% ee). The hydrogenation could occur smoothly on a gram scale with 0.05 mol % catalyst loading (S/C = 2000). This protocol provides an efficient and practical approach for accessing chiral lactones with important potential applications in organic synthesis and the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Wang T, Zhang XY, Zheng YC, Bai YP. Stereoselective synthesis of chiral δ-lactones via an engineered carbonyl reductase. Chem Commun (Camb) 2021; 57:10584-10587. [PMID: 34559867 DOI: 10.1039/d1cc04542c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbonyl reductase variant, SmCRM5, from Serratia marcescens was obtained through structure-guided directed evolution. The variant showed improved specific activity (U mg-1) towards most of the 16 tested substrates and gave high stereoselectivities of up to 99% in the asymmetric synthesis of 13 γ-/δ-lactones. In particular, SmCRM5 showed a 13.8-fold higher specific activity towards the model substrate, i.e., 5-oxodecanoic acid, and gave (R)-δ-decalactone in 99% ee with a space-time yield (STY) of 301 g L-1 d-1. The preparative synthesis of six δ-lactones in high yields and with high enantiopurities showed the feasibility of the biocatalytic synthesis of these high-value-added chemicals, providing a cost-effective and green alternative to noble-metal catalysis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
11
|
Xin H, Duan XH, Yang M, Zhang Y, Guo LN. Visible Light-Driven, Copper-Catalyzed Aerobic Oxidative Cleavage of Cycloalkanones. J Org Chem 2021; 86:8263-8273. [PMID: 34107678 DOI: 10.1021/acs.joc.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A visible light-driven, copper-catalyzed aerobic oxidative cleavage of cycloalkanones has been presented. A variety of cycloalkanones with varying ring sizes and various α-substituents reacted well to give the distal keto acids or dicarboxylic acids with moderate to good yields.
Collapse
Affiliation(s)
- Hong Xin
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingyu Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiwen Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Wang H, Wen J, Zhang X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2021; 121:7530-7567. [PMID: 34014646 DOI: 10.1021/acs.chemrev.1c00075] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric hydrogenation (AH) of double bonds has been one of the most effective methods for the preparation of chiral molecules and for the synthesis of important chiral building blocks. In the past 60 years, noble metals with bidentate ligands have shown marvelous reactivity and enantioselectivity in asymmetric hydrogenation of a series of prochiral substrates. In recent years, developing chiral tridentate ligands has played an increasingly important role in AH. With modular frameworks and a variety of functionalities on the side arms, chiral tridentate ligand complexes enable both reactivities and stereoselectivities. Although great achievements have been made for noble metal catalysts with chiral tridentate ligands since the 1990s, the design of chiral tridentate ligands for earth abundant metal catalysts has still been in high demand. This review summarizes the development of chiral tridentate ligands for homogeneous asymmetric hydrogenation. The philosophy of ligand design and the reaction mechanisms are highlighted and discussed as well.
Collapse
Affiliation(s)
- Heng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Zhang K, Zhang X, Chen J, Liu Z, Pan C, Zhu Y, Wu S, Fan B. Palladium/Zinc Co-Catalyzed Asymmetric Hydrogenation of γ-Keto Carboxylic Acids. Chem Asian J 2021; 16:1229-1232. [PMID: 33852193 DOI: 10.1002/asia.202100244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Indexed: 12/23/2022]
Abstract
A palladium-catalyzed asymmetric hydrogenation of levulinic acid has been successful developed by using Zn(OTf)2 as co-catalyst. The present method not only has provided a strategy in the palladium-catalyzed asymmetric hydrogenation of ketone, but also allowed the preparation of a wide range of chiral γ-valerolactones in good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Zixiu Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd, Qingfeng industrial park, Lufeng, 651200, P. R China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd, Qingfeng industrial park, Lufeng, 651200, P. R China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| |
Collapse
|
14
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
16
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
17
|
Biosca M, Diéguez M, Zanotti-Gerosa A. Asymmetric hydrogenation in industry. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
|
19
|
Zhang Y, Guo J, Huang J, Fu Z. N-Heterocyclic Carbene-Catalyzed [4+2] Annulation of Acetates and β-Silyl Enones: Highly Enantioselective Synthesis of β-Silyl δ-Lactones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Sato K, Isoda M, Tarui A, Omote M. Reductive Carbon–Carbon Bond Forming Reactions with Carbonyls Mediated by Rh–H Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kazuyuki Sato
- Faculty of Pharmaceutical Sciences Setsunan University 45‐1 573‐0101 Nagaotoge‐cho Hirakata, Osaka Japan
| | - Motoyuki Isoda
- School of Pharmacy at Fukuoka International University of Health and Welfare 137‐1 Enokizu 831‐8501 Okawa Fukuoka Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences Setsunan University 45‐1 573‐0101 Nagaotoge‐cho Hirakata, Osaka Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences Setsunan University 45‐1 573‐0101 Nagaotoge‐cho Hirakata, Osaka Japan
| |
Collapse
|
21
|
Li ML, Li Y, Pan JB, Li YH, Song S, Zhu SF, Zhou QL. Carboxyl Group-Directed Iridium-Catalyzed Enantioselective Hydrogenation of Aliphatic γ-Ketoacids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mao-Lin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Bin Pan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Hao Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Song Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Iridium-Catalyzed Asymmetric Hydrogenation. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|