1
|
Hołubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, Menezes CR, Dong Z, Gao F, Medani O, Yan AL, Hołubowicz MW, Chen PZ, Bassetto M, Risaliti E, Salom D, Workman JN, Kiser PD, Foik AT, Lyon DC, Newby GA, Liu DR, Felgner PL, Palczewski K. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2025; 9:57-78. [PMID: 39609561 PMCID: PMC11754100 DOI: 10.1038/s41551-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Delivering ribonucleoproteins (RNPs) for in vivo genome editing is safer than using viruses encoding for Cas9 and its respective guide RNA. However, transient RNP activity does not typically lead to optimal editing outcomes. Here we show that the efficiency of delivering RNPs can be enhanced by cell-penetrating peptides (covalently fused to the protein or as excipients) and that lipid nanoparticles (LNPs) encapsulating RNPs can be optimized for enhanced RNP stability, delivery efficiency and editing potency. Specifically, after screening for suitable ionizable cationic lipids and by optimizing the concentration of the synthetic lipid DMG-PEG 2000, we show that the encapsulation, via microfluidic mixing, of adenine base editor and prime editor RNPs within LNPs using the ionizable lipid SM102 can result in in vivo editing-efficiency enhancements larger than 300-fold (with respect to the delivery of the naked RNP) without detectable off-target edits. We believe that chemically defined LNP formulations optimized for RNP-encapsulation stability and delivery efficiency will lead to safer genome editing.
Collapse
Grants
- F30 EY033642 NEI NIH HHS
- FENG.02.01-IP.05-T005/23 Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
- R01 EY032948 NEI NIH HHS
- R01EY032948, R21NS113264 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- RM1 HG009490 NHGRI NIH HHS
- R00 HL163805 NHLBI NIH HHS
- R21 NS113264 NINDS NIH HHS
- R01 EY030873 NEI NIH HHS
- U01 AI142756 NIAID NIH HHS
- UG3AI150551, U01AI142756, R35GM118062, RM1HG009490 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY034501 NEI NIH HHS
- N66001-21-C-4013 United States Department of Defense | Defense Threat Reduction Agency (DTRA)
- T32GM008620, F30EY033642 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- T32GM148383 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- P30EY034070 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01BX004939 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- UG3 AI150551 NIAID NIH HHS
- 75N93022C00054 NIAID NIH HHS
- R01EY009339, R01EY030873, P30EY034070, P30CA062203 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY009339 NEI NIH HHS
- P30 EY034070 NEI NIH HHS
- T32 GM008620 NIGMS NIH HHS
- R00HL163805 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 BX004939 BLRD VA
- R35 GM118062 NIGMS NIH HHS
- T32 GM148383 NIGMS NIH HHS
- P30 CA062203 NCI NIH HHS
- 2022/47/B/NZ5/03023, 2020/39/D/NZ4/01881, 2019/34/E/NZ5/00434 Narodowe Centrum Nauki (National Science Centre)
- Knights Templar Eye Foundation (Knights Templar Eye Foundation, Inc.)
- Howard Hughes Medical Institute (HHMI)
Collapse
Affiliation(s)
- Rafał Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Samuel W Du
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jiin Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Roman Smidak
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Omar Medani
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Alexander L Yan
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Program in Neuroscience, Amherst College, Amherst, MA, USA
| | - Maria W Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Bassetto
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
| | - Eleonora Risaliti
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - J Noah Workman
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej T Foik
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Philip L Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Sorrentino FS, Gardini L, Culiersi C, Fontana L, Musa M, D’Esposito F, Surico PL, Gagliano C, Zeppieri M. Nano-Based Drug Approaches to Proliferative Vitreoretinopathy Instead of Standard Vitreoretinal Surgery. Int J Mol Sci 2024; 25:8720. [PMID: 39201407 PMCID: PMC11354910 DOI: 10.3390/ijms25168720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Proliferative vitreoretinopathy (PVR) has traditionally been managed with vitreoretinal surgery. Although there have been several recent innovations in this surgery to make the retinal approach as uninvasive as possible, the outcomes remain unsatisfactory. Significant complications remain and the complexity of the surgical approach is challenging. The focus of this review was to investigate and discuss the effectiveness of nanomedicine, featuring a wide range of drugs and molecules, as a novel potential treatment for PVR. To date, ocular drug delivery remains a significant issue due to the physiological and anatomical barriers, dynamic or static, which prevent the entry of exogenous molecules. We tried to summarize the nanotechnology-based ophthalmic drugs and new nanoparticles currently under research, with the intention of tackling the onset and development of PVR. The purpose of this review was to thoroughly and analytically examine and assess the potential of nano-based techniques as innovative strategies to treat proliferative vitreoretinopathy (PVR). This study aimed to emphasize the breakthroughs in nanomedicine that provide promising therapeutic options to enhance the results of vitreoretinal surgery and halt disease progression, considering the complexity and difficulty of PVR treatment. The future directions of the nanoparticles and nanotherapies applied to PVR highlight the importance of investing in the development of better designs and novel ophthalmic formulations in order to accomplish a mini-invasive ocular approach, replacing the standard-of-care vitreoretinal surgery.
Collapse
Affiliation(s)
| | - Lorenzo Gardini
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Carola Culiersi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Luigi Fontana
- Department of Surgical Sciences, Ophthalmology Unit, Alma Mater Studiorum University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40100 Bologna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
- Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Sun D, Sun W, Gao SQ, Lehrer J, Wang H, Hall R, Lu ZR. Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease. Pharm Res 2024; 41:807-817. [PMID: 38443629 DOI: 10.1007/s11095-024-03679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Hong Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Ryan Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States.
| |
Collapse
|
4
|
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther 2023; 31:2755-2766. [PMID: 37337429 PMCID: PMC10491995 DOI: 10.1016/j.ymthe.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyes Toualbi
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick V Almeida
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariya Moosajee
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
5
|
Eriksen AZ, Melander F, Eriksen GDM, Kempen PJ, Kjaer A, Andresen TL, Urquhart AJ. Active Transport and Ocular Distribution of Intravitreally Injected Liposomes. Transl Vis Sci Technol 2023; 12:20. [PMID: 37615641 PMCID: PMC10461645 DOI: 10.1167/tvst.12.8.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Drug delivery to the retina remains a challenge due to ocular barriers and fast clearing mechanisms. Nanocarrier drug delivery systems (NDDSs) hold the promise of prolonging intraocular retention times and increasing drug concentrations in the retina. Methods Anionic and cationic PEGylated liposomes, loaded with oxaliplatin (OxPt) to be used as trace element, were prepared from dry lipid powders. The differently charged liposomes were intravitreally injected in C57BL/6JrJ mice; eyes were harvested 2 hours and 24 hours post-injection. To investigate active transport mechanisms in the eye, a subset of mice were pre-injected with chloroquine before injection with cationic liposomes. Eyes were dissected and the distribution of OxPt in different tissues were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results Both liposome formulations enhanced the retention time of OxPt in the vitreous over free OxPt. Surprisingly, when formulated in cationic liposomes, OxPt translocated through the retina and accumulated in the RPE-sclera. Pre-injection with chloroquine inhibited the transport of liposomal OxPt from the vitreous to the RPE-sclera. Conclusions We show that liposomes can enhance the retention time of small molecular drugs in the vitreous and that active transport mechanisms are involved in the trans retinal transport of NDDS after intravitreal injections. Translational Relevance These results highlight the need for understanding the dynamics of ocular transport mechanisms in living eyes when designing NDDS with the back of the eye as the target. Active transport of nanocarriers through the retina will limit the drug concentration in the neuronal retina but might be exploited for targeting the RPE.
Collapse
Affiliation(s)
- Anne Zebitz Eriksen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Fredrik Melander
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Paul Joseph Kempen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
6
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
8
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Khademi Z, Ramezani M, Alibolandi M, Zirak MR, Salmasi Z, Abnous K, Taghdisi SM. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr Polym 2022; 292:119691. [PMID: 35725215 DOI: 10.1016/j.carbpol.2022.119691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
A facile method was designed that can specifically deliver CRISPR/Cas9 into target cells nuclei and reduce the off-target effects. A multifunctional delivery vector for FOXM1 knockout was composed by integration of cell targeting polymer (hyaluronic acid) and cell and nuclear targeting group (AS1411 aptamer) on the surface of nanoparticles formed by genome editing plasmid and chitosan (CS) as the core (Apt-HA-CS-CRISPR/Cas9). The data of cytotoxicity experiment and western blot confirmed this issue. The results of flow cytometry analysis and fluorescence imaging demonstrated that Apt-HA-CS-CRISPR/Cas9 was significantly internalized into target cells (MCF-7, SK-MES-1, HeLa) but not into nontarget cells (HEK293). Furthermore, the in vivo studies displayed that the Apt-HA-CS-CRISPR/Cas9 was strongly rendered tumor inhibitory effect and delivered efficiently CRISPR/Cas9 into the tumor with no detectable distribution in other organs compared with naked plasmid. This approach provides an avenue for specific in vivo gene editing therapeutics with the lowest side effect.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Sun D, Sun W, Gao SQ, Lehrer J, Naderi A, Wei C, Lee S, Schilb AL, Scheidt J, Hall RC, Traboulsi EI, Palczewski K, Lu ZR. Effective gene therapy of Stargardt disease with PEG-ECO/ pGRK1-ABCA4-S/MAR nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:823-835. [PMID: 36159595 PMCID: PMC9463552 DOI: 10.1016/j.omtn.2022.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew L. Schilb
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Elias I. Traboulsi
- Department of Pediatric Ophthalmology and Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Departments of Physiology and Biophysics, Chemistry, and Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Toualbi L, Toms M, Moosajee M. The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases. Int J Mol Sci 2021; 22:2318. [PMID: 33652562 PMCID: PMC7956638 DOI: 10.3390/ijms22052318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progressive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. However, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limitation, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid cell entry, have shown promise in preclinical studies. Non-viral gene therapy may offer a safer and effective option for future treatment of IRDs.
Collapse
Affiliation(s)
- Lyes Toualbi
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Found Trust, London WC1N 3JH, UK
| |
Collapse
|
12
|
Sun D, Sun W, Gao SQ, Wei C, Naderi A, Schilb AL, Scheidt J, Lee S, Kern TS, Palczewski K, Lu ZR. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. J Control Release 2021; 330:329-340. [PMID: 33358976 PMCID: PMC9066847 DOI: 10.1016/j.jconrel.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
It is still a challenge to develop gene replacement therapy for retinal disorders caused by mutations in large genes, such as Stargardt disease (STGD). STGD is caused by mutations in ABCA4 gene. Previously, we have developed an effective non-viral gene therapy using self-assembled nanoparticles of a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid containing rhodopsin promoter (pRHO-ABCA4). In this study, we modified the ABCA4 plasmid with simian virus 40 enhancer (SV40, pRHO-ABCA4-SV40) for enhanced gene expression. We also prepared and assessed the formulations of ECO/pDNA nanoparticles using sucrose or sorbitol as a stablilizer to develop consistent and stable formulations. Results demonstrated that ECO formed stable nanoparticles with pRHO-ABCA4-SV40 in the presence of sucrose, but not with sorbitol. The transfection efficiency in vitro increased significantly after introduction of SV40 enhancer for plasmid pCMV-ABCA4-SV40 with a CMV promoter. Sucrose didn't affect the transfection efficiency, while sorbitol resulted in a fluctuation of the in vitro transfection efficiency. Subretinal gene therapy in Abca4-/- mice using ECO/pRHO-ABCA4 and ECO/pRHO-ABCA4-SV40 nanoparticles induced 36% and 29% reduction in A2E accumulation respectively. Therefore, the ECO/pABCA4 based nanoparticles are promising for non-viral gene therapy for Stargardt disease and can be expended for applications in a variety of visual dystrophies with mutated large genes.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Andrew L Schilb
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Timothy S Kern
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America; Veterans Administration Medical Center Research Service, Long Beach, CA, 90822, United States of America
| | - Krzysztof Palczewski
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
13
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|