1
|
Liu Y, Wang M, Zhou G, Zhang Y, Hai W. Magnetic MOF-based sensing platform integrated with graphene field-effect transistors for ultrasensitive detection of infectious disease. Bioelectrochemistry 2025; 165:108951. [PMID: 40056885 DOI: 10.1016/j.bioelechem.2025.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
The development of highly sensitive methods for detecting infectious diseases is crucial for preventing disease spread. In this study, a novel sensing platform for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens was developed by combining a magnetic metal-organic framework (Fe3O4@MIL-100) with graphene field-effect transistors (GFET). The Fe3O4@MIL-100 magnetic MOF was functionalized with SARS-CoV-2-specific antibodies, enabling highly selective pathogen capture in a phosphate-buffered solution. Following magnetic separation, the captured pathogens were detected using GFETs, with a linear detection range of 1 ag/mL to 10 ng/mL and a detection limit as low as 8.60 ag/mL. Furthermore, the platform has been successfully applied to human serum samples, highlighting its remarkable potential for practical application.
Collapse
Affiliation(s)
- Yushuang Liu
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China.
| | - Mingxuan Wang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Guiqi Zhou
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Ying Zhang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| |
Collapse
|
2
|
Sezgin P, Gulcay-Ozcan E, Vučkovski M, Bondžić AM, Erucar I, Keskin S. Biomedical Applications of Metal-Organic Frameworks Revisited. Ind Eng Chem Res 2025; 64:1907-1932. [PMID: 39906289 PMCID: PMC11789151 DOI: 10.1021/acs.iecr.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
Metal-organic frameworks (MOFs) have been shown to be great alternatives to traditional porous materials in various chemical applications, and they have been very widely studied for biomedical applications in the past decade specifically for drug storage. After our review published in 2011 [Keskin and Kızılel, Ind. Eng. Chem. Res. 2011, 50 (4), 1799-1812, 10.1021/ie101312k], we have witnessed a very fast growth not only in the number and variety of MOFs but also in their usage across a broad spectrum of biomedical fields. With the recent integration of molecular modeling and data science approaches to the experimental studies, biomedical applications of MOFs have been significantly accelerated positioning them as pivotal components in the regenerative medicine, medical imaging, and diagnostics. In this review, we visited the diverse biomedical applications of MOFs considering the recent experimental and computational efforts on drug storage and delivery, bioimaging, and biosensing. We focused on the underlying mechanisms governing the molecular interactions between MOFs and biological systems and discussed both the opportunities and challenges in the field to highlight the potential of MOFs in advanced therapeutics for cancer and neurological diseases.
Collapse
Affiliation(s)
- Pelin Sezgin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| | - Ezgi Gulcay-Ozcan
- Sabanci
University, Faculty of Engineering
and Natural Sciences, Istanbul 34956, Turkey
| | - Marija Vučkovski
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra M. Bondžić
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ilknur Erucar
- Ozyegin
University, Department of Natural
and Mathematical Sciences, Faculty of Engineering, 34794 Istanbul, Turkey
| | - Seda Keskin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| |
Collapse
|
3
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Shi J, Barman SC, Cheng S, Zeng Y. Metal-organic framework-interfaced ELISA probe enables ultrasensitive detection of extracellular vesicle biomarkers. J Mater Chem B 2024; 12:6342-6350. [PMID: 38856318 PMCID: PMC11222032 DOI: 10.1039/d4tb00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The enzyme-linked immunosorbent assay (ELISA) remains the prevailing method for quantifying protein biomarkers. Enzymatic signal generation and amplification are key mechanisms that govern its analytical performance. This study reports the synthesis and application of microscale metal-organic framework (MOF)/enzyme composite particles as a novel detection probe to substantially enhance the sensitivity of ELISA. An optimal one-pot approach was established to incorporate a substantial amount of streptavidin-horseradish peroxidase (SA-HRP) either within or on the surface of the metal-azolate framework (MAF-7) microparticles. This approach enables the labeling of a single sandwich antibody-antigen complex with numerous enzymes, which markedly amplifies the enzymatic colorimetric signal generation. Moreover, MAF-7 caging was found to enhance the reactivity of the caged HRP enzyme, further promoting the overall detection sensitivity of ELISA. Compared to other developments that are often associated with more complicated detection modalities, our method is compatible with standard immunoassays and commonly used photometrical signal detection. The implementation of this strategy in the detection of CD147 results in a remarkably low limit of detection of 2.8 fg mL-1, representing a 105-fold improvement compared to that obtained with the standard ELISA. Moreover, the heightened sensitivity of this technique renders it particularly suitable for diagnosing breast cancer, thus presenting a promising tool for the early detection of the disease in clinical settings.
Collapse
Affiliation(s)
- Jingzhu Shi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Sharat Chandra Barman
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- Currently working at King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- University of Florida Health Cancer Center, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Darwish IA, Alahmad W, Vinoth R. Novel ultrasensitive automated kinetic exclusion assay for measurement of plasma levels of soluble PD-L1, the predictive and prognostic biomarker in cancer patients treated with immune checkpoint inhibitors. Heliyon 2024; 10:e31317. [PMID: 38803937 PMCID: PMC11129001 DOI: 10.1016/j.heliyon.2024.e31317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, the blood plasma or serum levels of soluble programmed death protein 1 (PD-L1), but not tissue PD-L1 expression level, have been proposed as an effective predictive and prognostic biomarker in patients treated with immune checkpoint inhibitors for different types of cancers. The quantification of soluble PD-L1 in blood will provide a quick evaluation of patients' immune status; however, the available assays have limitations in their sensitivity, reproducibility, and accuracy for use in clinical settings. To overcome these problems, this study was dedicated to developing an ultrasensitive automated flow-based kinetic exclusion assay (KinExA) for the accurate and precise measurement of soluble PD-L1 in plasma. The assay was developed with the assistance of KinExA™ 3200 biosensor. In this assay, PD-L1 in its calibrator or plasma sample solution was pre-equilibrated with anti-PD-L1 monoclonal antibody. The equilibrated mixture solution was then passed rapidly over PD-L1 protein that has been coated onto polymethylmethacrylate beads consolidated as a microcolumn in the observation cell of the KinExA™ biosensor. The free anti- PD-L1 antibody was bound to the immobilized PD-L1, however, the unbound molecules were removed from the beads microcolumn by flushing the system with phosphate-buffered saline. Fluorescein-labeled secondary antibody was passed rapidly over the beads, and the fluorescence signals were monitored during the flow of the labeled antibody through the beads. The calibration curve was generated by plotting the binding percentages as a function of PD-L1 concentrations in its sample solution. The working range of the assay with very a good correlation coefficient on a 4-parameter equation (r = 0.9992) was 0.5 - 100 pg mL─1. The assay limit of detection and quantitation were 0.15 and 0.5 pg mL─1, respectively. The recovery values of plasma-spiked PD-L1 were in the range of 96.4-104.3 % (±3.7-6.2 %). The precision of the assay was satisfactory; the values of the coefficient of variations did not exceed 6.2 % for both intra- and inter-day precision. The automated analysis by the proposed KinExA facilitates the processing of many specimens in clinical settings. The overall performance of the proposed KinExA is superior to the available assays for plasma levels of soluble PD-L1. The proposed assay is anticipated to have a great value in the measurement of PD-L1 where a more confident result is needed.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rajendran Vinoth
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Huang S, Chang J, Xu Z, Shen X, Lei H, Li X. Robust and bioaffinity-enhanced nanocarrier based immunochromatographic assay with simplified sample preparation for pentachlorophenol sodium in animal tissues. Talanta 2024; 267:125190. [PMID: 37714040 DOI: 10.1016/j.talanta.2023.125190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Sample pretreatment is directly related to the accuracy and reproducibility of test results, simple and controllable sample pretreatment can greatly reduce analysis errors. Herein, MIL-88B-NH2 was synthesized with a regular octahedral rigid framework structure and used as antibody carrier to develop an immunochromatographic assay (ICA) for the detection of sodium pentachlorophenol (PCP) in animal tissues. MIL-88B-NH2 has superior molar absorption coefficient, ultrahigh antibody affinity, and extreme detection environmental tolerance, which were 1.57, 2.5, and 2 times higher than those of traditional colloidal gold, respectively. Therefore, even complex animal tissues can be detected by simple extraction without nitrogen blowing. Ultimately, the cut-off values of this method for pork, chicken and shrimp were 8/5/3 μg/kg, the limits of detection were 1.15/1.28/0.25 μg/kg. The recoveries ranged from 95.5% to 103.0%, with the coefficient of variation from 1.87% to 9.69%. A parallel analysis of 30 samples was confirmed by LC-MS/MS; the results showed a good correlation (R2 > 0.95), indicating the authenticity and reliability of the MIL-88B-NH2-ICA. This work provides a detection strategy with enhanced sensitivity and robustness and simplified sample pretreatment, which has broad application prospects.
Collapse
Affiliation(s)
- Siruo Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jinliang Chang
- Dongying Food and Drug Inspection and Testing Center, Dongying, 257092, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Mousavi SJ, Ejeian F, Razmjou A, Nasr-Esfahani MH. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects. J Clin Periodontol 2023; 50:1390-1405. [PMID: 37485621 DOI: 10.1111/jcpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
AIM The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Perth, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
8
|
Peng W, Sun D, Lu W, Yin S, Ye B, Wang X, Ren Y, Hong Z, Zhu W, Yu P, Xi JJ, Yao B. Comprehensive Detection of PD-L1 Protein and mRNA in Tumor Cells and Extracellular Vesicles through a Real-Time qPCR Assay. Anal Chem 2023; 95:10625-10633. [PMID: 37424077 DOI: 10.1021/acs.analchem.3c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A growing number of studies have shown that tumor cells secrete extracellular vesicles (EVs) containing programmed death-ligand 1 (PD-L1) protein. These vesicles can travel to lymph nodes and remotely inactivate T cells, thereby evading immune system attack. Therefore, the simultaneous detection of PD-L1 protein expression in cells and EVs is of great significance in guiding immunotherapy. Herein, we developed a method based on qPCR for the simultaneous detection of PD-L1 protein and mRNA in EVs and their parental cells (PREC-qPCR assay). Lipid probes immobilized on magnetic beads were used to capture EVs directly from samples. For RNA assay, EVs were directly broken by heating and quantified with qPCR. As to protein assay, EVs were recognized and bound with specific probes (such as aptamers), which were used as templates in subsequent qPCR analysis. This method was used to analyze EVs of patient-derived tumor clusters (PTCs) and plasma samples from patients and healthy volunteers. The results revealed that the expression of exosomal PD-L1 in PTCs was correlated with tumor types and significantly higher in plasma-derived EVs from tumor patients than that of healthy individuals. When extended to cells and PD-L1 mRNAs, the results showed that the expression of PD-L1 protein was consistent with mRNA in cancer cell lines, while PTCs demonstrated significant heterogeneity. This comprehensive detection of PD-L1 at four levels (cell, EVs, protein, and mRNA) is believed to enhance our understanding of the relationship among PD-L1, tumors, and the immune system and to provide a promising tool for predicting the benefits of immunotherapy.
Collapse
Affiliation(s)
- Wenbo Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Danyang Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd, Hangzhou 311100, China
| | - Shenyi Yin
- College of Future Technology, Peking University, Beijing 100871, China
| | - Buqing Ye
- College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoqi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yongan Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Pengfei Yu
- Department of Gastric Surgery, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianzhong Jeff Xi
- College of Future Technology, Peking University, Beijing 100871, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Facile immunochromatographic assay based on metal-organic framework-decorated polydopamine for the determination of hydrochlorothiazide adulteration in functional foods. Food Chem 2023; 406:135100. [PMID: 36470087 DOI: 10.1016/j.foodchem.2022.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Herein, a novel immunochromatographic assay (ICA) based on metal-organic framework-decorated polydopamine (MOF@PDA) was firstly developed for the determination of hydrochlorothiazide (HCTZ) adulteration in functional foods. The coupling rate of MOF@PDA carrier to HCTZ antibody was as high as 91.7 %. The detection limits of the developed MOF@PDA-ICA in functional tablets and capsules were 5.93 and 4.72 μg/kg, the linear ranges were 11.2-91.91 μg/kg and 9.11-86.78 μg/kg, respectively. The sensitivity was 27-fold higher than that of the reported ICA. The recovery was 82.5-116.6 %, and coefficient of variation was 6.9-14.2 %. The results can be achieved and analyzed in 8 min with the smartphone-based detection device. The parallel tests of 23 commercial functional tablets and capsules showed that the results of the MOF@PDA-ICA were consistent with that of the LC-MS/MS (R2 > 0.99). Therefore, our method is facile, sensitive, portable, and can provide a reliable technical mean for the detection of HCTZ adulteration in functional foods.
Collapse
|
10
|
Li Y, Li Z, Tan H, Li Y, Tang F, Wang P, Li Y, Liu H, Zhao P, Liu Q. Introducing cocatalysts into bimetallic sulfides to construct intercalated dual heterojunctions: A photoelectrochemical sensing platform capable of fast PD-L1 response. SENSORS AND ACTUATORS B: CHEMICAL 2023; 376:133044. [DOI: 10.1016/j.snb.2022.133044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
|
11
|
An Ultrasensitive Lateral Flow Immunoassay Based on Metal-Organic Framework-Decorated Polydopamine for Multiple Sulfonylureas Adulteration in Functional Foods. Foods 2023; 12:foods12030539. [PMID: 36766067 PMCID: PMC9914140 DOI: 10.3390/foods12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Herein, an ultrasensitive lateral flow immunoassay (LFIA), based on metal-organic framework-decorated polydopamine (PCN-224@PDA) was first established to detect multiple sulfonylureas (SUs) in functional foods. The PCN-224@PDA was synthesized using the one-pot hydrothermal method and covalently coupled with SUs antibodies, and the coupling rate was up to 91.8%. The detection limits of the developed PCN-224@PDA-LFIA for multiple SUs in functional teas and capsules were 0.22-3.72 μg/kg and 0.40-3.71 μg/kg, and quantification limits were 0.75-8.19 μg/kg and 1.03-9.08 μg/kg, respectively. The analytical sensitivity was 128-fold higher than that of similar methods reported so far. The recovery rates ranged from 83.8 to 119.0%, with coefficients of variation of 7.6-14.4%. The parallel analysis of 20 real samples by LC-MS/MS confirmed the reliability of the proposed method. Therefore, our work offers novel, ultrasensitive, and rapid technical support for on-site monitoring of SUs in functional foods.
Collapse
|
12
|
Sadrjavadi K, Taran M, Fattahi A, Khoshroo A. A microelectrode system for simple measurement of neuron specific enolase with photolithography technique. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Chen Q, Hu J, Hu X, Koh K, Chen H. Current methods and emerging approaches for detection of programmed death ligand 1. Biosens Bioelectron 2022; 208:114179. [PMID: 35364526 DOI: 10.1016/j.bios.2022.114179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
Various tumor cells overexpress programmed death ligand 1 (PD-L1), a main immune checkpoint protein (ICP) embedded in the tumor cells membrane, to evade immune recognition through the interaction between PD-L1 and its receptor programmed death 1 (PD-1) which is from T-cells for maintaining immune tolerance. So inhibitors targeting the PD-1 or PD-L1 can block the PD-1/PD-L1 signaling pathway to restore the recognition activity of the immune system to tumor cells, which also have been utilized as a novel approach to improve the clinical therapeutic effect for cancer patients. Since not all cancer patients can respond to these inhibitors effectively, previous diagnosis of PD-L1 is significant to target the right treatments for cancer patients. This review pays attention to the PD-L1 detection and recent progress in the measurement of PD-L1 concentration, including various detection methods based on optical sensors as well as electrochemical assays. Apart from above those, we also focus on the prospects of PD-L1 detection in precision medicine.
Collapse
Affiliation(s)
- Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
14
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
15
|
Wang P, Tang L, Zhou B, Cheng L, Zhao RC, Zhang J. Analytical methods for the detection of PD-1/PD-L1 and other molecules related to immune checkpoints. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Dutta S. Immunotherapy of tumors by tailored nano-zeolitic imidazolate framework protected biopharmaceuticals. Biomater Sci 2021; 9:6391-6402. [PMID: 34582540 DOI: 10.1039/d1bm01161h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancer immunotherapy, antibodies have acquired rapidly increasing attention due to their sustained immune effect by target specific delivery without any adverse effects. Among many recent strategies, controlled delivery of monoclonal antibodies, check point inhibitor storage and tumor-specific targeted delivery have enabled biodegradable immunotherapeutic delivery via translation of tailored nano-zeolitic imidazolate frameworks (ZIFs) with encapsulated biopharmaceuticals. In addition, a robust antitumor immunity was developed by anti-programmed death ligand-1 (anti-PD-L1) antibody delivery by ZIF-8 with polyethylene glycol (PEG) protection by forming a multiple immunoregulatory system. The unique biorecognition capability of antibodies, encapsulated in ZIFs, was recognized by using growth on different substrates, such as bioconjugates on gold nanorods, to transform them into plasmonic nanobiosensors with sensitivity of the refractive index profile of surface plasmons to track the conjugating antibody. Herein, we have discussed the mechanistic window of antibody delivery-based immunotherapy via the encapsulation of antibodies within ZIFs as an emerging tool for protecting biopharmaceuticals from the complex cellular microenvironment and hyperthermia to enable an antitumor immune response. To fully achieve the potential of antibodies upon ZIF encapsulation, more endeavors should be undertaken in the biodegradable engineering of ZIF-surfaces via forming cellular or polymeric layers to gain higher in vivo circulation time without inhibiting endocytosis by tumor cells. The possible future prognosis for achieving ZIF-protected biocompatible and biodegradable immunotherapeutic antibody delivery systems of therapeutic significance is discussed.
Collapse
Affiliation(s)
- Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India 201303.
| |
Collapse
|
17
|
Choi MH, Jeong S, Wang Y, Cho SJ, Park SI, Ye X, Baker LA. Characterization of Ligand Adsorption at Individual Gold Nanocubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7701-7711. [PMID: 34143943 DOI: 10.1021/acs.langmuir.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cetyltrimethylammonium bromide (CTAB) is a widely used surfactant that aids the aqueous synthesis of colloidal nanoparticles. However, the presence of residual CTAB on nanoparticle surfaces can significantly impact nanoparticle applications, such as catalysis and sensing, under hydrated conditions. As such, consideration of the presence and quantity of CTAB on nanoparticle surfaces under hydrated conditions is of significance. Herein, as part of an integrated material characterization framework, we demonstrate the feasibility of in situ atomic force microscopy (AFM) to detect CTAB on the surface of Au nanocubes (Au NCs) under hydrated conditions, which enabled superior characterization compared to conventional spectroscopic methods. In situ force-distance (FD) spectroscopy and Kelvin probe force microscopy (KPFM) measurements support additional characterization of adsorbed CTAB, while correlative in situ AFM and scanning electron microscopy (SEM) measurements were used to evaluate sequential steps of CTAB removal from Au NCs across hydrated and dehydrated environments, respectively. Notably, a substantial quantity of CTAB remained on the Au NC surface after methanol washing, which was detected in AFM measurements but was not detected in infrared spectroscopy measurements. Subsequent electrochemical cleaning was found to be critically important to remove CTAB from the Au NC surface. Correlative measurements were also performed on individual nanoparticles, which further validate the method described here as a powerful tool to determine the extent and degree of CTAB removal from nanoparticle surfaces. This AFM-based method is broadly applicable to characterize the presence and removal of ligands from nanomaterial surfaces under hydrated conditions.
Collapse
Affiliation(s)
- Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sang-Joon Cho
- Park Systems Corporation, KANC 4F, Gwanggyo-ro 109, Suwon 16229, Korea
| | - Sang-Il Park
- Park Systems Corporation, KANC 4F, Gwanggyo-ro 109, Suwon 16229, Korea
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Peng X, Wang Y, Wen W, Chen MM, Zhang X, Wang S. Simple MoS 2-Nanofiber Paper-Based Fluorescence Immunosensor for Point-of-Care Detection of Programmed Cell Death Protein 1. Anal Chem 2021; 93:8791-8798. [PMID: 34125511 DOI: 10.1021/acs.analchem.1c00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Programmed cell death protein 1 (PD-1) is one of the coinhibitory checkpoints upon T cell activation, the abnormal expression of which severely threatens host immune modulatation for chronic infection. Thus, fast and sensitive monitoring of PD-1 is of vital importance for early diagnosis and cancer treatment. The current detection methods largely based on enzyme-linked immunosorbent assay (ELISA) require time-consuming incubation and complicated washing steps. Herein, we designed a simple and portable nanofiber paper (NFP)-based fluorescence "off-on" immunosensor for PD-1 rapid determination. Molybdenum disulfide (MoS2) nanosheets modified NFP (MoS2-NFP) was employed for adsorbing and immobilizing CdSe/ZnS quantum dots-antibody (QDs-Ab) complex to construct a ready-to-use fluorescent immunosensor. The fluorescent signal of QDs-Ab was initially quenched by MoS2 under the Förster resonance energy transfer (FRET) effect. When the PD-1 target was specifically captured onto NFP by immunization, the QDs-Ab-PD-1 complex was promptly desorbed from the MoS2-NFP surface, resulting in FRET impediment and fluorescence recovery. As an alternative quenching agent, graphene oxide (GO) served as a contrast to investigate NFP-based sensing performance. Owing to superior quenching and desorption efficiency, the MoS2-NFP-based fluorescence immunosensor exhibited nearly 2-fold lower detection limit (85.5 pg/mL) than GO-NFP-based sensor (151 pg/mL) for PD-1 monitoring. Excellent selectivity and satisfactory recovery in PD-1 mouse cell culture supernatant samples were confirmed as well. In addition, the comparable detectability of the MoS2-NFP-based immunosensor was accurately evaluated by a standard PD-1 mouse ELISA kit. This study displayed a simple, rapid, low-cost, and portable point-of-care PD-1 assay, indicating its broad application prospect toward clinical diagnoses.
Collapse
Affiliation(s)
- Xiaolun Peng
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yijia Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
19
|
Chai M, Razmjou A, Chen V. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Moazzam P, Myekhlai M, Alinezhad A, Alshawawreh FA, Bakthavathsalam P, Gonçales VR, Tilley RD, Gooding JJ. Ultrasensitive detection of programmed death-ligand 1 (PD-L1) in whole blood using dispersible electrodes. Chem Commun (Camb) 2021; 57:2559-2562. [PMID: 33586712 DOI: 10.1039/d0cc08068c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct quantification of programmed death-ligand 1 (PD-L1) as a biomarker for cancer diagnosis, prognosis and treatment efficacy is an unmet clinical need. Herein, we demonstrate the first report of rapid, ultrasensitive and selective electrochemical detection of PD-L1 directly in undiluted whole blood using modified gold-coated magnetic nanoparticles as "dispersible electrodes" with an ultralow detection limit of 15 attomolar and a response time of only 15 minutes.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, The Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fardjahromi MA, Ejeian F, Razmjou A, Vesey G, Mukhopadhyay SC, Derakhshan A, Warkiani ME. Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111972. [PMID: 33812600 DOI: 10.1016/j.msec.2021.111972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts.
Collapse
Affiliation(s)
- Mahsa Asadniaye Fardjahromi
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Graham Vesey
- Regeneus Ltd, Paddington, Sydney, NSW, 2021, Australia
| | | | - Amin Derakhshan
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia.
| |
Collapse
|