1
|
Gaensicke VV, Bachmann S, Craciunescu L, Prentice AW, Paterson MJ, Iuga D, Sadler PJ, Marchi RC. New insights into bioactive Ga(III) hydroxyquinolinate complexes from UV-vis, fluorescence and multinuclear high-field NMR studies. Dalton Trans 2025; 54:5446-5457. [PMID: 40029264 DOI: 10.1039/d5dt00087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
There is current interest in the anticancer and antimicrobial activities of Ga(III) tris-hydroxyquinolinate complexes, and hence their solution and solid-state chemistry. Here, we have studied the formation, stability and structure of a novel tris-5,7-dibromo-8-hydroxyquinolinate Ga(III) complex [Ga(Br2-HQ)3]. Reactions of 5,7-dibromo-8-hydroxyquinoline with Ga(NO)3 in DMSO were followed using electronic absorption and emission spectroscopy, and revealed the slow but concerted coordination of three chelated ligands, with ligand deprotonation being the apparent rate-limiting step, facilitated by basic Ga(III) hydroxido species. The emissive excited state of [Ga(Br2-HQ)3] in DMSO had a short half-life of 1.2 ns, and the fluorescence (550 nm, λex = 400 nm) was characterized by TDDFT calculations as arising from a ligand-centred singlet S1 state. We compared the structures of [Ga(Br2-HQ)3] and the clinical tris-hydroxyquinolinate complex [Ga(HQ)3] using high-field magic-angle-spinning solid-state 1D and 2D 850 MHz and 1 GHz 1H, 13C and 71Ga NMR spectroscopy. The similarity of their coordination spheres was confirmed by their 71Ga chemical shifts of 101 and 98 ppm, respectively, and quadrupolar coupling constants of 9.265 MHz and 9.282 MHz. 1H-1H 2D NOESY experiments revealed second coordination sphere interactions between an acetic acid solvent molecule and the bound hydroxyquinolinate ligands of [Ga(HQ)3]·0.5CH3CO2H. This finding suggests that carboxylic acids could play a role in modifying the formulation properties of this drug for clinical use.
Collapse
Affiliation(s)
| | | | - Luca Craciunescu
- School of Engineering and Physical, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Andrew W Prentice
- School of Engineering and Physical, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Martin J Paterson
- School of Engineering and Physical, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Rafael Cavalieri Marchi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Advanced Studies (IAS), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Pourhajibagher M, Javanmard Z, Bahador A. In vitro antibacterial activity of photoactivated flavonoid glycosides against Acinetobacter baumannii. AMB Express 2024; 14:119. [PMID: 39495421 PMCID: PMC11535136 DOI: 10.1186/s13568-024-01781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii's extensive antibiotic resistance makes its infections difficult to treat, so effective strategies to fight this bacterium are urgently needed. This study aims to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Rutin-Gal(III) complex and Quercetin against A. baumannii. Absorbance spectra, fluorescence spectra, and minimum inhibitory concentration (MIC) of Rutin-Gal(III) complex and Quercetin were determined. The intracellular reactive oxygen species (ROS), extracellular polymeric substances (EPS), cell membrane permeability, expression of ompA and blaOXA-23, anti-biofilm activity, and anti-metabolic activity of Rutin-Gal(III) complex- and Quercetin-mediated aPDT were measured. Rutin-Gal(III) complex and Quercetin revealed absorption peaks in the visible spectra. Quercetin and Rutin-Gal(III) complex displayed fluorescence peaks at 524 nm and 540 nm, respectively. MIC values for the Rutin-Gal(III) complex and Quercetin were 64 µg/mL and 256 µg/mL, respectively. Quercetin- and Rutin-Gal(III) complex-mediated aPDT significantly reduced the colony forming units/mL (58.4% and 67.5%), EPS synthesis (47.4% and 56.5%), metabolic activity (30.5% and 36.3%), ompA (5.5- and 10.5-fold), and blaOXA-23 (4.1-fold and 7.8-fold) genes expression (respectively; all P < 0.05). Quercetin- and Rutin-Gal(III) complex-mediated aPDT enhanced notable biofilm degradation (36.2% and 40.6%), ROS production (2.55- and 2.90-folds), and membrane permeability (10.8- and 9.6-folds) (respectively; all P < 0.05). The findings indicate that Rutin-Gal(III) complex- and Quercetin-mediated aPDT exhibits antibacterial properties and could serve as a valuable adjunctive strategy to conventional antibiotic treatments for A. baumannii infections. One limitation of this study is that it was conducted solely on the standard strain; testing on clinical isolates would allow for more reliable interpretation of the results.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
3
|
de Assis ASJ, Pegoraro GM, Duarte ICS, Delforno TP. Gallium: a decisive "Trojan Horse" against microorganisms. Antonie Van Leeuwenhoek 2024; 118:3. [PMID: 39269546 DOI: 10.1007/s10482-024-02015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Controlling multidrug-resistant microorganisms (MRM) has a long history with the extensive and inappropriate use of antibiotics. At the cost of these drugs being scarce, new possibilities have to be explored to inhibit the growth of microorganisms. Thus, metallic compounds have shown to be promising as a viable alternative to contain pathogens resistant to conventional antimicrobials. Gallium (Ga3+) can be highlighted, which is an antimicrobial agent capable of disrupting the essential activities of microorganisms, such as metabolism, cellular respiration and DNA synthesis. It was observed that this occurs due to the similar properties between Ga3+ and iron (Fe3+), which is a fundamental ion for the correct functioning of bacterial activities. The mimetic effect performed by Ga3+ prevents iron transporters from distinguishing both ions and results in the substitution of Fe3+ for Ga3+ and in adverse metabolic disturbances in rapidly growing cells. This review focuses on analyzing the development of research involving Ga3+, elucidating the intracellular incorporation of the "Trojan Horse", summarizing the mechanism of interaction between gallium and iron and comparing the most recent and broad-spectrum studies using gallium-based compounds with antimicrobial scope.
Collapse
Affiliation(s)
- Amanda Stefanie Jabur de Assis
- Center of Science and Technology for Sustainability (CCTS), Laboratory of Applied Microbiology, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Itinga,, Sorocaba, SP, 18052-780, Brazil.
| | - Guilherme Manassés Pegoraro
- Center of Science and Technology for Sustainability (CCTS), Laboratory of Applied Microbiology, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Itinga,, Sorocaba, SP, 18052-780, Brazil
| | - Iolanda Cristina Silveira Duarte
- Center of Human and Biological Sciences (CCHB), Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Sorocaba, SP, Brazil
| | | |
Collapse
|
4
|
Baglioni M, Clemente I, Tamasi G, Bisozzi F, Costantini S, Fattori G, Gentile M, Rossi C. Isothiocyanate-Based Microemulsions Loaded into Biocompatible Hydrogels as Innovative Biofumigants for Agricultural Soils. Molecules 2024; 29:3935. [PMID: 39203013 PMCID: PMC11357407 DOI: 10.3390/molecules29163935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV-Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles' release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils.
Collapse
Affiliation(s)
- Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Costantini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Fattori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Valappil SP, Abou Neel EA, Zakir Hossain KM, Paul W, Cherukaraveedu D, Wade B, Ansari TI, Hope CK, Higham SM, Sharma CP. Novel lactoferrin-conjugated gallium complex to treat Pseudomonas aeruginosa wound infection. Int J Biol Macromol 2024; 258:128838. [PMID: 38128798 DOI: 10.1016/j.ijbiomac.2023.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Pseudomonas aeruginosa is one of the leading causes of opportunistic infections such as chronic wound infection that could lead to multiple organ failure and death. Gallium (Ga3+) ions are known to inhibit P. aeruginosa growth and biofilm formation but require carrier for localized controlled delivery. Lactoferrin (LTf), a two-lobed protein, can deliver Ga3+ at sites of infection. This study aimed to develop a Ga-LTf complex for the treatment of wound infection. The characterisation of the Ga-LTf complex was conducted using differential scanning calorimetry (DSC), Infra-Red (FTIR) and Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES). The antibacterial activity was assessed by agar disc diffusion, liquid broth and biofilm inhibition assays using the colony forming units (CFUs). The healing capacity and biocompatibility were evaluated using a P.aeruginosa infected wound in a rat model. DSC analyses showed thermal transition consistent with apo-lactoferrin; FTIR confirmed the complexation of gallium to lactoferrin. ICP-OES confirmed the controlled local delivery of Ga3+. Ga-LTf showed a 0.57 log10 CFUs reduction at 24 h compared with untreated control in planktonic liquid broth assay. Ga-LTf showed the highest antibiofilm activity with a 2.24 log10 CFUs reduction at 24 h. Furthermore, Ga-LTf complex is biocompatible without any adverse effect on brain, kidney, liver and spleen of rats tested in this study. Ga-LTf can be potentially promising novel therapeutic agent to treat pathogenic bacterial infections.
Collapse
Affiliation(s)
- Sabeel P Valappil
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, United Kingdom; Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom.
| | - Ensanya A Abou Neel
- Preventive and Restorative Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, Royal Free Hospital, Rowland Hill Street, London, UK
| | | | - Willi Paul
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Durgadas Cherukaraveedu
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Benjamin Wade
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Tahera I Ansari
- Northwick Park Institute for Medical Research, Watford Road, Harrow HA1 3UJ, United Kingdom
| | - Christopher K Hope
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Susan M Higham
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Chandra P Sharma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| |
Collapse
|
6
|
Hills OJ, Poskrobko Z, Scott AJ, Smith J, Chappell HF. A DFT study of the gallium ion-binding capacity of mature Pseudomonas aeruginosa biofilm extracellular polysaccharide. PLoS One 2023; 18:e0287191. [PMID: 37315081 PMCID: PMC10266685 DOI: 10.1371/journal.pone.0287191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Intravenous gallium therapy is a non-antibiotic approach to limit Pseudomonas aeruginosa biofilm proliferation, by outcompeting iron for siderophore binding. Gallium therapy represents a viable therapeutic strategy for cystic fibrosis (CF) patients harbouring mucoid P. aeruginosa biofilm lung infections. Siderophore deficient P. aeruginosa isolates still demonstrate a hindered biofilm proliferation when exposed to gallium but it is currently unknown whether exogenous gallium has any disruptive influence on the exopolysaccharide (EPS), the major mucoid P. aeruginosa CF lung biofilm matrix component. To that end, Density-Functional Theory (DFT) was deployed to assess whether gallium (Ga3+) could be substituted into the mature mucoid EPS scaffold in preference of calcium (Ca2+)-the native EPS cross-linking ion. Removal of the stable, bound native calcium ions offers a large enthalpic barrier to the substitution and the mature EPS fails to accommodate exogenous gallium. This suggests that gallium, perhaps, is utilising a novel, possibly unknown, ferric uptake system to gain entry to siderophore deficient cells.
Collapse
Affiliation(s)
- Oliver J. Hills
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Zuzanna Poskrobko
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Andrew J. Scott
- School of Chemical & Process Engineering, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - James Smith
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Helen F. Chappell
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| |
Collapse
|
7
|
Exploration of Dual Ionic Cross-Linked Alginate Hydrogels Via Cations of Varying Valences towards Wound Healing. Polymers (Basel) 2022; 14:polym14235192. [PMID: 36501587 PMCID: PMC9738749 DOI: 10.3390/polym14235192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
This study explored the synergistic effects of simultaneously using calcium and gallium cations in the cross-linking of alginate, detailing its effects on the characteristics of alginate compared to its single cation counterparts. The primary goal is to determine if there are any synergistic effects associated with the utilisation of multiple multivalent cations in polymer cross-linking and whether or not it could therefore be used in pharmaceutical applications such as wound healing. Given the fact divalent and trivalent cations have never been utilised together for cross-linking, an explanation for the mode of binding that occurs between the alginate and the cations during the cross-linking process and how it may affect the future applications of the polymer has been investigated. The calcium gallium alginate polymers were able to retain the antibacterial effects of gallium within the confines of the polymer matrix, possessing superior rheological properties, 6 times that of pure calcium and pure gallium, coupled with an improved swelling capacity that is 4 times higher than that of gallium alginate.
Collapse
|
8
|
Xie H, Liu Y, An H, Yi J, Li C, Wang X, Chai W. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol 2022; 10:1053399. [PMID: 36440438 PMCID: PMC9685530 DOI: 10.3389/fbioe.2022.1053399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2023] Open
Abstract
Prosthetic joint infection (PJI) is often considered as one of the most common but catastrophic complications after artificial joint replacement, which can lead to surgical failure, revision, amputation and even death. It has become a worldwide problem and brings great challenges to public health systems. A small amount of microbe attaches to the graft and forms a biofilm on its surface, which lead to the PJI. The current standard methods of treating PJI have limitations, but according to recent reports, bioactive materials have potential research value as a bioactive substance that can have a wide range of applications in the field of PJI. These include the addition of bioactive materials to bone cement, the use of antibacterial and anti-fouling materials for prosthetic coatings, the use of active materials such as bioactive glasses, protamine, hydrogels for prophylaxis and detection with PH sensors and fluorescent-labelled nanoparticles, and the use of antibiotic hydrogels and targeting delivery vehicles for therapeutic purposes. This review focus on prevention, detection and treatment in joint infections with bioactive materials and provide thoughts and ideas for their future applications.
Collapse
Affiliation(s)
- Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
9
|
Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D. Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties. Bioact Mater 2022; 17:125-146. [PMID: 35386441 PMCID: PMC8964984 DOI: 10.1016/j.bioactmat.2021.12.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The incorporation of gallium into bioactive materials has been reported to enhance osteogenesis, to influence blood clotting, and to induce anti-cancer and anti-bacterial activity. Gallium-doped biomaterials prepared by various techniques include melt-derived and sol-gel-derived bioactive glasses, calcium phosphate bioceramics, metals and coatings. In this review, we summarize the recently reported developments in antibacterial, anticancer, osteogenesis, and hemostasis properties of Ga-doped biomaterials and briefly outline the mechanisms leading to Ga biological effects. The key finding is that gallium addition to biomaterials has great potential for treating bone-related diseases since it can be efficiently transferred to the desired region at a controllable rate. Besides, it can be used as a potential substitute for antibiotics for the inhibition of infections during the initial and advanced phases of the wound healing process. Ga is also used as an anticancer agent due to the increased concentration of gallium around excessive cell proliferation (tumor) sites. Moreover, we highlight the possibility to design different therapeutic approaches aimed at increasing the efficiency of the use of gallium containing bioactive materials for multifunctional applications.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, Študentská 2, 911 50, Trenčín, Slovakia
| |
Collapse
|
10
|
Zheng H, Huang Z, Chen T, Sun Y, Chen S, Bu G, Guan H. Gallium ions incorporated silk fibroin hydrogel with antibacterial efficacy for promoting healing of Pseudomonas aeruginosa-infected wound. Front Chem 2022; 10:1017548. [PMID: 36385992 PMCID: PMC9649915 DOI: 10.3389/fchem.2022.1017548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 02/27/2025] Open
Abstract
The continual resistance to antibiotics and the generation of a series of bacterial infections has emerged as a global concern, which requires appropriate measures and therapeutics to address such a menace. Herein, we report on Silk fibroin (SF) hydrogel with good biocompatibility and biodegradability fabricated through the crosslinking of the SF of different concentrations with Gallium nitrate (Ga (NO3)3) against Pseudomonas aeruginosa. However, the SF: Ga = 500: 1 (w/w) (SF/Ga) demonstrated a good bactericidal and wound healing effect as a result of the moderate and prolonged release of the Ga3+ following the gradual degradation of the hydrogel. The Ga3+, known for its innovative nature acted as a crosslinked agent and a therapeutic agent employing the "Trojan horse" strategy to effectively deal with the bacteria. Also, the Ga3+, which is positively charged neutralizes the negative potential value of the SF particles to reduce the charge and further induce the β-sheet formation in the protein structure, a characteristic of gelation in SF. The morphology showed a fabricated homogenous structure with greater storage modulus- G' with low loss modulus- G'' modulus demonstrating the mechanical performance and the ability of the SF/Ga hydrogel to hold their shape, at the same time allowing for the gradual release of Ga3+. A demonstration of biocompatibility, biodegradability, bactericidal effect and wound healing in in vitro and in vivo present the SF/Ga hydrogel as an appropriate platform for therapeutic and for antibacterial wound dressing.
Collapse
Affiliation(s)
- Hui Zheng
- Wenzhou Institute of Industry & Science, Wenzhou, Zhejiang, China
| | - Zhida Huang
- Wenzhou Institute of Industry & Science, Wenzhou, Zhejiang, China
| | | | - Yafeng Sun
- Wenzhou Institute of Industry & Science, Wenzhou, Zhejiang, China
| | - Shouqing Chen
- Wenzhou Institute of Industry & Science, Wenzhou, Zhejiang, China
| | | | - Hongcai Guan
- Wenzhou Institute of Industry & Science, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
Li F, Liu F, Huang K, Yang S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front Bioeng Biotechnol 2022; 10:827960. [PMID: 35186906 PMCID: PMC8855063 DOI: 10.3389/fbioe.2022.827960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
With the abuse and misuse of antibiotics, antimicrobial resistance has become a challenging issue in the medical system. Iatrogenic and non-iatrogenic infections caused by multidrug-resistant (MDR) pathogens pose serious threats to global human life and health because the efficacy of traditional antibiotics has been greatly reduced and the resulting socio-economic burden has increased. It is important to find and develop non-antibiotic-dependent antibacterial strategies because the development of new antibiotics can hardly keep pace with the emergence of resistant bacteria. Gallium (III) is a multi-target antibacterial agent that has an excellent antibacterial activity, especially against MDR pathogens; thus, a gallium (III)-based treatment is expected to become a new antibacterial strategy. However, some limitations of gallium ions as antimicrobials still exist, including low bioavailability and explosive release. In recent years, with the development of nanomaterials and clathrates, the progress of manufacturing technology, and the emergence of synergistic antibacterial strategies, the antibacterial activities of gallium have greatly improved, and the scope of application in medical systems has expanded. This review summarizes the advancement of current optimization for these key factors. This review will enrich the knowledge about the efficiency and mechanism of various gallium-based antibacterial agents and provide strategies for the improvement of the antibacterial activity of gallium-based compounds.
Collapse
Affiliation(s)
| | - Fengxiang Liu
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Kai Huang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Shengbing Yang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| |
Collapse
|
13
|
Akhtar MA, Hadzhieva Z, Ilyas K, Ali MS, Peukert W, Boccaccini AR. Facile Synthesis of Gallium (III)-Chitosan Complexes as Antibacterial Biomaterial. Pharmaceutics 2021; 13:1702. [PMID: 34683993 PMCID: PMC8541496 DOI: 10.3390/pharmaceutics13101702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Even though antibiotic treatment remains one of the most common tools to handle bacterial infections, the excessive antibiotic concentration at the target site may lead to undesired effects. Aiming at the fabrication of antibiotic-free biomaterials for antibacterial applications, in this work, we propose the synthesis of gallium (III)-chitosan (Ga (III)-CS) complexes with six different gallium concentrations via an in situ precipitation method. Fourier Transform infrared spectroscopy indicated the chelation of chitosan with Ga (III) by peak shifts and changes in the relative absorbance of key spectral bands, while energy-dispersive X-ray spectroscopy indicated the homogenous distribution of the metal ions within the polymer matrix. Additionally, similar to CS, all Ga (III)-CS complexes showed hydrophobic behavior during static contact-angle measurements. The antibacterial property of the complexes against both Gram-negative and Gram-positive bacteria was positively correlated with the Ga (III) concentration. Moreover, cell studies confirmed the nontoxic behavior of the complexes against the human osteosarcoma cell line (MG-63 cells) and mouse embryonic fibroblasts cell line (MEFs). Based on the results of this study, new antibiotic-free antibacterial biomaterials based on Ga (III)-CS can be developed, expanding the scope of CS applications in the biomedical field.
Collapse
Affiliation(s)
- Muhammad Asim Akhtar
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Zoya Hadzhieva
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Kanwal Ilyas
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Muhammad Saad Ali
- Department of Chemical and Biological Engineering, Institute of Particle Technology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.S.A.); (W.P.)
| | - Wolfgang Peukert
- Department of Chemical and Biological Engineering, Institute of Particle Technology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.S.A.); (W.P.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| |
Collapse
|