1
|
Wang Z, Wang X, Zhou Y, Zhang X, Bian Y, Lin Q, Wang Y, Sheng R. Dual-functional hCe-pHEMA contact lenses for ocular antibiotic release, antioxidant protection, and in vivo corneal bacterial infection treatment. J Control Release 2025; 383:113813. [PMID: 40324534 DOI: 10.1016/j.jconrel.2025.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Ocular bacterial infections are typically associated with elevated levels of reactive oxygen species (ROS). Nevertheless, for treating ocular bacterial keratitis (BK), broad-spectrum antibiotics in eye drops or ointments are unable to inhibit ROS and encounter swift clearance and reduced bioavailability. This work developed antibiotic levofloxacin (LEV)-loaded hollow ceria nanoparticles (hCe NPs, ROS scavengers), which were embedded into poly-hydroxyethyl methacrylate (pHEMA) hydrogels to prepare dual-functional contact lenses (LEV@hCe-pHEMA), enabling extended ocular drug delivery and enhanced bioavailability. The integration of LEV@hCe NPs within pHEMA contact lenses preserved good optical transmittance (> 90.0 %), fortified UV-blocking capacities (200-400 nm), achieved controllable LEV release (84.2 % within 120 h), and enhanced ROS scavenging-antioxidative potential (78.4 % within 60 min). In vitro cytotoxicity evaluations revealed low cytotoxicity (cell viability >95.0 %) of the hCe-pHEMA contact lenses and affirmed their good biocompatibility. Notably, LEV@hCe-pHEMA exhibited significant antibacterial efficacy against S. aureus ATCC29213 (89.8 %) and E. coli ATCC25922 (94.2 %), demonstrating their therapeutic potential. In vivo safety evaluations in rabbit models showed no ocular irritation or pathological changes during a 7-day wearing period, confirming the good biocompatibility of the hCe-pHEMA lenses. LEV@hCe-pHEMA contact lenses could be utilized to treat rabbit BK model induced by S. aureus. It could near-completely remove the keratitis (within 7 days), reducing corneal edema and further recovering corneal transparency. The results suggested that LEV@hCe-pHEMA contact lenses could be employed as promising dual-functional smart ocular drug delivery systems for non-invasive ocular therapy.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China.
| | - Xiaomei Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yao Zhou
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Yujie Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China; Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
2
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Li X, Li H, Wang Z, Wang X, Zhang J, Bin F, Chen W, Li H, Huo D, Xiao D. Fish Fin-Derived Non-Invasive Flexible Bioinspired Contact Lens for Continuous Ophthalmic Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412630. [PMID: 39686625 PMCID: PMC11809385 DOI: 10.1002/advs.202412630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Efficient drug delivery is crucial for glaucoma patients. Flexible biomedical devices that enable sustained ocular drug delivery and can regulate the drug release rate according to physiological conditions are highly desirable for glaucoma treatments, addressing both low drug bioavailability and poor patient compliance from manual drug administration, and improving treatment outcomes. Inspired by the structure and reciprocating motion of fish dorsal fins, a drug-eluting contact lens based on deformable microstructures for non-invasive ocular surface drug delivery is developed. Liquid drugs are stored within the interstices of the deformable microstructural units, allowing for continuous drug release through diffusion upon contact with the ocular surface. Finite element analysis is utilized to study the intraocular drug transport dynamics of glaucoma and optimize the overall layout of the device. Microstructural units undergo deformation under loading, altering the interstitial spaces and modulating the drug release rate. This device can adaptively adjust its drug release rate based on changes in intraocular pressure (IOP) and can be proactively regulated in response to cyclic eye loads, accommodating elevated IOP caused by varying body postures and activities. As a flexible, non-invasive, highly dynamic, and adaptive drug delivery platform, it holds significant potential for future biomedical applications.
Collapse
Affiliation(s)
- Xu Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hui Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xianda Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Jinlong Zhang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Fengjiao Bin
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wei Chen
- Beijing University of TechnologyBeijing100124China
| | - Hongyang Li
- Beijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Dengbao Xiao
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
4
|
Xu L, Guo H, Zhong Y, Zhao YE, Lin L. Exploring the potential of nanoparticles-based polydopamine for effective treatment of refractory keratitis: Mild photothermal loop therapy. Int J Biol Macromol 2024; 279:135479. [PMID: 39255880 DOI: 10.1016/j.ijbiomac.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Keratitis is the leading cause of blindness worldwide. In refractory cases, it can even lead to eyeball enucleation. The critical challenges of refractory keratitis are the drug-resistant bacteria and bacterial biofilms formation. Therefore, we established an innovative therapeutic approach for keratitis based on mild photothermal loop (MPL) therapy. First, we analyzed the bactericidal effect of methicillin-resistant Staphylococcus aureus (MRSA) under various loops and temperature durations to determine the optimal condition. Then, RAN-seq was applied to explore the underlying mechanisms. Additionally, we formulated a dual-purpose polyvinyl alcohol-polydopamine (PDA/PVA) hydrogel system and explored its effects on the reactive oxygen species (ROS) scavenging capability, antibacterial properties, and anti-inflammatory properties in vitro, as well as its effect in vivo. The results indicated substantial bactericidal properties after exposure in four loops, each lasting 10 min at 45 °C. RNA-seq revealed the altered genes related to virulence and biofilm formation. In addition to good photothermal performance, the PDA/PVA system could effectively eliminate MRSA, reduce ROS, inhibit biofilm formation, and decrease inflammatory factors expression. Moreover, the in vivo results demonstrated the potential of MPL for bacterial keratitis. This study serves as the first attempt to use MPL therapy for refractory keratitis, offering a new approach for clinical practice.
Collapse
Affiliation(s)
- Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Shu Z, Sun X, Xu X, Qin M, Li J. Colloidal photonic crystals towards biological applications. J Mater Chem B 2024; 12:8488-8504. [PMID: 39161280 DOI: 10.1039/d4tb01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Colloidal photonic crystals (CPCs), fabricated from the assembly of micro-/nano-particles, have attracted considerable interest due to their unique properties, such as structural color, slow-photon effect, and high specific surface area (SSA). Benefiting from these properties, significant progress has been made in the biological applications of CPCs. In this perspective, these properties and relative manipulation strategies are firstly discussed, building bridges between properties and biological applications of CPCs. Structural color endows CPCs with naked-eye sensing capability, which can be applied to physiological state assessment and diagnosis, as well as self-report of CPC-based diagnostic and therapeutic devices. The slow-photon effect contributes to enhanced fluorescence, surface-enhanced Raman scattering, and efficacy of photodynamic/photothermal therapy, when CPCs are combined with corresponding functional materials. High SSA provides CPCs with abundant binding sites and superior capabilities for loading, adsorption, delivery, etc. These properties can be utilized individually or synergistically to grant CPCs superior performance in biological applications. Next, the recent advancements of CPCs towards biological applications are summarized, including biosensors, wound dressings, cells-on-a-chip, and phototherapy. Finally, a perspective on the challenges and future development of CPCs for biological applications is presented.
Collapse
Affiliation(s)
- Zixin Shu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoning Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhang W, Hu Y, Feng P, Li Z, Zhang H, Zhang B, Xu D, Qi J, Wang H, Xu L, Li Z, Xia M, Li J, Chai R, Tian L. Structural Color Colloidal Photonic Crystals for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403173. [PMID: 39083316 PMCID: PMC11423208 DOI: 10.1002/advs.202403173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Design and Arts, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Pan Feng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100049, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Tan Z, Chen C, Tang W. Advances in Hydrogels Research for Ion Detection and Adsorption. Crit Rev Anal Chem 2024:1-23. [PMID: 39128001 DOI: 10.1080/10408347.2024.2388817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continuing development of heavy industry worldwide has led to an exponential increase in the amount of wastewater discharged from factories and entering the natural world in the form of rivers and air. As the top of the food chain in the natural world, toxic ions penetrate the human body through the skin, nose, and a few milligrams of toxic ions can often cause irreversible damage to the human body, so ion detection and adsorption is related to the health and safety of human beings. Hydrogel is a hydrophilic three-dimensional reticulated polymer material that first synthesized by Wichterle and Lim in 1960, which is rich in porous structure and has a variety of active adsorption sites as a new type of adsorbent and can be used to detect ions through the introduction of photonic crystals, DNA, fluorescent probe, and other materials. This review describes several synthetic and natural hydrogels for the adsorption and detection of ions and discusses the mechanism of ion adsorption by hydrogels, and provide a perspective for the future development.
Collapse
Affiliation(s)
- Zhenjiang Tan
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Cheng Chen
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai, China
| | - Wenwei Tang
- School of Mathematics Physics and Statistics, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
8
|
Qian Z, Wang M, Li J, Chu Z, Tang W, Chen C. Preparation and Adsorption Photocatalytic Properties of PVA/TiO 2 Colloidal Photonic Crystal Films. Gels 2024; 10:520. [PMID: 39195049 DOI: 10.3390/gels10080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Polyvinyl alcohol (PVA)/TiO2/colloidal photonic crystal (CPC) films with photocatalytic properties are presented, where TiO2 nanoparticles were introduced into the PVA gel network. Such PVA/TiO2/CPC films possess three-dimensional periodic structures that are supported with a PVA/TiO2 composite gel. The unique structural color of CPCs can indicate the process of material preparation, adsorption, and desorption. The shift of diffraction peaks of CPCs can be more accurately determined using fiber-optic spectroscopy. The effect of the PVA/TiO2/CPC catalyst films showed better properties as the degradation of methylene blue (MB) by the PVA/TiO2/CPC film catalyst in 4 h was 77~90%, while the degradation of MB by the PVA/TiO2 film was 33% in 4 h, indicating that the photonic crystal structure was 2.3~2.7 times more effective than that of the bulk structure.
Collapse
Affiliation(s)
- Zhangyi Qian
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Menghan Wang
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
| | - Junling Li
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
| | - Zhaoran Chu
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
| | - Wenwei Tang
- School of Mathematics Physics and Statistics, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
| |
Collapse
|
9
|
Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev 2024; 16:251-267. [PMID: 38158868 DOI: 10.2174/0125899775266634231213044704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
According to the current information, using nano gels in the eyes have therapeutic benefits. Industry growth in the pharmaceutical and healthcare sectors has been filled by nanotechnology. Traditional ocular preparations have a short retention duration and restricted drug bioavailability because of the eye's architectural and physiological barriers, a big issue for physicians, patients, and chemists. In contrast, nano gels can encapsulate drugs within threedimensional cross-linked polymeric networks. Because of their distinctive structural designs and preparation methods, they can deliver loaded medications in a controlled and sustained manner, enhancing patient compliance and therapeutic efficacy. Due to their excellent drugloading capacity and biocompatibility, nano-gels outperform other nano-carriers. This study focuses on using nano gels to treat eye diseases and provides a brief overview of their creation and response to stimuli. Our understanding of topical drug administration will be advanced using nano gel developments to treat common ocular diseases such as glaucoma, cataracts, dry eye syndrome, bacterial keratitis, and linked medication-loaded contact lenses and natural active ingredients.
Collapse
Affiliation(s)
- Suraj Mandal
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Prabhakar Vishvakarma
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Km Bhumika
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| |
Collapse
|
10
|
Yang H, Zhao M, Xing D, Zhang J, Fang T, Zhang F, Nie Z, Liu Y, Yang L, Li J, Wang D. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci 2023; 18:100847. [PMID: 37915758 PMCID: PMC10616140 DOI: 10.1016/j.ajps.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 11/03/2023] Open
Abstract
The number of people with eye diseases has increased with the use of electronics. However, the bioavailability of eye drops remains low owing to the presence of the ocular barrier and other reasons. Although many drug delivery systems have been developed to overcome these problems, they have certain limitations. In recent years, the development of contact lenses that can deliver drugs for long periods with high bioavailability and without affecting vision has increased the interest in using contact lenses for drug delivery. Hence, a review of the current state of research on drug delivery contact lenses has become crucial. This article reviews the key physical and chemical properties of drug-laden contact lenses, development and classification of contact lenses, and features of the commonly used materials. A review of the methods commonly used in current research to create contact lenses has also been presented. An overview on how drug-laden contact lenses can overcome the problems of high burst and short release duration has been discussed. Overall, the review focuses on drug delivery methods using smart contact lenses, and predicts the future direction of research on contact lenses.
Collapse
Affiliation(s)
| | | | - Dandan Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Faxing Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihao Nie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lihua Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
11
|
Lai CF, Shiau FJ. Hydrogel Contact Lenses Embedded with Amine-Functionalized Large-Pore Mesoporous Silica Nanoparticles with Extended Hyaluronic Acid Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2441. [PMID: 37686949 PMCID: PMC10490223 DOI: 10.3390/nano13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Contact lenses (CLs) have emerged as an effective method for delivering ophthalmic drugs. In this research, we designed hydrogel CLs capable of extended release, utilizing large-pore mesoporous silica nanoparticles (LPMSNs) to deliver hyaluronic acid (HA) for treating dry eye syndrome. LPMSNs were functionalized with amine groups (LPMSN-amine) to enhance HA loading and release capacity. In vitro release studies demonstrated that LPMSN-amine CLs exhibited superior slower HA release than LPMSN-siloxane and standard CLs. Within 120 h, the cumulative amount of HA released from LPMSN-amine CLs reached approximately 275.58 µg, marking a 12.6-fold improvement compared to standard CLs, when loaded from 0.1 wt% HA solutions. Furthermore, LPMSN-amine CLs effectively maintained moisture, mitigating ocular surface dehydration, making them a promising solution for dry eye management. This study successfully developed LPMSN-amine CLs for extended HA release, identifying the optimal functional groups and loading conditions to achieve sustained release.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics, Feng Chia University, Taichung 407, Taiwan
| | | |
Collapse
|
12
|
Balcer E, Sobiech M, Luliński P. Molecularly Imprinted Carriers for Diagnostics and Therapy-A Critical Appraisal. Pharmaceutics 2023; 15:1647. [PMID: 37376096 DOI: 10.3390/pharmaceutics15061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Simultaneous diagnostics and targeted therapy provide a theranostic approach, an instrument of personalized medicine-one of the most-promising trends in current medicine. Except for the appropriate drug used during the treatment, a strong focus is put on the development of effective drug carriers. Among the various materials applied in the production of drug carriers, molecularly imprinted polymers (MIPs) are one of the candidates with great potential for use in theranostics. MIP properties such as chemical and thermal stability, together with capability to integrate with other materials are important in the case of diagnostics and therapy. Moreover, the MIP specificity, which is important for targeted drug delivery and bioimaging of particular cells, is a result of the preparation process, conducted in the presence of the template molecule, which often is the same as the target compound. This review focused on the application of MIPs in theranostics. As a an introduction, the current trends in theranostics are described prior to the characterization of the concept of molecular imprinting technology. Next, a detailed discussion of the construction strategies of MIPs for diagnostics and therapy according to targeting and theranostic approaches is provided. Finally, frontiers and future prospects are presented, stating the direction for further development of this class of materials.
Collapse
Affiliation(s)
- Emilia Balcer
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Lai CF, Shiau FJ. Enhanced and Extended Ophthalmic Drug Delivery by pH-Triggered Drug-Eluting Contact Lenses with Large-Pore Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18630-18638. [PMID: 37023369 DOI: 10.1021/acsami.2c22860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Drug-eluting contact lenses (DCLs) have attracted considerable attention as potential therapeutic ophthalmic drug delivery devices. In this study, we propose, fabricate, and investigate pH-triggered DCLs that are combined with large-pore mesoporous silica nanoparticles (LPMSNs). Compared to reference DCLs, LPMSN-laden DCLs can prolong the residence time of glaucoma drugs in an artificial lacrimal fluid (ALF) environment at pH 7.4. Additionally, LPMSN-laden DCLs do not require drug preloading and are compatible with current contact lens manufacturing processes. LPMSN-laden DCLs soaked at pH 6.5 exhibit better drug loading than reference DCLs due to their specific adsorption. The sustained and extended release of glaucoma drugs by LPMSN-laden DCLs was successfully monitored in ALF, and the drug release mechanism was further explained. We also evaluated the cytotoxicity of LPMSN-laden DCLs, and qualitative and quantitative results showed no cytotoxicity. Our experimental results demonstrate that LPMSNs are excellent nanocarriers that have the potential to be used as safe and stable nanocarriers for the delivery of glaucoma drugs or other drugs. pH-triggered LPMSN-laden DCLs can significantly improve drug loading efficiency and control prolonged drug release, indicating that they have great potential for future biomedical applications.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Fu-Jia Shiau
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| |
Collapse
|
14
|
Wu Y, Tao Q, Xie J, Lu L, Xie X, Zhang Y, Jin Y. Advances in Nanogels for Topical Drug Delivery in Ocular Diseases. Gels 2023; 9:gels9040292. [PMID: 37102904 PMCID: PMC10137933 DOI: 10.3390/gels9040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanotechnology has accelerated the development of the pharmaceutical and medical technology fields, and nanogels for ocular applications have proven to be a promising therapeutic strategy. Traditional ocular preparations are restricted by the anatomical and physiological barriers of the eye, resulting in a short retention time and low drug bioavailability, which is a significant challenge for physicians, patients, and pharmacists. Nanogels, however, have the ability to encapsulate drugs within three-dimensional crosslinked polymeric networks and, through specific structural designs and distinct methods of preparation, achieve the controlled and sustained delivery of loaded drugs, increasing patient compliance and therapeutic efficiency. In addition, nanogels have higher drug-loading capacity and biocompatibility than other nanocarriers. In this review, the main focus is on the applications of nanogels for ocular diseases, whose preparations and stimuli-responsive behaviors are briefly described. The current comprehension of topical drug delivery will be improved by focusing on the advances of nanogels in typical ocular diseases, including glaucoma, cataracts, dry eye syndrome, and bacterial keratitis, as well as related drug-loaded contact lenses and natural active substances.
Collapse
Affiliation(s)
- Yongkang Wu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Qing Tao
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Jing Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Lili Lu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Xiuli Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yang Zhang
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| |
Collapse
|
15
|
Pollard TD, Seoane-Viaño I, Ong JJ, Januskaite P, Awwad S, Orlu M, Bande MF, Basit AW, Goyanes A. Inkjet drug printing onto contact lenses: Deposition optimisation and non-invasive dose verification. Int J Pharm X 2022; 5:100150. [PMID: 36593987 PMCID: PMC9804110 DOI: 10.1016/j.ijpx.2022.100150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Inkjet printing has the potential to advance the treatment of eye diseases by printing drugs on demand onto contact lenses for localised delivery and personalised dosing, while near-infrared (NIR) spectroscopy can further be used as a quality control method for quantifying the drug but has yet to be demonstrated with contact lenses. In this study, a glaucoma therapy drug, timolol maleate, was successfully printed onto contact lenses using a modified commercial inkjet printer. The drug-loaded ink prepared for the printer was designed to match the properties of commercial ink, whilst having maximal drug loading and avoiding ocular inflammation. This setup demonstrated personalised drug dosing by printing multiple passes. Light transmittance was found to be unaffected by drug loading on the contact lens. A novel dissolution model was built, and in vitro dissolution studies showed drug release over at least 3 h, significantly longer than eye drops. NIR was used as an external validation method to accurately quantify the drug dose. Overall, the combination of inkjet printing and NIR represent a novel method for point-of-care personalisation and quantification of drug-loaded contact lenses.
Collapse
Affiliation(s)
- Thomas D. Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Manuel F. Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, Santiago de Compostela 15706, Spain
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK,Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain,Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
16
|
Ning X, Huang J, A Y, Yuan N, Chen C, Lin D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int J Mol Sci 2022; 23:15757. [PMID: 36555397 PMCID: PMC9779336 DOI: 10.3390/ijms232415757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels with a three-dimensional network structure are particularly outstanding in water absorption and water retention because water exists stably in the interior, making the gel appear elastic and solid. Although traditional hydrogels have good water absorption and high water content, they have poor mechanical properties and are not strong enough to be applied in some scenarios today. The proposal of double-network hydrogels has dramatically improved the toughness and mechanical strength of hydrogels that can adapt to different environments. Based on ensuring the properties of hydrogels, they themselves will not be damaged by excessive pressure and tension. This review introduces preparation methods for double-network hydrogels and ways to improve the mechanical properties of three typical gels. In addition to improving the mechanical properties, the biocompatibility and swelling properties of hydrogels enable them to be applied in the fields of biomedicine, intelligent sensors, and ion adsorption.
Collapse
Affiliation(s)
- Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jiani Huang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Yimuhan A
- School of Materials and Metallurgy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ningning Yuan
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
17
|
|
18
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Chu Z, Ding Z, Ning X, A Y, Wang M, Shao K, Tang W, Chen C, Bai J. Non-gelated polymeric photonic crystal films. Front Chem 2022; 10:1009669. [PMID: 36204152 PMCID: PMC9531271 DOI: 10.3389/fchem.2022.1009669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
A rapid curing method for the preparation of colloidal photonic crystal films is presented. Firstly, a colloidal crystal array template was prepared by self-assembly of nanospheres, and then a dilute polymer solution was poured into the gap of the template. Then the composite photonic film was obtained as the polymer solution was cured. Such films have good properties in mechanical strength, anti pH interference, rapid solvent response and are easy to preserve. The films show good linear response to ethanol aqueous solutions of different concentrations, and the response equilibrium takes less than 20 s. The films also show long-term stability and reusability, and further functionalization can make the films multi-sensitive.
Collapse
Affiliation(s)
- Zhaoran Chu
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zheng Ding
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Yimihan A
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Menghan Wang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai, China
- *Correspondence: Cheng Chen, ; Jianzhong Bai,
| | - Jianzhong Bai
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Cheng Chen, ; Jianzhong Bai,
| |
Collapse
|
20
|
Inverse Colloidal Crystal Polymer Coating with Monolayer Ordered Pore Structure. CRYSTALS 2022. [DOI: 10.3390/cryst12030378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A functional lens coating, based on the structure of inversed colloidal photonic crystals, is proposed. The color-reflecting colloidal crystal was first prepared by self-assembly of nano-colloids and was infiltrated by adhesive polymer solution. As the polymer was crosslinked and the crystal array was removed, a robust mesh-like coating was achieved. Such a functional coating has good transmittance and has a shielding efficiency of ~9% for UV–blue light according to different particle sizes of the nano-colloids, making it an ideal functional material.
Collapse
|