1
|
Ben-Haim AE, Shalev N, Amalraj AJJ, Zelinger E, Mani KA, Belausov E, Shoval I, Nativ-Roth E, Maria R, Atkins A, Sadashiva R, Koltai H, Mechrez G. Nanocarriers for cancer-targeted delivery based on Pickering emulsions stabilized by casein nanoparticles. Int J Biol Macromol 2025; 298:140822. [PMID: 39929470 DOI: 10.1016/j.ijbiomac.2025.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This study demonstrates the development of stimuli-responsive Pickering emulsions stabilized by casein nanoparticles (CNPs) for targeted drug delivery to colorectal cancer cells (CRC). Encapsulation of a fluorescent dye simulates therapeutic delivery, demonstrating biomedical potential. The oil-in-water nanoemulsions stabilized by CNPs function as nanocarriers sensitive to matrix metalloproteinase-7 (MMP-7), an enzyme overexpressed in CRC cells, enabling precise drug release. Emulsions exhibited strong stability due CNPs forming a robust layer at the oil-water interface, enhancing bioavailability and controlled release. Covalent modifications of CNPs with polyethyleneimine (PEI) or polyacrylic acid (PAA), and pH adjustments optimize the zeta potential, improving surface charge and delivery efficiency. Maximal CNP uptake occurred with PAA-modified CNPs (-20 mV), showing superior interaction with CRC cells compared to pristine (-6.7 mV) and PEI-modified (+30.5, +42.1 mV) CNPs. Confocal microscopy and imaging flow cytometry confirmed that CNP-stabilized emulsions enhance CRC inter-localization compared to dispersed CNPs. Nanoemulsions with the highest CNP uptake showed selective interaction with tumor cells, while minimizing oil droplet uptake, driven by nanoscale dimensions and targeted surface interactions. Enzymatic degradation of CNPs by MMP-7 induces phase separation and targeted release. This dual-functional system, leveraging charge modification and enzymatic responsiveness, highlights CNP-stabilized nanoemulsions as a promising CRC-targeted drug delivery platform.
Collapse
Affiliation(s)
- Avital Ella Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Nurit Shalev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Antolin Jesila Jesu Amalraj
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Einat Zelinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Irit Shoval
- The Kanbar core facility unit, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rajitha Sadashiva
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel.
| |
Collapse
|
2
|
Chen Y, Chen Q, Ding J, Liu Q, Yuan S, Yu H, Guo Y, Cheng Y, Qian H, Yao W. Glutenin phase transition as a method of fabricating primer for superhydrophobic and corrosion-resistant coating. J Colloid Interface Sci 2025; 681:169-181. [PMID: 39602968 DOI: 10.1016/j.jcis.2024.11.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Concerns over food safety arising from conventional plastic and resin-based corrosion barriers cannot be underestimated, particularly in light of the potential for plasticizer migration. We introduce an environmental-friendly and sustainable approach to develop superhydrophobic and anticorrosion coatings. This involved a unique process where glutenin, post-reduction with tris(2-carboxyethyl)phosphine, underwent a phase transition, naturally adhering to diverse surfaces to form a foundational primer. The core mechanism of this adhesion lied the β-sheet stacking configuration, confirmed by grazing-incidence wide-angle X-ray scattering. To further elevate the performance, carnauba wax was easily incorporated as a topcoat, forming a superhydrophobic coating that surpassed standalone wax coatings in durability against wear, impact, high temperature, and corrosion. This enhancement was derived from the intricate intermolecular interactions, including hydrogen bonding and hydrophobic interactions, established between the primer and carnauba wax. Notably, the phase-transited coating and superhydrophobic coating maintained a low-frequency impedance of 0.1 and 2.1 MΩ/cm2, respectively, even after prolonged immersion in a 3.5 % NaCl solution for 21 days. The superhydrophobic coating was ideally applicated in an extensive range of canned food products, such as beverages, fruits, etc., that undergo pasteurization. Additionally, both the primer and the superhydrophobic coating exhibited outstanding biocompatibility, as evidenced by red blood cell hemolysis and cytotoxicity assessments. In summary, this research contributes significant knowledge to the development of superhydrophobic coatings and expand applications of protein-based assembly materials.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Qiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jianjun Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
3
|
Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, Gao Y, Zheng J, Zhong S, Puzyn T, Gao X. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407793. [PMID: 39252670 DOI: 10.1002/adma.202407793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejiao J Gao
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland
| | - Yuanjie Ma
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Yuxin Wan
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yurou Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Salel S, Iyisan B. Polymer-lipid hybrid nanoparticles as potential lipophilic anticancer drug carriers. DISCOVER NANO 2023; 18:114. [PMID: 37713009 PMCID: PMC10504175 DOI: 10.1186/s11671-023-03897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Nanocarrier systems are widely used for drug delivery applications, but limitations such as the use of synthetic surfactants, leakage of toxic drugs, and a poor encapsulation capacity remain as challenges. We present a new hybrid nanocarrier system that utilizes natural materials to overcome these limitations and improve the safety and efficacy of drug delivery. The system comprises a biopolymeric shell and a lipid core, encapsulating the lipophilic anticancer drug paclitaxel. Bovine serum albumin and dextran, in various molecular weights, are covalently conjugated via Maillard reaction to form the shell which serves as a stabilizer to maintain nanoparticle integrity. The properties of the system, such as Maillard conjugate concentration, protein/polysaccharide molar ratio, and polysaccharide molecular weight, are optimized to enhance nanoparticle size and stability. The system shows high stability at different pH conditions, high drug loading capacity, and effective in vitro drug release through the trigger of enzymes and passive diffusion. Serine proteases are used to digest the protein portion of the nanoparticle shell to enhance the drug release. This nanocarrier system represents a significant advancement in the field of nanomedicine, offering a safe and effective alternative for the delivery of lipophilic drugs.
Collapse
Affiliation(s)
- Sedef Salel
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey.
- Partner Group of Max Planck Institute for Polymer Research Mainz (Germany) at Bogazici University, 34684, Istanbul, Turkey.
| |
Collapse
|
5
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Chaparro LM, Neira LF, Molina D, Rivera-Barrera D, Castañeda M, López-Giraldo LJ, Escobar P. Biowaxes from Palm Oil as Promising Candidates for Cosmetic Matrices and Pharmaceuticals for Human Use. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4402. [PMID: 37374583 DOI: 10.3390/ma16124402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
The production of waxes from vegetable oils, such as palm oil, for use as a base material in products for human applications is an alternative to those derived from petroleum and animals. Seven palm oil-derived waxes, called biowaxes (BW1-BW7) in this work, were obtained by catalytic hydrotreating of refined and bleached African palm oil and refined palm kernel oil. They were characterized by three properties: compositional, physicochemical (melting point, penetration value, and pH), and biological (sterility, cytotoxicity, phototoxicity, antioxidant, and irritant). Their morphologies and chemical structures were studied by SEM, FTIR, UV-Vis, and 1H NMR. The BWs presented structures and compositions similar to natural biowaxes (beeswax and carnauba). They had a high concentration of waxy esters (17%-36%) with long alkyl chains (C, 19-26) per carbonyl group, which are related to high melting points (<20-47.9 °C) and low penetration values (2.1-3.8 mm). They also proved to be sterile materials with no cytotoxic, phototoxic, antioxidant, or irritant activity. The biowaxes studied could be used in cosmetic and pharmacological products for human use.
Collapse
Affiliation(s)
- Laura María Chaparro
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Laura Fernanda Neira
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Daniel Molina
- Laboratorio de Resonancia Magnética Nuclear, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Diego Rivera-Barrera
- Laboratorio de Resonancia Magnética Nuclear, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Maribel Castañeda
- Centro de Innovación y Tecnología-ICP-ECOPETROL S.A, Bogotá 110911, Colombia
| | - Luis Javier López-Giraldo
- Grupo de Investigación en Ciencia y Tecnología de Alimentos-CICTA, Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Patricia Escobar
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
7
|
Dillion Lima Cavalcanti I, Humberto Xavier Junior F, Stela Santos Magalhães N, Cajubá de Britto Lira Nogueira M. ISOTHERMAL TITRATION CALORIMETRY (ITC) AS A PROMISING TOOL IN PHARMACEUTICAL NANOTECHNOLOGY. Int J Pharm 2023; 641:123063. [PMID: 37209790 DOI: 10.1016/j.ijpharm.2023.123063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique for evaluating the thermodynamic profiles of connection between two molecules, allowing the experimental design of nanoparticles systems with drugs and/or biological molecules. Taking into account the relevance of ITC, we conducted, therefore, an integrative revision of the literature, from 2000 to 2023, on the main purposes of using this technique in pharmaceutical nanotechnology. The search were carried out in the Pubmed, Sciencedirect, Web of Science, and Scifinder databases using the descriptors "Nanoparticles", "Isothermal Titration Calorimetry", and "ITC". We have observed that the ITC technique has been increasingly used in pharmaceutical nanotechnology, seeking to understand the interaction mechanisms in the formation of nanoparticles. Additionally, to understand the behavior of nanoparticles with biological materials (proteins, DNA, cell membranes, among others), thereby helping to understand the behavior of nanocarriers in vivo studies. As a contribution, we intended to reveal the importance of ITC in the laboratory routine, which is itself a quick and easy technique to obtain relevant results that help to optimize the nanosystems formulation process.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Francisco Humberto Xavier Junior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Department of Pharmacy, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Federal University of Paraíba (UFPB), Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nereide Stela Santos Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), R. Alto do Reservatório - Alto José Leal, Vitória de Santo Antão - PE, 55608-680, Brazil.
| |
Collapse
|
8
|
Zhang Y, Williams GR, Lou J, Li W, Bai C, Wang T, Niu S, Feng C, Zhu LM. A new chitosan-based thermosensitive nanoplatform for combined photothermal and chemotherapy. Int J Biol Macromol 2022; 223:1356-1367. [PMID: 36379285 DOI: 10.1016/j.ijbiomac.2022.11.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Targeting the delivery of anti-cancer drugs to a tumor site is essential for effective treatment and to ensure minimal damage to healthy cells and tissues. In this work, a chitosan-based nanoplatform was constructed for combined photothermal therapy and chemotherapy of breast cancer. The pH-sensitive and biocompatible biopolymer chitosan (CS) was grafted with N-vinylcaprolactam (NVCL) and modified with biotin (Bio), imparting it with temperature sensitive property and also the ability for active targeting. The polymer self-assembled to give nanoparticles (NPs) loaded with indocyanine green (ICG) and doxorubicin (DOX). When the NPs are exposed to near-infrared (NIR) laser irradiation, ICG converts the light to heat, inducing a significant phase transition in the NPs and facilitating the release of the drug cargo. In addition, the solubility of chitosan is increased in the slightly acidic microenvironment of the tumor site, which also promotes drug release. A detailed analysis of the NPs both in vitro and in vivo showed that the carrier system is biocompatible, while the drug-loaded NPs are selectively taken up by cancer cells. Particularly when augmented with NIR irradiation, this leads to potent cell death in vitro and also in an in vivo murine xenograft model of breast cancer.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jiadong Lou
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Wanting Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Cuiwei Bai
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Chun Feng
- Department of Otolaryngology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
9
|
Susmita Devi L, Kalita S, Mukherjee A, Kumar S. Carnauba wax-based composite films and coatings: recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Madarshahian S, Enayati M, Vinyes Parés G, Ufheil G, Abbaspourrad A. Solid phase wax coating of N-acetylcysteine (NAC) to decrease its solubility profile as a ready to mix supplement. RSC Adv 2022; 12:17550-17558. [PMID: 35765435 PMCID: PMC9192162 DOI: 10.1039/d1ra09279k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
N-Acetylcysteine (NAC) has health benefits attributed to its antioxidant properties and disulfide bond cleavage ability. Unfortunately, solutions of NAC are acidic with an undesirable taste and an unpleasant aftertaste. A method for slowing NAC release in water was developed using a solid phase wax coating. A coating of natural waxes, using food grade corn oil as the solvent and surfactants to facilitate the wax coating on the particles was used to decrease the solubility of NAC powder, crystals, and granules in water. A high NAC loading, between 55 and 91% for NAC granules and NAC crystals, was achieved as measured using LC-MS. The NAC wax-coated particles were fully characterized, and microscopy and SEM images revealed the shape, morphology, and size of the particles. Conductometry was used to study NAC release profile in water from wax-coated particles and the results indicate that solid phase wax coatings slowed the release of NAC into water.
Collapse
Affiliation(s)
- Sara Madarshahian
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University Ithaca 14853 NY USA
| | - Mojtaba Enayati
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University Ithaca 14853 NY USA
| | - Gerard Vinyes Parés
- Nestlé Product Technology Center Nestlé Health Science Bridgewater NJ 08807 USA
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University Ithaca 14853 NY USA
| |
Collapse
|
11
|
Kunde SS, Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids Surf B Biointerfaces 2022; 213:112422. [PMID: 35231688 DOI: 10.1016/j.colsurfb.2022.112422] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer has been identified as one of the most common cancers diagnosed in women. Various nanotechnology platforms offering unique features are considered in breast cancer treatment. Albumin is a versatile biodegradable, biocompatible, non-toxic and non-immunogenic protein nanocarrier. These characteristics attracted strong attention to fabricate albumin nanoparticles to deliver chemotherapeutic agents without major adverse effects. Albumin nanoparticles can undergo surface modifications using different ligands promoting tumor-targeted drug delivery. Moreover, multifunctional albumin nanoparticle is an upcoming strategy to attain efficient cancer therapy. This review gives an account of the potential albumin nanoparticles developed for chemotherapeutic drug delivery and its targeted approach for breast cancer. It also covers different multifunctional therapies available using albumin nanoparticles as breast cancer theranostics.
Collapse
Affiliation(s)
- Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|