1
|
Shishegari N, Tadjarodi A, Omidinia E. An electrochemical nano-genosensor for SARS-CoV-2 detection utilizing Ce-metal organic framework, dendritic palladium nano-structure, and sulfur-doped graphene oxide. Talanta 2025; 287:127662. [PMID: 39884121 DOI: 10.1016/j.talanta.2025.127662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The emergence of COVID-19 has underscored an urgent demand to develop an innovative, rapid, and reliable diagnostic tool for early detection of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Biosensors present a viable alternative, offering reliability, precision, and cost efficiency that address the limitations of current molecular and serological detection methods, thus facilitating timely identification of COVID-19. In this study, a novel nano-genosenor platform fabricated using advanced nanomaterials based on Ce-metal organic framework (Ce-MOF), dendritic palladium nano-structure (Den-PdNS), and sulfur-doped reduced graphene oxide (S-rGO) for detection of RNA-dependent RNA polymerase (RdRp) SARS-CoV-2 gene targets. The fabricated nano-genosensor represents a remarkable limit of detection (LOD) of 0.2 fM, a proper sensitivity of 10.067 μA cm-2, and a wide linear range from 10 fM to 10 μM. The nano-genosensor's performance was assessed in real saliva samples, demonstrating robust recovery and accuracy, even in complex biological environments, underscoring its potential for medical applications. The fabricated nano-genosensor exhibited proper selectivity, repeatability, and reproducibility in detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Niusha Shishegari
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114, Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114, Tehran, Iran.
| | - Eskandar Omidinia
- Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, 13169-43551, Tehran, Iran.
| |
Collapse
|
2
|
Boaventura RVA, Pereira CL, Junqueira C, Gonçalves KB, Rezende NP, Borges IA, Barcelos RC, Oréfice FB, Bagno FF, Fonseca FG, Corrêa A, Gomes LS, Lacerda RG. Detection of IgG Antibodies Against COVID-19 N-Protein by Hybrid Graphene-Nanorod Sensor. BIOSENSORS 2025; 15:164. [PMID: 40136961 PMCID: PMC11940001 DOI: 10.3390/bios15030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
The COVID-19 pandemic highlighted the global necessity to develop fast, affordable, and user-friendly diagnostic alternatives. Alongside recognized tests such as ELISA, nanotechnologies have since been explored for direct and indirect diagnosis of SARS-CoV-2, the etiological agent of COVID-19. Accordingly, in this work, we report a method to detect anti-SARS-CoV-2 antibodies based on graphene-based field-effect transistors (GFETs), using a nanostructured platform of graphene with added gold nanorods (GNRs) and a specific viral protein. To detect anti-N-protein IgG antibodies for COVID-19 in human sera, gold nanorods were functionalized with the nucleocapsid (N) protein of SARS-CoV-2, and subsequently deposited onto graphene devices. Our test results demonstrate that the sensor is highly sensitive and can detect antibody concentrations as low as 100 pg/mL. Using the sensor to test human sera that were previously diagnosed with ELISA showed a 90% accuracy rate compared to the ELISA results, with the test completed in under 15 min. Integrating graphene and nanorods eliminates the need for a blocker, simplifying sensor fabrication. This hybrid sensor holds robust potential to serve as a simple and efficient point-of-care platform.
Collapse
Affiliation(s)
- R. V. A. Boaventura
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - C. L. Pereira
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
| | - C. Junqueira
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - K. B. Gonçalves
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - N. P. Rezende
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
| | - I. A. Borges
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - R. C. Barcelos
- Chemistry Department, Federal University of São João del-Rei (UFSJ), Divinópolis 35500-008, MG, Brazil;
| | - F. B. Oréfice
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - F. F. Bagno
- Vaccine Technology Center (CT Vacinas), BH-Tec, UFMG, Belo Horizonte 31270, MG, Brazil;
| | - F. G. Fonseca
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - A. Corrêa
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - L. S. Gomes
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - R. G. Lacerda
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| |
Collapse
|
3
|
Wang G, Zhang M, Zhu M, Zhang T, Qian X, Liu Y, Ma X, Dai C, Wei D, Zhu Z, Sun J, Guo M. Ultraprecise Detection of Influenza Virus by Antibody-Modified Graphene Transistors. SENSORS (BASEL, SWITZERLAND) 2025; 25:959. [PMID: 39943598 PMCID: PMC11820836 DOI: 10.3390/s25030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Over the past decade, the large-scale spread of influenza viruses has posed an increasing burden on public health. The effective screening of influenza agents requires a fast, precise, on-site and easy-to-operate method. Unfortunately, current screening methods face challenges in speed and accuracy, especially in complex on-site settings. Here, this work develops a nucleoprotein antibody-modified graphene field-effect transistor (NPAb-GFET) for rapid and highly precise detection of influenza A viruses. The functionalized monoclonal antibodies capture influenza virus nucleoprotein within 100 × 10-9 s on the sensing surface. Therefore, the developed NPAb-GFET achieves an average response time of 72.1 s when detecting influenza A viruses in clinical samples. Furthermore, the testing of 106 throat swab samples exhibits an accuracy of 99.1%. This finding provides a valuable diagnostic tool for the control of influenza viruses, accelerating the population-wide control of other epidemics.
Collapse
Affiliation(s)
- Gang Wang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mingming Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Minghua Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tengfei Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xueqin Qian
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yili Liu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xinye Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Juntao Sun
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
Brustoloni CJM, Khamsi PS, Kammarchedu V, Ebrahimi A. Systematic Study of Various Functionalization Steps for Ultrasensitive Detection of SARS-CoV-2 with Direct Laser-Functionalized Au-LIG Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49041-49052. [PMID: 39231012 PMCID: PMC11479654 DOI: 10.1021/acsami.4c09571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The 2019 coronavirus (COVID-19) pandemic impaired global health, disrupted society, and slowed the economy. Early detection of the infection using highly sensitive diagnostics is crucial in preventing the disease's spread. In this paper, we demonstrate electrochemical sensors based on laser induced graphene (LIG) functionalized directly with gold (Au) nanostructures for the detection of SARS-CoV-2 with an outstanding limit of detection (LOD) of ∼1.2 ag·mL-1. To achieve the optimum performance, we explored various functionalization parameters to elucidate their impact on the LOD, sensitivity, and linearity. Specifically, we investigated the effect of (i) gold precursor concentration, (ii) cross-linker chemistry, (iii) cross-linker and antibody incubation conditions, and (iv) antigen-sensor interaction (diffusion-dominated incubation vs pipette-mixing), as there is a lack of a systematic study of these parameters. Our benchmarking analysis highlights the critical role of the antigen-sensor interaction and cross-linker chemistry. We showed that pipette-mixing enhances sensitivity and LOD by more than 1.6- and 5.5-fold, respectively, and also enables multimodal readout compared to diffusion-dominated incubation. Moreover, the PBA/Sulfo-NHS: EDC cross-linker improves the sensitivity and LOD compared to PBASE. The sensors demonstrate excellent selectivity against other viruses, including HCoV-229E, HCoV-OC43, HCoV-NL63, and influenza H5N1. Beyond the ability to detect antigen fragments, our sensors enable the detection of antigen-coated virion mimics (which are a better representative of the real infection) down to an ultralow concentration of ∼5 particles·mL-1.
Collapse
Affiliation(s)
- Caroline Ji-Mei Brustoloni
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Sengupta J, Hussain CM. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2. Bioelectrochemistry 2024; 156:108623. [PMID: 38070365 DOI: 10.1016/j.bioelechem.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
| |
Collapse
|
6
|
Shin S, Kim S, Choi W, Do J, Son J, Kim K, Jang S, Lee JS. Sensing Characteristics of SARS-CoV-2 Spike Protein Using Aptamer-Functionalized Si-Based Electrolyte-Gated Field-Effect Transistor (EGT). BIOSENSORS 2024; 14:124. [PMID: 38534231 DOI: 10.3390/bios14030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Seonghwan Shin
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangwon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Wonyeong Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeonghyeon Do
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jongmin Son
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kihyun Kim
- Division of Electronics Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungkey Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong-Soo Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Jeong S, Son SU, Kim J, Cho SI, Kang T, Kim S, Lim EK, Ko Park SH. Rapid and simultaneous multiple detection of a tripledemic using a dual-gate oxide semiconductor thin-film transistor-based immunosensor. Biosens Bioelectron 2023; 241:115700. [PMID: 37757509 DOI: 10.1016/j.bios.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The simultaneous infection with a tripledemic-simultaneous infection with influenza A pH1N1 virus (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and respiratory syncytial virus (RSV)-necessitates the development of accurate and fast multiplex diagnostic tests. The coronavirus disease 2019 (COVID-19) pandemic has emphasized the importance of virus detection. Field-effect transistor (FET)-based immuno-biosensors have a short detection time and do not require labeling or polymerase chain reaction. This study demonstrates the rapid, sensitive detection of influenza A pH1N1, SARS-CoV-2, and RSV using a multiplex immunosensor based on a dual-gate oxide semiconductor thin-film transistor (TFT), a type of FET. The dual-gate oxide TFT was modified by adjusting both top and bottom gate insulators to improve capacitive coupling to approximately 120-fold amplification, exhibiting a high pH sensitivity of about 10 V/pH. The dual-gate oxide TFT-based immunosensor detected the target proteins (hemagglutinin (HA) protein of Flu, spike 1 (S1) protein of SARS-CoV-2, and fusion protein of RSV) of each virus, with a limit of detection of approximately 1 fg/mL. Cultured viruses in phosphate-buffered saline or artificial saliva and clinical nasopharynx samples were detected in 1-μL sample volumes within 60 s. This promising diagnosis could be potentially as point-of-care tests to facilitate a prompt response to future pandemics with high sensitivity and multiplexed detection without pretreatment.
Collapse
Affiliation(s)
- Sehun Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea Research Institute of Bioscience and Biotechnology, School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jingyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seong-In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Republic of Korea; Gyeongnam Center for Infectious Disease Control and Prevention, Changwon, 51154, Republic of Korea; Gyeongsang National University College of Medicine, Gyeongsang Institute of Health Sciences, Jinju, 52727, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea Research Institute of Bioscience and Biotechnology, School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Wang H, Sun Y, Zhou Y, Liu Y, Chen S, Sun W, Zhang Z, Guo J, Yang C, Li Z, Chen L. Unamplified system for sensitive and typing detection of ASFV by the cascade platform that CRISPR-Cas12a combined with graphene field-effect transistor. Biosens Bioelectron 2023; 240:115637. [PMID: 37669587 DOI: 10.1016/j.bios.2023.115637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
At present, the 100% case fatality and the cross-infection of virus strains make the ASFV 's harm to society continue to expand. The absence of an effective commercial vaccine poses early detection remains the most effective means of curbing ASFV infection. Here, we report a cascaded detection platform based on the CRISPR-Cas12a system combined with graphene field-effect transistor sensors. The cascade platform could detect ASFV as low as 0.5 aM within 30 min and achieve typing of wild and vaccine strains of ASFV in a single detection system. The evaluation of 16 clinical samples proved that, compared with the gold standard Real-time PCR method, this platform has outstanding advantages in sensitivity, specificity and typing. Combining CRISPR-Cas12a's high specificity with the bipolar electric field effect of graphene field-effect transistor, the cascade platform is expected to achieve clinical application in the field of DNA disease detection, and provides a new direction for multi-strain disease typing.
Collapse
Affiliation(s)
- Hua Wang
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Yang Sun
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yuan Zhou
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Yujie Liu
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Shuo Chen
- Department of Physics and Electronics, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Wenbo Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Zidong Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, No. 17923 Jing Shi Road, Jinan, 250061, PR China
| | - Junqing Guo
- Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, 450099, PR China
| | - Cheng Yang
- Department of Physics and Electronics, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Zhengping Li
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Lei Chen
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| |
Collapse
|
10
|
Liang QH, Cao BP, Xiao Q, Wei D. The Application of Graphene Field-Effect Transistor Biosensors in COVID-19 Detection Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8764. [PMID: 37960464 PMCID: PMC10650741 DOI: 10.3390/s23218764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by the infectious agent of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The primary method of diagnosing SARS-CoV-2 is nucleic acid detection, but this method requires specialized equipment and is time consuming. Therefore, a sensitive, simple, rapid, and low-cost diagnostic test is needed. Graphene field-effect transistor (GFET) biosensors have become the most promising diagnostic technology for detecting SARS-CoV-2 due to their advantages of high sensitivity, fast-detection speed, label-free operation, and low detection limit. This review mainly focus on three types of GFET biosensors to detect SARS-CoV-2. GFET biosensors can quickly identify SARS-CoV-2 within ultra-low detection limits. Finally, we will outline the pros and cons of the diagnostic approaches as well as future directions.
Collapse
Affiliation(s)
- Qin-Hong Liang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Zhang C, Parichenko A, Choi W, Shin S, Panes-Ruiz LA, Belyaev D, Custódio TF, Löw C, Lee JS, Ibarlucea B, Cuniberti G. Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40191-40200. [PMID: 37603713 DOI: 10.1021/acsami.3c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.
Collapse
Affiliation(s)
- Chi Zhang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Alexandra Parichenko
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Wonyeong Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonghwan Shin
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Luis Antonio Panes-Ruiz
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Dmitry Belyaev
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Dresden 01109, Germany
| | - Tânia Filipa Custódio
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Jeong-Soo Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| |
Collapse
|
12
|
Kashefi-Kheyrabadi L, Nguyen HV, Go A, Lee MH. Ultrasensitive and amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor powered by CRISPR/Cas13a. Bioelectrochemistry 2023; 150:108364. [PMID: 36621051 PMCID: PMC9821849 DOI: 10.1016/j.bioelechem.2023.108364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
This study proposed a CRISPR/Cas13a-powered electrochemical multiplexed biosensor for detecting SARS-CoV-2 RNA strands. Current SARS-CoV-2 diagnostic methods, such as reverse transcription PCR (RT-PCR), are primarily based on nucleic acid amplification (NAA) and reverse transcription (RT) processes, which have been linked to significant issues such as cross-contamination and long turnaround times. Using a CRISPR/Cas13a system integrated onto an electrochemical biosensor, we present a multiplexed and NAA-free strategy for detecting SARS-CoV-2 RNA fragments. SARS-CoV-2 S and Orf1ab genes were detected in both synthetic and clinical samples. The CRISPR/Cas13a-powered biosensor achieved low detection limits of 2.5 and 4.5 ag/µL for the S and Orf1ab genes, respectively, successfully meeting the sensitivity requirement. Furthermore, the biosensor's specificity, simplicity, and universality may position it as a potential rival to RT-PCR.
Collapse
Affiliation(s)
- Leila Kashefi-Kheyrabadi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Integrated Graphene Ltd, Euro House, Stirling FK8 2DJ, UK
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
13
|
Chandrasekar N, Balaji R, Perala RS, Nik Humaidi NZ, Shanmugam K, Liao YC, Hwang MT, Govindaraju S. A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers. BIOSENSORS 2023; 13:307. [PMID: 36979519 PMCID: PMC10046683 DOI: 10.3390/bios13030307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/24/2023]
Abstract
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community to identify a robust mechanism to target, bind and confirm the presence of a viral load before it spreads. Synthetic DNA constructs are a novel strategy to design complementary DNA sequences specific for antigens of interest as in this review's case SARS-CoV-2 antigens. Small molecules, complementary DNA and protein-DNA complexes have been known to target analytes in minimal concentrations. This phenomenon can be exploited by nanomaterials which have unique electronic properties such as ballistic conduction. Graphene is one such candidate for designing a device with a very low LOD in the order of zeptomolar and attomolar concentrations. Surface modification will be the significant aspect of the device which needs to have a high degree of sensitivity at the same time as providing a rapid signaling mechanism.
Collapse
Affiliation(s)
- Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Ramachandran Balaji
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramaswamy Sandeep Perala
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Nik Zulkarnine Nik Humaidi
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Kirubanandan Shanmugam
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Saravanan Govindaraju
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
- Department of Bio Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| |
Collapse
|
14
|
Chouhan RS, Shah M, Prakashan D, P R R, Kolhe P, Gandhi S. Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics (Basel) 2023; 13:697. [PMID: 36832187 PMCID: PMC9955873 DOI: 10.3390/diagnostics13040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of Mn+1XnTx (where n = 1-3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties. We particularly emphasize the property-activity-effect relationship of MXenes at the nano-bio interface. We also discuss the recent trends in the application of MXenes in accelerating the performance of conventional point of care (POC) devices towards more practical approaches as the next generation of POC tools. Finally, we explore in depth the existing problems, challenges, and potential for future improvement of MXene-based materials for POC testing, with the goal of facilitating their early realization of biological applications.
Collapse
Affiliation(s)
- Raghuraj Singh Chouhan
- Department of Environmental Sciences, Institute “Jožef Stefan”, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maitri Shah
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| | - Ramya P R
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| | - Pratik Kolhe
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
15
|
Çam Derin D, Gültekin E, İçen Taşkın I, Yakupoğulları Y. Development of nucleic acid based lateral flow assays for SARS-CoV-2 detection. J Biosci Bioeng 2023; 135:87-92. [PMID: 36494247 PMCID: PMC9637530 DOI: 10.1016/j.jbiosc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
SARS-CoV-2 is still threat for humanity and its detection is crucial. Although real time reverse transcriptase polymerase chain reaction is the most reliable method for detection of N protein genes, alternative methods for molecular detection are still needed. Thus, lateral flow assay models for 2019-nCoV_ N3 were developed for molecular detection. Briefly, gold nanoparticles were used as label and three sandwich models (1A, 1B, and 1.2) were designed. Prob concentrations on gold nanoparticles, types of sandwich model and membrane, limit of detection of target gene and buffer efficiency were studied. Model 1B has shown the best results with M170 membrane. Lower limit of detection was achieved by model 1.2 as 5 pM. All parameters have significant role for molecular detection of SARS-CoV-2 by lateral flow assays, and these results will be useful for nucleic acid based lateral flow assays for viral detection or multiple detection of mutated forms in various detection systems.
Collapse
Affiliation(s)
- Dilek Çam Derin
- Department of Molecular Biology and Genetics, Inonu University, 44280 Malatya, Turkey,Corresponding author
| | - Enes Gültekin
- Department of Molecular Biology and Genetics, Inonu University, 44280 Malatya, Turkey
| | - Irmak İçen Taşkın
- Department of Molecular Biology and Genetics, Inonu University, 44280 Malatya, Turkey
| | | |
Collapse
|
16
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Prakashan D, Shrikrishna NS, Byakodi M, Nagamani K, Gandhi S. Gold nanoparticle conjugate-based lateral flow immunoassay (LFIA) for rapid detection of RBD antigen of SARS-CoV-2 in clinical samples using a smartphone-based application. J Med Virol 2023; 95:e28416. [PMID: 36541714 PMCID: PMC9877930 DOI: 10.1002/jmv.28416] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has emphasized the need for development of a rapid diagnostic device for the effective treatment and its mitigation. Lateral flow immunoassay (LFIA) belongs to a class of diagnostic devices, which has the benefit of providing quick results, easy to handle, low cost, and on-site applicable. So far, several LFIA has been developed for the detection of infectious severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), however, only a few of them are antigen (Ag)-based. Here, we describe an antibody (Ab)-labeled gold nanoparticles (AuNPs)-based LFIA (AuNPs-LFIA) for the detection of Receptor-Binding Domain (RBD) of SARS-CoV-2. For this, RBD Ab of SARS-CoV-2 was conjugated with the AuNPs, which served as a detecting probe. The fabricated LFIA strip was optimized for different parameters such as membrane pore size, blocking conditions, Ab coating concentration, and conjugate incubation. The optimized LFIA strips were validated in spiked buffer samples and the optimal limit of detection was found to be 1 ng/ml, which was confirmed by a smartphone-based application. Moreover, the developed AuNPs-LFIA strips effectively detected RBD Ag in 100 clinical samples with 94.3% sensitivity and 90.9% specificity in clinical samples when compared with the gold standard (RT-PCR). The fabricated LFIAs are reported to have storage stability of up to 21 days at 4°C and room temperature (RT). Hence, the developed LFIA can be used as a portable, cost-effective diagnostic device for rapid detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Drishya Prakashan
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
| | | | - Manisha Byakodi
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
| | - K. Nagamani
- Department of Microbiology, Gandhi Medical CollegeGandhi HospitalHyderabadTelanganaIndia
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
| |
Collapse
|
18
|
Chaudhary KR, Kujur S, Singh K. Recent advances of nanotechnology in COVID 19: A critical review and future perspective. OPENNANO 2023; 9. [PMCID: PMC9749399 DOI: 10.1016/j.onano.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India,Corresponding author at: Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, MOGA, Punjab 142001, India
| | - Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| |
Collapse
|
19
|
Farahmandpour M, Haghshenas H, Kordrostami Z. Blood glucose sensing by back gated transistor strips sensitized by CuO hollow spheres and rGO. Sci Rep 2022; 12:21872. [PMID: 36536057 PMCID: PMC9763381 DOI: 10.1038/s41598-022-26287-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a highly sensitive flexible glucose sensor based on a field effect transistor (FET) has been fabricated. It is shown that the proposed flexible transistor can be used as new non-enzymatic blood glucose test strips. CuO hollow-spheres decorated with reduced graphene oxide have been synthesized using the hydrothermal method. The shells of the hollow micro-spheres are formed by nanostructures. The synthesized nanostructured hollow micro-spheres (rGO/CuO-NHS) are deposited on a flexible PET substrate between interdigitated electrodes as the channel of a back gate transistor. The channel concentration and the FET bias are optimized so that the sensor exhibits extremely low limit of detection and high sensitivity. The combination of selective porous CuO hollow spheres and the high surface to volume ratio of their nanostructured shells with the high mobility and high conductivity rGO led to faster and higher charge-transfer capability and superior electro-catalyst activity for glucose oxidation. The glucose-dependent electrical responses of the sensor is measured in both resistive and transistor action modes. The amplification of the current by the induced electric field of the gate in the proposed FET-based biosensor provides advantages such as higher sensitivity and lower limit of detection compared to the resistive sensor. The flexible glucose sensor has a sensitivity of 600 μA μM-1 and a limit of detection of 1 nM with high reproducibility, good stability, and highly selectivity. The high accuracy response of the biosensor towards the real blood serum samples showed that it can be used as a test strip for glucose detection in real blood samples.
Collapse
Affiliation(s)
- Milad Farahmandpour
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Hassan Haghshenas
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Zoheir Kordrostami
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
20
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
21
|
Kolhe P, Roberts A, Gandhi S. Fabrication of an ultrasensitive electrochemical immunosensor coupled with biofunctionalized zero-dimensional graphene quantum dots for rapid detection of cephalexin. Food Chem 2022; 398:133846. [DOI: 10.1016/j.foodchem.2022.133846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
|