1
|
Xu J, Cai H, Yu K, Hou J, Li Z, Zeng X, He H, Zhang X, Su D, Yang S. Self-Supported Cu/Fe 3O 4 Hierarchical Nanosheets on Ni Foam for High-Efficiency Non-Enzymatic Glucose Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:281. [PMID: 39997844 PMCID: PMC11857864 DOI: 10.3390/nano15040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Electrochemical glucose sensors are vital for clinical diagnostics and the food industry, where accurate detection is essential. However, the limitations of glucose oxidase (GOx)-based sensors, such as complex preparation, high cost, and environmental sensitivity, highlight the need for non-enzymatic sensors that directly oxidize glucose at the electrode surface. In this study, a self-supporting hierarchical Cu/Fe3O4 nanosheet electrode was successfully fabricated by in situ growth on Ni Foam using a hydrothermal method, followed by annealing treatment. The Cu/Fe3O4 hierarchical nanosheet structure, with its large surface area, provides abundant active sites for electrocatalysis, while the strong interactions between Cu/Fe3O4 and Ni Foam enhance electron transfer efficiency. This novel electrode structure demonstrates exceptional electrochemical performance for non-enzymatic glucose sensing, with an ultrahigh sensitivity of 12.85 μA·μM-1·cm-2, a low detection limit of 0.71 μM, and a linear range extending up to 1 mM. Moreover, the Cu/Fe3O4/NF electrode exhibits excellent stability, a rapid response (~3 s), and good selectivity against interfering substances such as uric acid, ascorbic acid, H2O2, urea, and KCl. It also shows strong reliability in analyzing human serum samples. Therefore, Cu/Fe3O4/NF holds great promise as a non-enzymatic glucose sensor, and this work offers a valuable strategy for the design of advanced electrochemical electrodes.
Collapse
Affiliation(s)
- Jing Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
- School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, No. 19 Jinhua South Road, Xi’an 710048, China;
| | - Hairui Cai
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| | - Ke Yu
- School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, No. 19 Jinhua South Road, Xi’an 710048, China;
| | - Jie Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| | - Zhuo Li
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xiaoxiao Zeng
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| | - Huijie He
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| | - Xiaojing Zhang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| | - Di Su
- Shaanxi Hydrogen Energy Research Institute Co., Ltd., Xi’an 712046, China;
| | - Shengchun Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (J.X.); (J.H.); (X.Z.); (H.H.); (X.Z.); (S.Y.)
| |
Collapse
|
2
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
3
|
Bu Y, Kim BS. Green production of functionalized few-layer borophene decorated with cerium-doped iron oxide nanoparticles for repeatable hydrogen peroxide detection. Biosens Bioelectron 2024; 260:116448. [PMID: 38820720 DOI: 10.1016/j.bios.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Functionalized few-layer borophene (FFB) was prepared using gallnut extract and coffee waste extract as natural exfoliating and stabilizing agents in an environmentally friendly ultrasonic and high shear exfoliation. Here, a facile precipitation method was employed to grow iron oxide nanoparticles doped with cerium (Ce-FeONPs) onto the surface of FFB. This intriguing combination of materials yielded Ce-FeONPs nanoparticles that exhibited exceptional peroxidase-like activity, efficiently catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2). Additionally, the introduction of FFB contributes a reducibility effect to the catalytic oxidation of TMB, facilitating the restoration of the oxTMB to TMB. Thus, FFB-Ce-FeONPs showcase intriguing properties encompassing both oxidative and reductive characteristics, suggesting their potential as a reagent for repeated detection of H2O2. Moreover, a colorimetric sensing system enabled the liner detection of H2O2 spanning a concentration range from 0.08 to 1 mM, with a detection limit of 0.03 mM. Noteworthily, FFB-Ce-FeONPs demonstrated sustained efficacy over ten successive recycling cycles, as indicated by consistent slopes and observable color changes. In summary, this work reports the first application of nanoenzymes in repetitive H2O2 detection. Even after ten multiple cycles, the detection limit remains virtually unaltered, underscoring the robustness and enduring effectiveness of the engineered nanomaterial. The proposed simultaneous oxidation and reduction strategies for detecting H2O2 showed a commendable capability in ten cycles of H2O2 detection, thus providing a promising approach in the field of H2O2 detection.
Collapse
Affiliation(s)
- Yingjie Bu
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
4
|
Guo X, Wang J, Bu J, Zhang H, Arshad M, Kanwal A, Majeed MK, Chen WX, Saxena KK, Liu X. Designing Nanocomposite-Based Electrochemical Biosensors for Diabetes Mellitus Detection: A Review. ACS OMEGA 2024; 9:30071-30086. [PMID: 39035943 PMCID: PMC11256292 DOI: 10.1021/acsomega.4c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
This review will unveil the development of a new generation of electrochemical sensors utilizing a transition-metal-oxide-based nanocomposite with varying morphology. There has been considerable discussion on the role of transition metal oxide-based nanocomposite, including iron, nickel, copper, cobalt, zinc, platinum, manganese, conducting polymers, and their composites, in electrochemical and biosensing applications. Utilizing these materials to detect glucose and hydrogen peroxide selectively and sensitively with the correct chemical functionalization is possible. These transition metals and their oxide nanoparticles offer a potential method for electrode modification in sensors. Nanotechnology has made it feasible to develop nanostructured materials for glucose and H2O2 biosensor applications. Highly sensitive and selective biosensors with a low detection limit can detect biomolecules at nanomolar to picomolar (10-9 to 10-12 molar) concentrations to assess physiological and metabolic parameters. By mixing carbon-based materials (graphene oxide) with inorganic nanoparticles, nanocomposite biosensor devices with increased sensitivity can be made using semiconducting nanoparticles, quantum dots, organic polymers, and biomolecules.
Collapse
Affiliation(s)
- Xiang Guo
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Jiaxin Wang
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Jinyan Bu
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Huichao Zhang
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Muhammad Arshad
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan China
- CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Ayesha Kanwal
- Department
of Chemistry, IRCBM, COSMAT University Islamabad, Lahore campus 54000, Lahore, Pakistan
| | - Muhammad K. Majeed
- Department
of Materials Science and Engineering, The
University of Texas at Arlington, 76019 Arlington, Texas, United States
| | - Wu-Xing Chen
- Institute
of Environmental Engineering, National Sun
Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Kuldeep K Saxena
- Division
of Research and Development, Lovely Professional
University, 144411 Phagwara, India
| | - Xinghui Liu
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| |
Collapse
|
5
|
Aliakbarpour S, Amjadi M, Hallaj T. A colorimetric assay for H 2O 2 and glucose based on the morphology transformation of Au/Ag nanocages to nanoboxes. Food Chem 2024; 432:137273. [PMID: 37660579 DOI: 10.1016/j.foodchem.2023.137273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Herein, we introduced a sensitive colorimetric platform for hydrogen peroxide (H2O2) assay based on gold/silver (Au/Ag) nanocages with porous structure. In the presence of H2O2, the morphology of hollow Au/Ag nanocages was converted to closed nanoboxes, altering their localized surface plasmon resonance (LSPR) peak position and the solution color from light blue to deep blue. The morphology transformation and LSPR peak position of Au/Ag nanocages were proportional to H2O2 concentration at the range of 0.1 to 50 µM. The limit of detection (LOD) was obtained to be 0.02 µM, and the relative standard deviation (RSD, for 0.2, 2.0, and 20 µM) was 2.7, 2.3, and 2.9%, respectively. Moreover, a smartphone-based colorimetric sensor was developed for H2O2 assay at the concentration range of 0.25-4.0 µM, with LOD of 0.2 µM and RSD of 3.2, 2.5, and 2.9% (for 0.5, 1.0, and 3.0 µM, respectively). We exploited the established sensor for glucose assay by measuring the generated H2O2 from the enzymatic reaction between glucose and glucose oxidase. There was a linear relationship between LSPR peak wavelength variations and the amount of glucose from 1.0 to 50 µM, with LOD of 0.4 µM and RSD of 3.2, 3.1, and 3.8% (for 2.0, 10, and 30 µM, respectively). The sensor was successfully applied to determine H2O2 and glucose in food and human serum samples, respectively.
Collapse
Affiliation(s)
- Saeid Aliakbarpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
6
|
Patel V, Ramadass K, Morrison B, Britto JSJ, Lee JM, Mahasivam S, Weerathunge P, Bansal V, Yi J, Singh G, Vinu A. Utilising the Nanozymatic Activity of Copper-Functionalised Mesoporous C 3 N 5 for Sensing Biomolecules. Chemistry 2023; 29:e202302723. [PMID: 37673789 DOI: 10.1002/chem.202302723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0 ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4 mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.
Collapse
Affiliation(s)
- Vaishwik Patel
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brodie Morrison
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jolitta Sheri John Britto
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), Science, Technology, Engineering and Mathematics (STEM) College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, 3001, Australia
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Wang Y, Yang H, Lu N, Wang D, Zhu K, Wang Z, Mou L, Zhang Y, Zhao Y, Tao K, Ma F, Peng S. Electrochemical production of hydrogen peroxide by non-noble metal-doped g-C 3N 4 under a neutral electrolyte. NANOSCALE 2023; 15:19148-19158. [PMID: 37938108 DOI: 10.1039/d3nr04307j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Electrochemical oxygen reduction (ORR) for the production of clean hydrogen peroxide (H2O2) is an effective alternative to industrial anthraquinone methods. The development of highly active, stable, and 2e- ORR oxygen reduction electrocatalysts while suppressing the competing 4e- ORR pathway is currently the main challenge. Herein, bimetallic doping was successfully achieved based on graphitic carbon nitride (g-C3N4) with the simultaneous introduction of K and Co, whereby 2D porous K-Co/CNNs nanosheets were obtained. The introduction of Co promoted the selectivity for H2O2, while the introduction of K not only promoted the formation of 2D nanosheets of g-C3N4, but also inhibited the ablation of H2O2 by K-Co/CNNs. Electrochemical studies showed that the selectivity of H2O2 in K-Co/CNNs under neutral electrolyte was as high as 97%. After 24 h, the H2O2 accumulation of K-Co/CNNs was as high as 31.7 g L-1. K-Co/CNNs improved the stability of H2O2 by inhibiting the ablation of H2O2, making it a good 2e- ORR catalyst and providing a new research idea for the subsequent preparation of H2O2.
Collapse
Affiliation(s)
- Ying Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Hongcen Yang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Niandi Lu
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Di Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Kun Zhu
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Zhixia Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Lianshan Mou
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Yan Zhang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Yawei Zhao
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Kun Tao
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Fei Ma
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Shanglong Peng
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Zhu F, Liu Z, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y. Enhanced on-Chip modification and intracellular hydrogen peroxide detection via gigahertz acoustic streaming microfluidic platform. ULTRASONICS SONOCHEMISTRY 2023; 100:106618. [PMID: 37769590 PMCID: PMC10543187 DOI: 10.1016/j.ultsonch.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible and controlled fluid surrounding the electrochemical chip was optimized theoretically and applied in the sonoelectrochemical deposition of Au nanoparticles (AuNPs) first. Under the steady and fast flow stimulus of AS, AuNPs could be synthesized with a smaller and evener size distribution than the normal condition, allowing AuNPs to show an excellent peroxidase-like activity. Moreover, the AS also accelerated the mass transport of target molecules and improved the catalytic rate, leading to the enhancement of H2O2 detection, with an extremely low detection limit of 32 nM and a high sensitivity of 4.34 μA/ (mM·mm2). Finally, this system was successfully applied in tracking H2O2 release from different cell lines to distinguish the cancer cells from normal cells. This study innovatively integrated the surface modification and molecules detection process on a chip, and also proposed a simple but sensitive platform for microfluidic biosensing application.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zeyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Genoux A, Pauly M, Rooney CL, Choi C, Shang B, McGuigan S, Fataftah MS, Kayser Y, Suhr SCB, DeBeer S, Wang H, Maggard PA, Holland PL. Well-Defined Iron Sites in Crystalline Carbon Nitride. J Am Chem Soc 2023; 145:20739-20744. [PMID: 37703184 DOI: 10.1021/jacs.3c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.
Collapse
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Magnus Pauly
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chungseok Choi
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott McGuigan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yves Kayser
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Simon C B Suhr
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Paul A Maggard
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Chen Y, Gao X, Xue H, Liu G, Zhou Y, Peng J. One-Pot Preparation of Imidazole-Ring-Modified Graphitic Carbon Nitride Nanozymes for Colorimetric Glucose Detection. BIOSENSORS 2022; 12:930. [PMID: 36354439 PMCID: PMC9688121 DOI: 10.3390/bios12110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes are highly desired to overcome the shortcomings of natural enzymes, such as low stability, high cost and difficult storage during biosensing applications. Herein, by imitating the structure of natural enzymes, we propose a one-pot annealing process to synthesis imidazole-ring-modified graphitic carbon nitride (g-C3N4-Im) with enhanced peroxidase-like activity. g-C3N4-Im shows enhanced peroxidase-like activity by 46.5 times compared to unmodified g-C3N4. Furthermore, imidazole rings of g-C3N4-Im make it possible to anchor Cu(II) active sites on it to produce g-C3N4-Im-Cu, which shows a further increase in peroxidase-like activity by three times. It should be noted that the as-prepared g-C3N4-Im-Cu could show obvious peroxidase-like activity over a broad range of pH values and at a low temperature (5 °C). The ultrahigh peroxidase-like activity is attributed to the electronic effect of imidazole rings and the active sites of Cu(II) for ·OH production. Based on the enhanced peroxidase-like activity, a H2O2 and glucose biosensor was developed with a high sensitivity (limit of detection, 10 nM) and selectivity. Therefore, the biosensor shows potential for applications in diabetic diagnoses in clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan 430022, China
| | - Xueyou Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Peng
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan 430022, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
12
|
Wu H, Liu J, Chen Z, Lin P, Ou W, Wang Z, Xiao W, Chen Y, Cao D. Mechanism and Application of Surface-Charged Ferrite Nanozyme-Based Biosensor toward Colorimetric Detection of l-Cysteine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8266-8279. [PMID: 35749646 DOI: 10.1021/acs.langmuir.2c00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peroxidase-like nanozymes with robust catalytic capacity and detection specificity have been proposed as substitutes to natural peroxidases in biochemical sensing. However, the catalytic activity enhancement, detection mechanism, and application of nanozyme-based biosensors toward l-cysteine (l-Cys) detection still remain significant challenges. In this work, a doped ferrite nanozyme with well-defined structure and surface charges is fabricated by a two-step method of continuous flow coprecipitation and high-temperature annealing. The resulted ferrite nanozyme possesses an average size of 54.5 nm and a zeta-potential of 6.45 mV. A high-performance biosensor is manufactured based on the peroxidase-like catalytic feature of the doped ferrite. The ferrite nanozyme can oxidize the 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of H2O2 because of the instinctive capacity to decompose H2O2 into ·OH. The Michaelis-Menten constants (0.0911 mM for TMB, 0.140 mM for H2O2) of the ferrite nanozyme are significantly smaller than those of horseradish peroxidase. A reliable colorimetric method is established to selectively analyze l-Cys via a facile mixing-and-detecting methodology. The detection limit and linear range are 0.119 μM and 0.2-20 μM, respectively. Taking the merits of the ferrite nanozyme-based biosensors, the l-Cys level in the human serum can be qualitatively detected. It can be anticipated that the surface-charged ferrite nanozyme shows great application prospects in the fields of bioanalytical chemistry and point-of-care testing.
Collapse
Affiliation(s)
- Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zhuoyu Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wentao Ou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zian Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
13
|
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. 2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem 2022; 414:2971-2989. [PMID: 35234980 DOI: 10.1007/s00216-022-03985-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023]
Abstract
The boom in nanotechnology brings new insights into the development of artificial enzymes (nanozymes) with ease of modification, lower manufacturing cost, and higher catalytic stability than natural enzymes. Among various nanomaterials, two-dimensional (2D) nanomaterials exhibit promising enzyme-like properties for a plethora of bioapplications owing to their unique physicochemical characteristics of tuneable composition, ultrathin thickness, and huge specific surface area. Herein, we review the recent advances in several 2D material-based nanozymes, such as carbonaceous nanosheets, metal-organic frameworks (MOFs), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and transition metal oxides (TMOs), clarify the mechanisms of peroxidase (POD)-mimicking catalytic behaviors, and overview the potential bioapplications of 2D nanozymes.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Henghan Dai
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Sun
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Lumin Wang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| | - Gengzhi Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. .,Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
14
|
Li X, Li X, Chen Q, Chen J, Wu P. Activating the Neutral pH Photozymatic Activity of g-C3N4 Nanosheet through Post-Synthetic Incorporation of Pt. Chem Commun (Camb) 2022; 58:6930-6933. [DOI: 10.1039/d2cc01512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic activity of photozyme can be regulated through light irradiation time and intensity, but it still suffers from low activity in physiological neutral pH (typically, pH < 5). Herein,...
Collapse
|
15
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
16
|
Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles. Mikrochim Acta 2021; 188:273. [PMID: 34312715 DOI: 10.1007/s00604-021-04942-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Highly negatively charged gold nanoparticles (AuNPs) are shown to have strong simulated oxidase activity and effectively boosted the oxidation of enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) by hexavalent chromium ion Cr(VI), resulting in the formation of oxidation product with blue color. Based on this, a facile colorimetric assay was developed to detect Cr(VI) at a range 0.008~0.156 mg/L with r = 0.996. The detection limit was estimated to be 0.52 μg/L. In addition, the colorimetric assay showed high selectivity against 28 other interfering ions. It was performed at room temperature and required about half an hour including the preparation of AuNPs. The assay was successfully applied to the determination of Cr(VI) in spiked water samples, and recoveries in the range 95.00-105.40% were obtained. This work paves a way for design of high performance sensor based on highly active nanozymes and also provides an extremely practical analytical tool for the monitoring of Cr(VI) in the environment.
Collapse
|
17
|
Alam N, Sreeramareddygari M, Somasundrum M, Jayaramulu K, Surareungchai W. Hetero Metal‐Organic Hybrids as Highly Active Peroxidase Mimics for Biosensing Application. ChemistrySelect 2021. [DOI: 10.1002/slct.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naveed Alam
- School of Bioresources and Technology King Mongkut's University of Technology Thonburi Bangkok 10150 Thailand
| | - Muralikrishna Sreeramareddygari
- Pilot Plant Development and Training Institute King Mongkut's University of Technology Thonburi Bangkhuntien-chaitalay Road, Thakam Bangkok 10150 Thailand
| | - Mithran Somasundrum
- Biosciences and System Biology Team Biochemical Engineering and System Biology Research Group National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency at KMUTT (Bangkhuntien Campus) Bangkok 10150 Thailand
| | | | - Werasak Surareungchai
- School of Bioresources and Technology King Mongkut's University of Technology Thonburi Bangkok 10150 Thailand
- Pilot Plant Development and Training Institute King Mongkut's University of Technology Thonburi Bangkhuntien-chaitalay Road, Thakam Bangkok 10150 Thailand
- Nanoscience & Nanotechnology Graduate Programme Faculty of Science King Mongkut's University of Technology Thonburi Pracha-u-thit Road, Toongkru Bangkok 10140 Thailand
| |
Collapse
|
18
|
Li Z, Huo P, Gong C, Deng C, Pu S. Boric-acid-modified Fe 3O 4@PDA@UiO-66 for enrichment and detection of glucose by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2020; 412:8083-8092. [PMID: 32914398 DOI: 10.1007/s00216-020-02935-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Herein, boric-acid-modified multifunctional Zr-based metal-organic frameworks (denoted as Fe3O4@PDA@B-UiO-66) were synthesized by hydrothermal reaction and surface modification. Compared to traditional matrix, Fe3O4@PDA@B-UiO-66 has the advantages of high ionization efficiency, high surface area, low matrix background, porous structure, and numerous boric-acid-active sites. By combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Fe3O4@PDA@B-UiO-66 was used as an adsorbent and matrix for enrichment and detection of glucose, based on a specific reaction between boric acid and glucose. The limit of detection was 58.5 nM. The proposed method provides a simple and efficient approach for the sensitive and quantitative detection of glucose in complex samples based on MALDI-TOF MS. Design and synthesis of boric-acid-modified multifunctional magnetic metal-organic frameworks (designated as Fe3O4@PDA@B-UiO-66) applied as adsorbent and matrix for the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of glucose in complex biosamples.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China. .,Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|