1
|
Ostadhossein F, Moitra P, Alafeef M, Sar D, D’Souza S, Benig LF, Nelappana M, Huang X, Soares J, Zhang K, Pan D. Ensemble and single-particle level fluorescent fine-tuning of carbon dots via positional changes of amines toward "supervised" oral microbiome sensing. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082807. [PMID: 37427335 PMCID: PMC10324603 DOI: 10.1117/1.jbo.28.8.082807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Significance Carbon dots (CDs) have attracted a host of research interest in recent years mainly due to their unique photoluminescence (PL) properties that make them applicable in various biomedical areas, such as imaging and image-guided therapy. However, the real mechanism underneath the PL is a subject of wide controversy and can be investigated from various angles. Aim Our work investigates the effect of the isomeric nitrogen position as the precursor in the synthesis of CDs by shedding light on their photophysical properties on the single particles and ensemble level. Approach To this end, we adopted five isomers of diaminopyridine (DAP) and urea as the precursors and obtained CDs during a hydrothermal process. The various photophysical properties were further investigated in depth by mass spectroscopy. CD molecular frontier orbital analyses aided us in justifying the fluorescence emission profile on the bulk level as well as the charge transfer processes. As a result of the varying fluorescent responses, we indicate that these particles can be utilized for machine learning (ML)-driven sensitive detection of oral microbiota. The sensing results were further supported by density functional theoretical calculations and docking studies. Results The generating isomers have a significant effect on the overall photophysical properties at the bulk/ensembled level. On the single-particle level, although some of the photophysical properties such as average intensity remained the same, the overall differences in brightness, photo-blinking frequency, and bleaching time between the five samples were conceived. The various photophysical properties could be explained based on the different chromophores formed during the synthesis. Overall, an array of CDs was demonstrated herein to achieve ∼ 100 % separation efficacy in segregating a mixed oral microbiome culture in a rapid (< 0.5 h ), high-throughput manner with superior accuracy. Conclusions We have indicated that the PL properties of CDs can be regulated by the precursors' isomeric position of nitrogen. We emancipated this difference in a rapid method relying on ML algorithms to segregate the dental bacterial species as biosensors.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| | - Parikshit Moitra
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
| | - Maha Alafeef
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
| | - Dinabandhu Sar
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Shannon D’Souza
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Lily F. Benig
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Michael Nelappana
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Xuedong Huang
- Fudan University, Department of Chemistry, Shanghai, China
| | - Julio Soares
- University of Illinois at Urbana‐Champaign, Frederick Seitz Materials Research Laboratory, Urbana, Illinois, United States
| | - Kai Zhang
- University of Illinois at Urbana-Champaign, School of Molecular and Cellular Biology, Department of Biochemistry, Urbana, Illinois, United States
| | - Dipanjan Pan
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
- The Pennsylvania State University, Department of Materials Science and Engineering, University Park, Pennsylvania, United States
- The Materials Research Institute, Millennium Science Complex, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States
| |
Collapse
|
2
|
Watt MM, Moitra P, Sheffield Z, Ostadhossein F, Maxwell EA, Pan D. A narrative review on the role of carbon nanoparticles in oncology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1845. [PMID: 35975704 DOI: 10.1002/wnan.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Meghan M Watt
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zach Sheffield
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Fatemeh Ostadhossein
- Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA
| | - Elizabeth A Maxwell
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Sar D, Ostadhossein F, Moitra P, Alafeef M, Pan D. Small Molecule NIR-II Dyes for Switchable Photoluminescence via Host -Guest Complexation and Supramolecular Assembly with Carbon Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202414. [PMID: 35657032 PMCID: PMC9353451 DOI: 10.1002/advs.202202414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 05/19/2023]
Abstract
Small molecular NIR-II dyes are highly desirable for various biomedical applications. However, NIR-II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR-II dyes are reported. These dyes can be excited at 850-915 nm and emitted at 1280-1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host-guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self-assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch-On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host-guest complexes (Switch-Off) providing flexibility in the user-defined tuning of photoluminescence. The turn-ON complex found to have comparable quantum yield to the commercially available near-infrared fluorophore, IR-26. The aqueous dispersibility, cellular and blood compatibility, and NIR-II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host-guest complexation and supramolecular self-assembly, is demonstrated here for three new NIR-II dyes.
Collapse
Affiliation(s)
- Dinabandhu Sar
- Bioengineering DepartmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Fatemeh Ostadhossein
- Bioengineering DepartmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Parikshit Moitra
- Department of PediatricsCenter for Blood Oxygen Transport and HemostasisUniversity of Maryland Baltimore School of MedicineHealth Sciences Research Facility III670 W Baltimore St.BaltimoreMD21201USA
| | - Maha Alafeef
- Bioengineering DepartmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of PediatricsCenter for Blood Oxygen Transport and HemostasisUniversity of Maryland Baltimore School of MedicineHealth Sciences Research Facility III670 W Baltimore St.BaltimoreMD21201USA
- Department of ChemicalBiochemical and Environmental EngineeringUniversity of Maryland Baltimore CountyInterdisciplinary Health Sciences Facility1000 Hilltop CircleBaltimoreMD21250USA
- Biomedical Engineering DepartmentJordan University of Science and TechnologyIrbid22110Jordan
| | - Dipanjan Pan
- Bioengineering DepartmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of PediatricsCenter for Blood Oxygen Transport and HemostasisUniversity of Maryland Baltimore School of MedicineHealth Sciences Research Facility III670 W Baltimore St.BaltimoreMD21201USA
- Department of ChemicalBiochemical and Environmental EngineeringUniversity of Maryland Baltimore CountyInterdisciplinary Health Sciences Facility1000 Hilltop CircleBaltimoreMD21250USA
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Baltimore School of MedicineHealth Sciences Research Facility III670 W Baltimore St.BaltimoreMD21201USA
| |
Collapse
|
4
|
Moitra P, Chaichi A, Abid Hasan SM, Dighe K, Alafeef M, Prasad A, Gartia MR, Pan D. Probing the mutation independent interaction of DNA probes with SARS-CoV-2 variants through a combination of surface-enhanced Raman scattering and machine learning. Biosens Bioelectron 2022; 208:114200. [PMID: 35367703 PMCID: PMC8938299 DOI: 10.1016/j.bios.2022.114200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has been characterized by the emergence of sets of mutations impacting the virus characteristics, such as transmissibility and antigenicity, presumably in response to the changing immune profile of the human population. The presence of mutations in the SARS-CoV-2 virus can potentially impact therapeutic and diagnostic test performances. We design and develop here a unique set of DNA probes i.e., antisense oligonucleotides (ASOs) which can interact with genetic sequences of the virus irrespective of its ongoing mutations. The probes, developed herein, target a specific segment of the nucleocapsid phosphoprotein (N) gene of SARS-CoV-2 with high binding efficiency which do not mutate among the known variants. Further probing into the interaction profile of the ASOs reveals that the ASO-RNA hybridization remains unaltered even for a hypothetical single point mutation at the target RNA site and diminished only in case of the hypothetical double or triple point mutations. The mechanism of interaction among the ASOs and SARS-CoV-2 RNA is then explored with a combination of surface-enhanced Raman scattering (SERS) and machine learning techniques. It has been observed that the technique, described herein, could efficiently discriminate between clinically positive and negative samples with ∼100% sensitivity and ∼90% specificity up to 63 copies/mL of SARS-CoV-2 RNA concentration. Thus, this study establishes N gene targeted ASOs as the fundamental machinery to efficiently detect all the current SARS-CoV-2 variants regardless of their mutations.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Ketan Dighe
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States
| | - Maha Alafeef
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States.
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States.
| |
Collapse
|
5
|
Zhang Q, Tian F, Zhou Q, Zhang C, Tang S, Jiang L, Du S. Targeted ginkgo kernel biomass precursor using eco-friendly synthesis of efficient carbon quantum dots for detection of trace nitrite ions and cell imaging. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Dighe K, Moitra P, Alafeef M, Gunaseelan N, Pan D. A rapid RNA extraction-free lateral flow assay for molecular point-of-care detection of SARS-CoV-2 augmented by chemical probes. Biosens Bioelectron 2022; 200:113900. [PMID: 34959185 PMCID: PMC8684225 DOI: 10.1016/j.bios.2021.113900] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the major shortcoming of healthcare systems globally in their inability to diagnose the disease rapidly and accurately. At present, the molecular approaches for diagnosing COVID-19 primarily use reverse transcriptase polymerase chain reaction (RT-PCR) to create and amplify cDNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Although molecular tests are reported to be specific, false negatives are quite common. Furthermore, literally all these tests require a step involving RNA isolation which does not make them point-of-care (POC) in the true sense. Here, we report a lateral flow strip-based RNA extraction and amplification-free nucleic acid test (NAT) for rapid diagnosis of positive COVID-19 cases at POC. The assay uses highly specific 6-carboxyfluorescein (6-FAM) and biotin labeled antisense oligonucleotides (ASOs) as probes those are designed to target N-gene sequence of SARS-CoV-2. Additionally, we utilized cysteamine capped gold-nanoparticles (Cyst-AuNPs) to augment the signal further for enhanced sensitivity. Without any large-stationary equipment and highly trained staffers, the entire sample-to-answer approach in our case would take less than 30 min from a patient swab sample collection to final diagnostic result. Moreover, when evaluated with 60 clinical samples and verified with an FDA-approved TaqPath RT-PCR kit for COVID-19 diagnosis, the assay obtained almost 99.99% accuracy and specificity. We anticipate that the newly established low-cost amplification-free detection of SARS-CoV-2 RNA will aid in the development of a platform technology for rapid and POC diagnosis of COVID-19 and other pathogens.
Collapse
Affiliation(s)
- Ketan Dighe
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, MD, 21250, United States; Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Maha Alafeef
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, MD, 21250, United States; Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Nivetha Gunaseelan
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, MD, 21250, United States; Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
7
|
Srivastava I, Moitra P, Fayyaz M, Pandit S, Kampert TL, Fathi P, Alanagh HR, Dighe K, Alafeef M, Vuong K, Jabeen M, Nie S, Irudayaraj J, Pan D. Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct Photoluminescence and Cellular Uptake Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59747-59760. [PMID: 34878252 DOI: 10.1021/acsami.1c19995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We disclose for the first time a facile synthetic methodology for the preparation of multicolor carbon dots (CDs) from a single source barring any chromatographic separations. This was achieved via sequential intraparticle cross-linking of surface abundant carboxylic acid groups on the CDs synthesized from a precursor to control their photoluminescence (PL) spectra as well as affect their degree of cellular internalization in cancer cells. The change in PL spectra with sequential cross-linking was projected by theoretical density functional theory (DFT) studies and validated by multiple characterization tools such as X-ray photoelectron spectroscopy (XPS), PL spectroscopy, ninhydrin assay, etc. The variation in cellular internalization of these cross-linked CDs was demonstrated using inhibitor assays, confocal microscopy, and flow cytometry. We supplemented our findings with high-resolution dark-field imaging to visualize and confirm the colocalization of these CDs into distinct intracellular compartments. Finally, to prove the surface-state controlled PL mechanisms of these cross-linked CDs, we fabricated a triple-channel sensor array for the identification of different analytes including metal ions and biologically relevant proteins.
Collapse
Affiliation(s)
- Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| | - Muhammad Fayyaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Subhendu Pandit
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Taylor L Kampert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Parinaz Fathi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Hamideh Rezvani Alanagh
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| | - Maha Alafeef
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Katherine Vuong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Musarrat Jabeen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| |
Collapse
|
8
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
9
|
Hu Y, Gao Z, Luo J. Fluorescence detection of malachite green in fish tissue using red emissive Se,N,Cl-doped carbon dots. Food Chem 2020; 335:127677. [PMID: 32739822 DOI: 10.1016/j.foodchem.2020.127677] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022]
Abstract
Facile detection of malachite green (MG), a toxic dye, in aquaculture is urgently demanded for environment and food safety. Herein, we design a novel fluorescent probe, namely red emissive Se,N,Cl-doped carbon dots (CDs), to accurately determinate MG. CDs are prepared by hydrothermal treatment of selenourea and o-phenylenediamine in HCl solution. This material exhibits excitation-independent dual emissions at 625 and 679 nm, with a high quantum yield of 23.6%. A selective and sensitive fluorescent sensor toward MG is established based on inner filter effect, because both the excitation and emission light of CDs can be strongly absorbed by MG. The fluorescence quenching of CDs is linear to the MG concentration over the range of 0.07-2.50 μM with a low detection limit of 21 nM. Trace-level analysis of MG in fish tissue is successfully explored, demonstrating the great potential of the proposed sensor for MG monitoring in aquatic products.
Collapse
Affiliation(s)
- Yaoping Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zhijin Gao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|