1
|
Zhang W, Xu H, Li Y, Wang Y, Yang X, Wang Y, Jia H, Shen Y, Zhang W, Wejrzanowski T. Controllable synthesis of 3D porous MXene/polypyrrole/Fe3O4 with magnetically tunable pore structures for electromagnetic wave absorption. MATERIALS CHEMISTRY AND PHYSICS 2025; 336:130507. [DOI: 10.1016/j.matchemphys.2025.130507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
2
|
Xu J, Wang Z, Ge C, Qi X, Bao Q, Liu C. Constructing MXene-based mixed-dimensional structure with multiple interfaces to optimize dielectric-magnetic synergistic effect for effective electromagnetic wave absorption. J Colloid Interface Sci 2025; 677:529-539. [PMID: 39106778 DOI: 10.1016/j.jcis.2024.07.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Exploring efficient microwave absorbing materials (MAMs) which could convert electromagnetic (EM) energy into thermal energy represents an approbatory vision to reducing EM radiation and interference. Designing of mixed-dimensional structure with multiple interfaces represents the available target to investigate an ideal MAMs, which maximizes the superiority of mixed-dimensional structure in electromagnetic wave absorption (EMWA). Herein, we take full advantage of multiple interfaces engineering of MXene for optimizing the impedance matching to improve EMWA, MXene-based mixed-dimensional structure was designed by incorporating three-dimensional Fe3C@Carbon layers coated zero-dimensional Fe3O4 nanoparticles (NPs) supported two-dimensional MXene nanosheets (MXene/Fe3O4@Fe3C@Carbon, MFC). The Fe3O4@Fe3C@C with Core@shell structure arrests the essentially self-restacked of MXene and provides various attenuation mechanisms for the incident electromagnetic waves (EMWs). By regulating the carbonization temperature, the MFC exhibits enhanced EMWA property which is attributed to the characteristic structure and optimized dielectric-magnetic synergy effect. The minimum reflection loss (RLmin) value of MFC can reach to -64.3 dB with a matching thickness of 1.73 mm. Otherwise, the maximum effective absorption bandwidth (EAB) (RLmin < -10 dB) reaches 6.42 GHz at only 1.5 mm. Thus, our study refers a novel-fire enlighten to develop excellent mixed-dimensional microwave absorbent based on MXene.
Collapse
Affiliation(s)
- Jianle Xu
- College of Physics and Electronic Information, Jiangsu Second normal university, Nanjing 210013, China
| | - Zihan Wang
- College of Physics and Electronic Information, Jiangsu Second normal university, Nanjing 210013, China
| | - Chuannan Ge
- College of Physics and Electronic Information, Jiangsu Second normal university, Nanjing 210013, China
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Qiaoliang Bao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chuyang Liu
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210094, China.
| |
Collapse
|
3
|
Xu C, Li Z, Hang T, Chen Y, He T, Li X, Zheng J, Wu Z. Multi-Scale MXene/Silver Nanowire Composite Foams with Double Conductive Networks for Multifunctional Integration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403551. [PMID: 38868953 PMCID: PMC11321636 DOI: 10.1002/advs.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Indexed: 06/14/2024]
Abstract
With the onset of the 5G era, wearable flexible electronic devices have developed rapidly and gradually entered the daily life of people. However, the vast majority of research focuses on the integration of functions and performance improvement, while ignoring electromagnetic hazards caused by devices. Herein, the 3D double conductive networks are constructed through a repetitive vacuum-assisted dip-coating technique to decorate the 2D MXene and 1D silver nanowires on the melamine foam. Benefiting from the unique porous structure and multi-scale interconnected frame, the resultant composite foam exhibited high electrical conductivity, low density, superb electromagnetic interference shielding (48.32 dB), and Joule heating performance (up to 90.8 °C under 0.8 V). Furthermore, a single-electrode triboelectric nanogenerator (TENG) with powerful energy harvesting capability is assembled by combining the composite foam with an ultra-thin Ecoflex film and a polyvinylidene fluoride film. Simultaneously, the foam-based TENG can also be considered a reliable wearable sensor for monitoring activity patterns in different parts of the human body. The versatility and scalable manufacturing of high-performance composite foams will provide new design ideas for the development of next-generation flexible wearable devices.
Collapse
Affiliation(s)
- Chenhui Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
| | - Zhihui Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
| | - Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
| | - Tianlong He
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
| |
Collapse
|
4
|
Yang Y, Anayee M, Pattammattel A, Shekhirev M, Wang RJ, Huang X, Chu YS, Gogotsi Y, May SJ. Enhanced magnetic susceptibility in Ti 3C 2T x MXene with Co and Ni incorporation. NANOSCALE 2024. [PMID: 38412012 DOI: 10.1039/d3nr05685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Magnetic nanomaterials are sought to provide new functionalities for applications ranging from information processing and storage to energy generation and biomedical imaging. MXenes are a rapidly growing family of two-dimensional transition metal carbides and nitrides with versatile chemical and structural diversity, resulting in a variety of interesting electronic and optical properties. However, strategies for producing MXenes with tailored magnetic responses remain underdeveloped and challenging. Herein, we incorporate elemental Ni and Co into Ti3C2Tx MXene by mixing with dilute metal chloride solutions. We achieve a uniform distribution of Ni and Co, confirmed by X-ray fluorescence (XRF) mapping with nanometer resolution, with Ni and Co concentrations of approximately 2 and 7 at% relative to the Ti concentration. The magnetic susceptibility of these Ni- and Co-incorporated Ti3C2Tx MXenes is one to two orders of magnitude larger than pristine Ti3C2Tx, illustrating the potential for dilute metal incorporation to enhance linear magnetic responses at room temperature.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| | - Mark Anayee
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ajith Pattammattel
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Mikhail Shekhirev
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ruocun John Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Xiaojing Huang
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yong S Chu
- Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, New York, 11973, USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Steven J May
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, USA.
| |
Collapse
|
5
|
Zhang Y, Cao F, Xu M, Li X, Tao M, Wu S, Xu W, Liu Y, Zhu W. Integration of Magnetic-Field-Directed Self-Assembly-Based Cell Culture and Biosensing Platform for Improving hPSCs-Derived Neurons and Quantitative Detection of Neurotransmitter. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58230-58240. [PMID: 38063343 DOI: 10.1021/acsami.3c14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Despite the fact that human neural cell models have played significant roles in both research and cell replacement therapies for neurological diseases, the existing techniques for obtaining neurons from human pluripotent stem cells (hPSCs) are arduous and intricate. Additionally, the evaluation of neuron quality in the natural environment remains deficient. Consequently, we have developed a comprehensive platform utilizing magnetic-field-directed self-assembly (MDSA) of MXenes@Fe3O4 (M/F) nanocomposites. This platform facilitates the cultivation and in situ analysis of differentiated dopaminergic (DA) neurons. Our results showed that the introduction of M/F enhances neurite outgrowth and leads to the development of more intricate ramifications. Moreover, with the increase of magnetic field intensity, neurite outgrowth is further enhanced, and the proportion of differentiated mature neurons from hPSCs increases. This suggests that our platform promotes the maturation of neurons, emphasizing the crucial role of biophysical cues in expediting the differentiation process. The homogenization platform formed by MDSA of M/F nanocomposites exhibits high conductivity, leading to its exceptional performance in the real-time monitoring of the release of dopamine neurotransmitter from hPSC-derived DA neurons. Hence, this platform demonstrates significant potential for monitoring cell quality. In conclusion, our integrated platform, based on MDSA of M/F nanocomposites, offers a reliable and efficient means for the in vitro generation of human neurons with a controllable quality. The as-prepared platform holds potential for enhancing neuronal maturation and ensuring consistent cell quality, showing significant implications for in vitro biological research, disease modeling, and cell replacement therapy.
Collapse
Affiliation(s)
- Yufan Zhang
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Fan Cao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Min Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Mengdan Tao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Wu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
6
|
Kim S, Lee S, Zhang Y, Park S, Gu J. Carbon-Based Radar Absorbing Materials toward Stealth Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303104. [PMID: 37735148 PMCID: PMC10646258 DOI: 10.1002/advs.202303104] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Indexed: 09/23/2023]
Abstract
Stealth technology is used to enhance the survival of military equipment in the field of military surveillance, as it utilizes a combination of techniques to render itself undetectable by enemy radar systems. Radar absorbing materials (RAMs) are specialized materials used to reduce the reflection (or absorption) of radar signals to provide stealth capability, which is a core component of passive countermeasures in military applications. The properties of RAMs can be optimized by adjusting their composition, microstructure, and surface geometry. Carbon-based materials present a promising approach for the fabrication of ultrathin, versatile, and high-performance RAMs due to their large specific surface area, lightweight, excellent dielectric properties, high electrical conductivity, and stability under harsh conditions. This review begins with a brief history of stealth technology and an introduction to electromagnetic waves, radar systems, and radar absorbing materials. This is followed by a discussion of recent research progress in carbon-based RAMs, including carbon blacks, carbon fibers, carbon nanotubes, graphite, graphene, and MXene, along with an in-depth examination of the principles and strategies on electromagnetic attenuation characteristics. Hope this review will offer fresh perspectives on the design and fabrication of carbon-based RAMs, thereby fostering a deeper fundamental understanding and promoting practical applications.
Collapse
Affiliation(s)
- Seong‐Hwang Kim
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Seul‐Yi Lee
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Soo‐Jin Park
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
7
|
Li Q, Nan K, Wang W, Zheng H, Wang Y. Electrostatic self-assembly sandwich-like 2D/2D NiFe-LDH/MXene heterostructure for strong microwave absorption. J Colloid Interface Sci 2023; 648:983-993. [PMID: 37331079 DOI: 10.1016/j.jcis.2023.06.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
MXene has great application potential in electromagnetic (EM) wave absorbers because of its high attenuation ability; however, self-stacking and excessively high conductivity are major obstacles to its widespread use. To address these issues, a NiFe layered double hydroxide (LDH)/ MXene composite with two-dimensional (2D)/2D sandwich-like heterostructure was constructed through electrostatic self-assembly. The NiFe-LDH not only acts as an intercalator to prevent self-stacking of the MXene nanosheets, but also serves as a low-dielectric choke valve to optimize impedance matching. At a thickness of 2 mm and filler loading of 20 wt%, the minimum reflection loss (RLmin) value could reach -58.2 dB, and the absorption mechanism was analyzed based on multiple reflection, dipole/interfacial polarization, impedance matching, and synergy between dielectric and magnetic losses. Furthermore, the simulation of the radar cross section (RCS) further confirmed the efficient absorption properties and application prospects of the present material. Our work demonstrates that designing sandwich structures based on 2D MXene is an effective way to improve the performance of EM wave absorbers.
Collapse
Affiliation(s)
- Qingwei Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Wei Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
8
|
Wang G, Li C, Estevez D, Xu P, Peng M, Wei H, Qin F. Boosting Interfacial Polarization Through Heterointerface Engineering in MXene/Graphene Intercalated-Based Microspheres for Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2023; 15:152. [PMID: 37286814 PMCID: PMC10247949 DOI: 10.1007/s40820-023-01123-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Multi-layer 2D material assemblies provide a great number of interfaces beneficial for electromagnetic wave absorption. However, avoiding agglomeration and achieving layer-by-layer ordered intercalation remain challenging. Here, 3D reduced graphene oxide (rGO)/MXene/TiO2/Fe2C lightweight porous microspheres with periodical intercalated structures and pronounced interfacial effects were constructed by spray-freeze-drying and microwave irradiation based on the Maxwell-Wagner effect. Such approach reinforced interfacial effects via defects introduction, porous skeleton, multi-layer assembly and multi-component system, leading to synergistic loss mechanisms. The abundant 2D/2D/0D/0D intercalated heterojunctions in the microspheres provide a high density of polarization charges while generating abundant polarization sites, resulting in boosted interfacial polarization, which is verified by CST Microwave Studio simulations. By precisely tuning the 2D nanosheets intercalation in the heterostructures, both the polarization loss and impedance matching improve significantly. At a low filler loading of 5 wt%, the polarization loss rate exceeds 70%, and a minimum reflection loss (RLmin) of -67.4 dB can be achieved. Moreover, radar cross-section simulations further confirm the attenuation ability of the optimized porous microspheres. These results not only provide novel insights into understanding and enhancing interfacial effects, but also constitute an attractive platform for implementing heterointerface engineering based on customized 2D hierarchical architectures.
Collapse
Affiliation(s)
- Ge Wang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Changfeng Li
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Diana Estevez
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
- Ningbo Institute of Technology, Zhejiang University, 1 Qianhu South Rd, Ningbo, 315100, People's Republic of China
| | - Peng Xu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
- Foshan (Southern China) Institute for New Materials, Foshan, People's Republic of China.
| | - Mengyue Peng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Huijie Wei
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
9
|
Guo Y, Ruan K, Wang G, Gu J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull (Beijing) 2023:S2095-9273(23)00290-6. [PMID: 37179235 DOI: 10.1016/j.scib.2023.04.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.
Collapse
Affiliation(s)
- Yongqiang Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Wang C, Liu Y, Jia Z, Zhao W, Wu G. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption. NANO-MICRO LETTERS 2022; 15:13. [PMID: 36520259 PMCID: PMC9755410 DOI: 10.1007/s40820-022-00986-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
Application of novel radio technologies and equipment inevitably leads to electromagnetic pollution. One-dimensional polymer-based composite membrane structures have been shown to be an effective strategy to obtain high-performance microwave absorbers. Herein, we reported a one-dimensional N-doped carbon nanofibers material which encapsulated the hollow Co3SnC0.7 nanocubes in the fiber lumen by electrospinning. Space charge stacking formed between nanoparticles can be channeled by longitudinal fibrous structures. The dielectric constant of the fibers is highly related to the carbonization temperature, and the great impedance matching can be achieved by synergetic effect between Co3SnC0.7 and carbon network. At 800 °C, the necklace-like Co3SnC0.7/CNF with 5% low load achieves an excellent RL value of - 51.2 dB at 2.3 mm and the effective absorption bandwidth of 7.44 GHz with matching thickness of 2.5 mm. The multiple electromagnetic wave (EMW) reflections and interfacial polarization between the fibers and the fibers internal contribute a major effect to attenuating the EMW. These strategies for regulating electromagnetic performance can be expanded to other electromagnetic functional materials which facilitate the development of emerging absorbers.
Collapse
Affiliation(s)
- Chenxi Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yue Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
- Weihai Innovation Institute, Qingdao University, Qingdao, 264200, Shandong, People's Republic of China.
| | - Wanru Zhao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
11
|
Guo C, Cheng F, Liang G, Zhang S, Duan S, Fu Y, Marchetti F, Zhang Z, Du M. Multimodal Antibacterial Platform Constructed by the Schottky Junction of Curcumin‐Based Bio Metal–Organic Frameworks and Ti
3
C
2
T
x
MXene Nanosheets for Efficient Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Fang Cheng
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Gaolei Liang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Shuai Zhang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Shuxia Duan
- Henan Provincial Key Laboratory of Medical Protective Products Henan Yadu Industrial Co., Ltd. Changyuan 453400 China
| | - Yingkun Fu
- Henan Provincial Key Laboratory of Medical Protective Products Henan Yadu Industrial Co., Ltd. Changyuan 453400 China
| | - Fabio Marchetti
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Zhihong Zhang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Miao Du
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
12
|
Li X, Wu Z, You W, Yang L, Che R. Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber. NANO-MICRO LETTERS 2022; 14:73. [PMID: 35262784 PMCID: PMC8907377 DOI: 10.1007/s40820-022-00811-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/22/2022] [Indexed: 06/09/2023]
Abstract
MXene, as a rising star of two-dimensional (2D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic self-assembly strategy to fabricate magnetized MXene-rGO/CoNi film was reported. Inside the synthesized composite film, rGO nanosheets decorated with highly dispersed CoNi nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic FeCo alloy nanoparticles on the rGO substrate, the entire MXene-rGO/CoNi film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous hetero-interfaces between 2D MXene and rGO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of - 54.1 dB at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.
Collapse
Affiliation(s)
- Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
13
|
Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107538. [PMID: 34755916 DOI: 10.1002/adma.202107538] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Indexed: 05/17/2023]
Abstract
Electromagnetic (EM) wave absorption materials possess exceptionally high EM energy loss efficiency. With vigorous developments in nanotechnology, such materials have exhibited numerous advanced EM functions, including radiation prevention and antiradar stealth. To achieve improved EM performance and multifunctionality, the elaborate control of microstructures has become an attractive research direction. By designing them as core-shell structures with different dimensions, the combined effects, such as interfacial polarization, conduction networks, magnetic coupling, and magnetic-dielectric synergy, can significantly enhance the EM wave absorption performance. Herein, the advances in low-dimensional core-shell EM wave absorption materials are outlined and a selection of the most remarkable examples is discussed. The derived key information regarding dimensional design, structural engineering, performance, and structure-function relationship are comprehensively summarized. Moreover, the investigation of the cutting-edge mechanisms is given particular attention. Additional applications, such as oxidation resistance and self-cleaning functions, are also introduced. Finally, insight into what may be expected from this rapidly expanding field and future challenges are presented.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
14
|
Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. NANO-MICRO LETTERS 2022; 14:63. [PMID: 35190917 PMCID: PMC8861240 DOI: 10.1007/s40820-022-00812-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/22/2022] [Indexed: 05/14/2023]
Abstract
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot. Here, the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam (MF) through electrostatic self-assembly and dip-coating adsorption process, realizing the integration of microwave absorption, infrared stealth, and flame retardant. Remarkably, the Ni/MXene-MF achieves a minimum reflection loss (RLmin) of - 62.7 dB with a corresponding effective absorption bandwidth (EAB) of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm. Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks, which provided excellent impedance matching, dielectric loss, magnetic loss, interface polarization, and multiple attenuations. In addition, the Ni/MXene-MF endows low density, excellent heat insulation, infrared stealth, and flame-retardant functions. This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Haoran Cheng
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yamin Pan
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Xin Wang
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Chuntai Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Changyu Shen
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianhu Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
15
|
Wen C, Li X, Zhang R, Xu C, You W, Liu Z, Zhao B, Che R. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti 3C 2T x MXene@Ni Microspheres. ACS NANO 2022; 16:1150-1159. [PMID: 34957827 DOI: 10.1021/acsnano.1c08957] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two-dimensional materials, especially the newly emerging MXene, have attracted numerous interests in the fields of energy conversion/storage and electromagnetic shielding/absorption. However, the inherently inevitable aggregation and absence of magnetic loss of MXene considerably limit its electromagnetic absorption application. The introduction of magnetic component and favorable structural engineering are the alternatives to improve the microwave absorption (MA) performance. Herein, we report a spheroidization strategy to assemble double-shell MXene@Ni microspheres, where the commonly lamellar MXene are reshaped into three-dimensional microspheres that provide the substrate for oriented growth of Ni nanospikes. Whereas this structural feature offers massive accessible active surfaces that effectively promote the dielectric loss ability, the introduction of magnetic Ni nanospikes enables the additional magnetic loss capacity. Benefiting from these merits, the synthesized 3D MXene@Ni microspheres exhibit superior MA performance with the minimum reflection loss value of -59.6 dB at an ultrathin thickness (∼1.5 mm) and effective absorption bandwidth of 4.48 GHz. Moreover, the electron holography results reveal that the high-density anisotropy magnetism plays an important role in the improvement of MA performance, which provides an insight for the design of MXene-based materials as high-efficient microwave absorbers.
Collapse
Affiliation(s)
- Caiyue Wen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Biao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
16
|
Zhang F, Shang S, Li Y, Fan B, Zhang R, Zhao B, Lu H, Ma C. REMINDER: CrystEngComm - Invitation to submit an article Tunable electromagnetic properties of Ti3C2Tx/rGO foams decorated with NiO particles. CrystEngComm 2022. [DOI: 10.1039/d2ce00823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ti3C2Tx MXene-based composites are attractive for electromagnetic wave absorption (EMA) materials due to their high conductivity and abundant dipoles on the surface. Nevertheless, the controlled synthesis of MXene foams with...
Collapse
|
17
|
Zhang C, Wu Z, Xu C, Yang B, Wang L, You W, Che R. Hierarchical Ti 3 C 2 T x MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104380. [PMID: 34914181 DOI: 10.1002/smll.202104380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Hierarchical hollow structure with unique interfacial properties holds great potential for microwave absorption (MA). Ti3 C2 Tx MXene has been a hot topic due to rich interface structure, abundant defects, and functional groups. However, its overhigh permittivity and poor aggregation-resistance limit the further application. Herein, a hierarchical MXene-based hollow microsphere is prepared via a facile spray drying strategy. Within the microsphere, few-layered MXene nanosheets are separated by dispersed carbon nanotubes (CNTs), exposing abundant dielectric polarization interfaces. Besides, numerous magnetic Fe3 O4 nanospheres are uniformly dispersed and confined within nano-cavities between 1D network and 2D framework. Such a novel structure simultaneously promotes interfacial polarization by ternary MXene/CNTs/Fe3 O4 interfaces, enhances magnetic loss by microscale and nanoscale coupling network, enlarges conduction loss by MXene/CNTs dual-network, and optimizes impedance matching by hierarchical porous structure. Therefore, Fe3 O4 @Ti3 C2 Tx /CNTs composite achieves excellent MA property with a maximum reflection loss of -40.1 dB and an effective bandwidth of 5.8 GHz at the thickness of only 2 mm. This work demonstrates a feasible hierarchical structure design strategy for multi-dimension MXene composite to realize the high-efficiency MA performance.
Collapse
Affiliation(s)
- Chang Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
18
|
Liang L, Gu W, Wu Y, Zhang B, Wang G, Yang Y, Ji G. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106195. [PMID: 34599773 DOI: 10.1002/adma.202106195] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Electromagnetic (EM) absorbers play an increasingly essential role in the electronic information age, even toward the coming "intelligent era". The remarkable merits of heterointerface engineering and its peculiar EM characteristics inject a fresh and infinite vitality for designing high-efficiency and stimuli-responsive EM absorbers. However, there still exist huge challenges in understanding and reinforcing these interface effects from the micro and macro perspectives. Herein, EM response mechanisms of interfacial effects are dissected in depth, and with a focus on advanced characterization as well as theoretical techniques. Then, the representative optimization strategies are systematically discussed with emphasis on component selection and structural design. More importantly, the most cutting-edge smart EM functional devices based on heterointerface engineering are reported. Finally, current challenges and concrete suggestions are proposed, and future perspectives on this promising field are also predicted.
Collapse
Affiliation(s)
- Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Weihua Gu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Baoshan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Gehuan Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
19
|
Ferromagnetic Ti 3CNCl 2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J Colloid Interface Sci 2021; 604:402-414. [PMID: 34271492 DOI: 10.1016/j.jcis.2021.05.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
It remains urgent challenges to adopt suitable strategies to consume unwanted microwave pollution emitted by high-tech electronic devices satisfactorily. Confronted with narrow effective absorption bandwidth (EAB) and high filler loading bottlenecks of MXene-Based microwave absorber, herein, we employ Lewis molten salt etching approach to both exfoliate Ti3AlCN powders into Ti3CNCl2 suspension and intercalate ferromagnetic composition into interlamination simultaneously. By utilizing the crosslinking effect of dopamine, the Ti3CNCl2 are anchored on the surfaces of graphene oxide (GO) nanosheets, constructing interconnecting microstructure. Both the 3D conductive network and the modification of MXene manifest crucial impacts on enhancing microwave absorption performance of the resulting ultra-lightweight reduced GO (RGO)-based aerogel. The minimum intensity of reflection loss achieves -62.62 dB with the absorber mass loading of 0.7 wt%. Remarkably, more than 90% of the incident microwave is qualified to be absorbed over the whole Ku band. The EAB is broadened while tailoring the thickness to 3 mm, ranging from 10.2 to 18 GHz. Besides, the aerogel presents valuable thermal insulation properties. Our methodology of synthesizing MXene/RGO aerogel not only provides promising insights into microstructural construction but also endows the possibility for integrating thermal insulation property towards next-generation high-performance microwave absorption devices.
Collapse
|
20
|
Li X, You W, Xu C, Wang L, Yang L, Li Y, Che R. 3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. NANO-MICRO LETTERS 2021; 13:157. [PMID: 34279760 PMCID: PMC8289940 DOI: 10.1007/s40820-021-00680-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Benefiting from the possible "seed-germination" effect, the "seeds" Ni2+ grow into "buds" Ni nanoparticles and "stem" carbon nanotubes (CNTs) from the enlarged "soil" of MXene skeleton. Compared with the traditional magnetic agglomeration, the MXene-CNTs/Ni hybrids exhibit the highly spatial dispersed magnetic architecture. 3D MXene-CNTs/Ni composites hold excellent microwave absorption performance (-56.4 dB at only 2.4 mm). Ti3C2Tx MXene is widely regarded as a potential microwave absorber due to its dielectric multi-layered structure. However, missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condition. Herein, with the inspiration from dielectric-magnetic synergy, this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method. Ni2+ ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption. Benefiting from the possible "seed-germination" effect, the "seeds" Ni2+ grow into "buds" Ni nanoparticles and "stem" carbon nanotubes (CNTs) from the enlarged "soil" of MXene skeleton. Due to the improved impedance matching condition, the MXene-CNTs/Ni hybrid holds a superior microwave absorption performance of - 56.4 dB at only 2.4 mm thickness. Such a distinctive 3D architecture endows the hybrids: (i) a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability, (ii) a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability, confirmed by the off-axis electron holography. These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.
Collapse
Affiliation(s)
- Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuesheng Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
21
|
Huang M, Wang L, You W, Che R. Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101416. [PMID: 34159720 DOI: 10.1002/smll.202101416] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 05/26/2023]
Abstract
Polarization behaviors of no-magnetic shell dominate the dielectric properties for core-shell magnetic-carbon composites, which faces a huge challenge. Herein, a single atom-doping strategy is established to adjust local electric potential in the metal-organic framework (MOF)-derived carbon shell. Benefiting from the confined transformation, single Zn atoms and N atoms are evenly distributed in the porous carbon shell using ZIF-8 as a template. Dielectric assembled carbon layers with functionalized Fe3 O4 core construct unique magnetic-dielectric synergy system. The electromagnetic parameters of Fe3 O4 @Zn-N-Carbon composites can be modified by tuning the pod-like Zn-N-doping carbon shell via repeating ZIF-8 growth cycles. Surprisingly, the core-shell Fe3 O4 @Zn-N-Carbon exhibits superior microwave absorption (MA) performance both in the reflection loss ability and wide-frequency responding feature. The reflection loss value of Fe3 O4 @Zn-N-Carbon microspheres reach -61.9 dB and the effective absorption bandwidth up to 11.5 GHz at only 2.5 mm thickness. The excellent MA mechanism is ascribed to following reasons. High-density stacking Zn-N doping carbon layers boost the interfacial polarization and plentiful Zn single atoms maximize the dipole polarization because of maximum atom utilization efficiency. Enhanced magnetic loss ability results from the compulsory magnetic coupling responding among Fe3 O4 cores. Magnetic-dielectric synergy of core-shell Fe3 O4 @Zn-N-Carbon microspheres can build ultrawide MA frequency.
Collapse
Affiliation(s)
- Mengqiu Huang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
22
|
Abstract
The synthesis of nanomaterials, with characteristic dimensions of 1 to 100 nm, is a key component of nanotechnology. Vapor-phase synthesis of nanomaterials has numerous advantages such as high product purity, high-throughput continuous operation, and scalability that have made it the dominant approach for the commercial synthesis of nanomaterials. At the same time, this class of methods has great potential for expanded use in research and development. Here, we present a broad review of progress in vapor-phase nanomaterial synthesis. We describe physically-based vapor-phase synthesis methods including inert gas condensation, spark discharge generation, and pulsed laser ablation; plasma processing methods including thermal- and non-thermal plasma processing; and chemically-based vapor-phase synthesis methods including chemical vapor condensation, flame-based aerosol synthesis, spray pyrolysis, and laser pyrolysis. In addition, we summarize the nanomaterials produced by each method, along with representative applications, and describe the synthesis of the most important materials produced by each method in greater detail.
Collapse
Affiliation(s)
- Mohammad Malekzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
23
|
He P, Cao MS, Cao WQ, Yuan J. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. NANO-MICRO LETTERS 2021; 13:115. [PMID: 34138345 PMCID: PMC8079551 DOI: 10.1007/s40820-021-00645-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 05/08/2023]
Abstract
There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity. Avoiding the harmful effects of electromagnetic (EM) radiation from wireless communication is a persistent research hot spot. Two-dimensional (2D) materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties. MXenes, as a novel family of 2D materials, have shown excellent properties in various fields, owing to their excellent electrical conductivity, mechanical stability, high flexibility, and ease of processability. To date, research on the utility of MXenes for wireless communication has been actively pursued. Moreover, MXenes have become the leading materials for EM attenuation. Herein, we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication, electromagnetic interference (EMI) shielding, and EM wave absorption. The relationship governing the structural design and the effectiveness for wireless communication, EMI shielding, and EM wave absorption is clearly revealed. Furthermore, our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.
Collapse
Affiliation(s)
- Peng He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, People's Republic of China
| |
Collapse
|
24
|
Qin Y, Wang M, Gao W, Liang S. Rationally designed structure of mesoporous carbon hollow microspheres to acquire excellent microwave absorption performance. RSC Adv 2021; 11:14787-14795. [PMID: 35423987 PMCID: PMC8698231 DOI: 10.1039/d1ra00465d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, we used a novel and facile hard-template etching method to manufacture mesoporous carbon hollow microspheres (MCHMs). We prove that the dielectric ability and microwave absorption of MCHMs can be adjusted by structural characteristics. When the average particle size of MCHMs is 452 nm, the paraffin composite material mixed with 10 wt% MCHMs can achieve a maximum reflection loss value of -51 dB with a thickness of 4.0 mm at 7.59 GHz. When the average particle size of MCHMs is 425 nm, the effective absorption bandwidth of the paraffin composite material mixed with 10 wt% MCHMs can achieve a broad bandwidth of 7.14 GHz with a thickness of 2.5 mm. Compared with other microwave absorbers, MCHMs possess high microwave absorption capacity and broad microwave absorption bandwidth with as low as a 10 wt% filler ratio. This excellent microwave absorption performance is due to the internal cavity and the mesoporous shell of MCHMs. By rationally designing the structure of MCHMs, excellent microwave absorption performance can be acquired. Meanwhile, this design concept based on a rational design of spherical structure can be extended to other spherical absorbers.
Collapse
Affiliation(s)
- Yuxuan Qin
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| | - Muqun Wang
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Nanning 530000 Guangxi China
| | - Shaofeng Liang
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| |
Collapse
|
25
|
Xu C, Wang L, Li X, Qian X, Wu Z, You W, Pei K, Qin G, Zeng Q, Yang Z, Jin C, Che R. Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption. NANO-MICRO LETTERS 2021; 13:47. [PMID: 34138216 PMCID: PMC8187526 DOI: 10.1007/s40820-020-00572-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 05/23/2023]
Abstract
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption (MA) field. Herein, a three-dimension hierarchical "nanotubes on microrods," core-shell magnetic metal-carbon composite is rationally constructed for the first time via a fast metal-organic frameworks-based ligand exchange strategy followed by a carbonization treatment with melamine. Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod (Mo2N@CoFe@C/CNT), constructing a special multi-dimension hierarchical MA material. Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell. Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of - 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The Mo2N@CoFe@C/CNT composites hold the following advantages: (1) hierarchical core-shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss, (3) highly dispersed magnetic CoFe nanoparticles within "tubes on rods" matrix build multi-scale magnetic coupling network and reinforce magnetic response capability, confirmed by the off-axis electron holography.
Collapse
Affiliation(s)
- Chunyang Xu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiao Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiang Qian
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Ke Pei
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Gang Qin
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Chen Jin
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
26
|
Liang LL, Song G, Liu Z, Chen JP, Xie LJ, Jia H, Kong QQ, Sun GH, Chen CM. Constructing Ni 12P 5/Ni 2P Heterostructures to Boost Interfacial Polarization for Enhanced Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52208-52220. [PMID: 33146990 DOI: 10.1021/acsami.0c16287] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterostructures with a rich phase boundary are attractive for surface-mediated microwave absorption (MA) materials. However, understanding the MA mechanisms behind the heterogeneous interface remains a challenge. Herein, a phosphine (PH3) vapor-assisted phase and structure engineering strategy was proposed to construct three-dimensional (3D) porous Ni12P5/Ni2P heterostructures as microwave absorbers and explore the role of the heterointerface in MA performance. The results indicated that the heterogeneous interface between Ni12P5 and Ni2P not only creates sufficient lattice defects for inducing dipolar polarization but also triggers uneven spatial charge distribution for enhancing interface polarization. Furthermore, the porous structure and proper component could provide an abundant heterogeneous interface to strengthen the above polarization relaxation process, thereby greatly optimizing the electromagnetic parameters and improving the MA performance. Profited by 3D porous heterostructure design, P400 could achieve the maximum reflection loss of -50.06 dB and an absorption bandwidth of 3.30 GHz with an ultrathin thickness of 1.20 mm. Furthermore, simulation results confirmed its superior ability (14.97 dB m2 at 90°) to reduce the radar cross section in practical applications. This finding may shed light on the understanding and design of advanced heterogeneous MA materials.
Collapse
Affiliation(s)
- Lei-Lei Liang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ge Song
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhuo Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Jing-Peng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Li-Jing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Hui Jia
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing-Qiang Kong
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Guo-Hua Sun
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Design of Ti 3C 2T x/TiO 2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 2020; 583:510-521. [PMID: 33035791 DOI: 10.1016/j.jcis.2020.09.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Ti3C2Tx MXene is an excellent electromagnetic wave (EMW) absorber with excellent electrical conductivity and abundant surface functional groups. In this research, Ti3C2Tx/TiO2/PANI multi-layer composites were successfully synthesized by HCl and LiF etching, one-step hydrothermal method and in-situ polymerization. Ti3C2Tx can provide more electron transfer paths due to its unique multilayer structure and high specific surface area. The growth of TiO2 particles on the surface of Ti3C2Tx through hydrothermal reaction enhances the interface polarization, and then polyaniline (PANI) is doped on the surface of Ti3C2Tx where TiO2 particles are grown by in-situ polymerization. Due to the excellent dielectric properties and synergistic effects of the material itself, Ti3C2Tx/TiO2/PANI composites have excellent EMW absorption property. In this study, the Ti3C2Tx/TiO2/PANI composites showed the strong reflection loss (RL) of at 13.92 GHz, which was -65.61 dB, and the thickness was only 2.18 mm. Moreover, the composites also exhibit a wide absorption band, with an effective absorption bandwidth (RL < -10 dB) of 5.92 GHz (11.84 GHz to 17.76 GHz) at 2.10 mm. The results show that the Ti3C2Tx/TiO2/PANI composites are expected to become EMW absorber with thin thickness and high absorption strength.
Collapse
|