1
|
Zhang H, Cheng B, Yu H, Jia K, Xia X, Wang X, Luo Q, Lu H. Immunotoxicity of aristolochic acid I on early zebrafish (Danio rerio) embryos. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110305. [PMID: 40180202 DOI: 10.1016/j.fsi.2025.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Aristolochic acids (AAs) are active constituents of many traditional Chinese medicinal herbs. While AAs are known to induce cytotoxicity and pathological changes, such as tissue fibrosis, their specific impact on the immune system remains to be fully elucidated. This investigation used zebrafish as a model animal to evaluate the effects of aristolochic acid I (AAI), the main component of AAs, on the development and function of the early immune system. Our study found that exposure to AAI significantly decreased the numbers of macrophages, neutrophils, and T cells. Moreover, AAI exposure impaired the migratory capacity of immune cells to wound sites and weakened the immune system's response to external stimuli. Further research revealed that AAI exposure induced strong oxidative stress in zebrafish, activated the p53 signaling pathway, and subsequently induced apoptosis of immune cells. Fullerene, a potent antioxidant, is capable of inhibiting the p53 signaling pathway and rescuing the reduction of immune cells induced by AAI. Collectively, our findings indicated that AAI could induce immune cell death and impair immune function during early development via activation of the p53 signaling pathway, thereby uncovering the detrimental effects of AAs on the immune system and their underlying mechanisms. These findings provide a theoretical basis for the rational use of traditional Chinese medicinal herbs containing AAs.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Cheng
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Huiyun Yu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Jian, 343009, Jiangxi, China
| | - Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Jian, 343009, Jiangxi, China
| | - Xuanwen Xia
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyao Wang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qiang Luo
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
2
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
3
|
Weng J, Guo W, Liu J, Larwubah K, Guo J, Jia Y, Yu M. A novel fullerene-lysine derivative with noticeable ROS scavenging capabilities for improving type 2 diabetes mellitus. NANOSCALE ADVANCES 2025:d4na01081g. [PMID: 40303973 PMCID: PMC12035643 DOI: 10.1039/d4na01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
As some of the most promising candidates available, fullerene-derived bioactive agents have been explored as new drugs with high efficacy and safety for biomedical applications. In this study, a fullerene-lysine derivative (C60-Lys) was synthesized successfully and proved to be good at treating type 2 diabetes mellitus (T2DM). C60-Lys could alleviate oxidative stress both in streptozotocin (STZ)-induced MIN6 cells and in STZ-induced T2DM mice subjected to a high-fat diet, and it significantly normalized glucose uptake and reduced blood glucose. In addition, C60-Lys can alleviate insulin resistance, hyperinsulinemia and lipid levels in T2DM mice. It was further confirmed that C60-Lys could alleviate oxidative stress by increasing the activities of antioxidant enzymes and stabilizing the mitochondrial membrane potential (MMP) of pancreatic β-cells to reduce the overproduction of ROS. The results provide compelling evidence that C60-Lys possesses promising applications for T2DM treatment.
Collapse
Affiliation(s)
- Jiaqi Weng
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University Shaoxing 312030 China
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University Shaoxing 312030 China
| | - Jie Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University Shaoxing 312030 China
| | - Kollie Larwubah
- College of Life Science and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jianjun Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University Shaoxing 312030 China
| | - Yanrong Jia
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University Shaoxing 312030 China
| |
Collapse
|
4
|
Ma J, Li X, Wang C. The Application of Nanomaterials in the Treatment of Pancreatic-Related Diseases. Int J Mol Sci 2024; 25:13158. [PMID: 39684868 DOI: 10.3390/ijms252313158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic diseases, typically including pancreatic cancer, pancreatitis, and diabetes, pose enormous threats to people's lives and health. To date, therapeutics with high therapeutic efficacy and low side effects are still challenging. With the development of nanotechnology, nanomaterials have successfully been applied in pancretic disease treatment. Here, we first introduce the diversity of nanomaterials and the effects of their different physicochemical properties on pancreatic function. Following this, we analyze the potential of nanomaterials to enhance pancreatic targeting by overcoming the challenges of traditional delivery methods through surface modifications, structural adjustments, and optimized drug loading. Then, we introduce the application of structurally optimized nanomaterials to pancreatic-related diseases. For instance, on pancreatic cancer (as drug delivery platforms, for the promotion of radiation therapy, and as multifunctional tools), pancreatitis (as drug delivery systems, anti-inflammatory and anti-fibrotic agents), and diabetes (as insulin delivery carriers, for protecting pancreatic β cells, and for improving insulin resistance). Through analysis of the progress of current research, we summarize how nanomaterials can enhance treatment efficacy while minimizing side effects. Finally, we look forward to the prospects of nanomaterials in pancreatic disease treatment.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
6
|
Kostusiak P, Bagnicka E, Żelazowska B, Zalewska M, Sakowski T, Slósarz J, Gołębiewski M, Puppel K. Genotype-Dependent Variations in Oxidative Stress Markers and Bioactive Proteins in Hereford Bulls: Associations with DGAT1, LEP, and SCD1 Genes. Biomolecules 2024; 14:1309. [PMID: 39456242 PMCID: PMC11506831 DOI: 10.3390/biom14101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The objective of this study is to assess the influence of genetic polymorphisms in DGAT1, LEP, and SCD1 on the oxidative stress biomarkers and bioactive protein levels in Hereford bulls. A total of sixty-eight bulls were analyzed at 22 months of age to assess growth metrics and carcass quality, with a focus on polymorphisms in these genes. The key markers of oxidative stress, including malondialdehyde (MDA), and the activities of antioxidant enzymes such as glutathione reductase (GluRed), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were measured, alongside bioactive compounds like taurine, carnosine, and anserine. The results show that the TT genotype of DGAT1 is linked to significantly higher MDA levels, reflecting increased lipid peroxidation, but is also associated with higher GluRed and GPx activities and elevated levels of taurine, carnosine, and anserine, suggesting an adaptive response to oxidative stress. The LEP gene analysis revealed that the CC genotype had the highest MDA levels but also exhibited increased GPx and SOD activities, with the CT genotype showing the highest SOD activity and the TT genotype the highest total antioxidant status (TAS). The SCD1 AA genotype displayed the highest activities of GluRed, GPx, and SOD, indicating a more effective antioxidant defence, while the VA genotype had the highest MDA levels and the VV genotype showed lower MDA levels, suggesting protective effects against oxidative damage. These findings highlight genotype specific variations in the oxidative stress markers and bioactive compound levels, providing insights into the genetic regulation of oxidative stress and antioxidant defences, which could inform breeding strategies for improving oxidative stress resistance in livestock and managing related conditions.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; (E.B.); (B.Ż.); (T.S.)
| | - Beata Żelazowska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; (E.B.); (B.Ż.); (T.S.)
| | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Tomasz Sakowski
- Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; (E.B.); (B.Ż.); (T.S.)
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| |
Collapse
|
7
|
Du C, Chen Z, Liu S, Liu J, Zhan J, Zou J, Liao J, Huang W, Lei Y. Lubricin-Inspired Nanozymes Reconstruct Cartilage Lubrication System with an "In-Out" Strategy. SMALL METHODS 2024; 8:e2400757. [PMID: 38962862 DOI: 10.1002/smtd.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Lubricin, secreted primarily by chondrocytes, plays a critical role in maintaining the function of the cartilage lubrication system. However, both external factors such as friction and internal factors like oxidative stress can disrupt this system, leading to osteoarthritis. Inspired by lubricin, a lubricating nanozyme, that is, Poly-2-acrylamide-2-methylpropanesulfonic acid sodium salt-grafted aminofullerene, is developed to restore the cartilage lubrication system using an "In-Out" strategy. The "Out" aspect involves reducing friction through a combination of hydration lubrication and ball-bearing lubrication. Simultaneously, the "In" aspect aims to mitigate oxidative stress by reducing free radical, increasing autophagy, and improving the mitochondrial respiratory chain. This results in reduced chondrocyte senescence and increased lubricin production, enhancing the natural lubrication ability of cartilage. Transcriptome sequencing and Western blot results demonstrate that it enhances the functionality of mitochondrial respiratory chain complexes I, III, and V, thereby improving mitochondrial function in chondrocytes. In vitro and in vivo experiments show that the lubricating nanozymes reduce cartilage wear, improve chondrocyte senescence, and mitigate oxidative stress damage, thereby mitigating the progression of osteoarthritis. These findings provide novel insights into treating diseases associated with oxidative stress and frictional damage, such as osteoarthritis, and set the stage for future research and development of therapeutic interventions.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingdi Zhan
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyi Liao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
Pan Y, Qi Y, Fei C, Feng Z, Ma Y, Wang C, Han J. Novel Sprayable Antioxidative Dressing Based on Fullerene and Curdlan for Accelerating Chronic Wound Healing. Macromol Rapid Commun 2024; 45:e2400240. [PMID: 38876473 DOI: 10.1002/marc.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
The effective treatment of chronic wounds represents a critical global medical challenge demanding urgent attention. Persistent inflammation, driven by an excess of reactive oxygen radicals, sets in motion a detrimental cycle leading to chronic wounds and impeding the natural healing process. This study develops a sprayable wound dressing by covalently grafting amino fullerene to carboxymethylated curdlan (CMC-C). This novel dressing exhibits excellent biocompatibility, antioxidant, and reactive oxygen species scavenging properties. Furthermore, it demonstrates a targeted affinity for HEK-a cells, efficiently reducing the inflammatory response while promoting cell proliferation and migration in vitro. Moreover, the animal experiment investigations reveal that CMC-C significantly accelerates chronic wounds healing by regulating the inflammatory process, promoting collagen deposition, and improving vascularization. These results demonstrate the potential of the sprayable dressing (CMC-C) in curing the healing of chronic wounds through the modulation of the inflammatory microenvironment. Overall, the sprayable hydrogel dressing based on water-soluble derivative of fullerene and curdlan emerges as a potential approach for clinical applications in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Yiwen Pan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Yuxuan Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Chenglong Fei
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Zihang Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingfen Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| |
Collapse
|
9
|
Shenoy V, Gunda R, Noble C, Haraguchi A, Stevenson S, Daniel J. Fullertubes inhibit mycobacterial viability and prevent biofilm formation by disrupting the cell wall. Cell Biochem Funct 2024; 42:e3963. [PMID: 38424684 DOI: 10.1002/cbf.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.
Collapse
Affiliation(s)
- Varun Shenoy
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Rashmika Gunda
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Cora Noble
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Annalisa Haraguchi
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Steven Stevenson
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
10
|
Fei C, Liu L, Qi H, Peng Y, Han J, Wang C, Li X. Curdlan-Decorated Fullerenes Mitigate Immune-Mediated Hepatic Injury for Autoimmune Hepatitis Therapeutics via Reducing Macrophage Infiltration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5536-5547. [PMID: 38267397 PMCID: PMC10860698 DOI: 10.1021/acsami.3c16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease whose standard of care is immunosuppressive treatment with inevitable undesired outcomes. Macrophage is acknowledged to aggravate liver damage, providing a promising AIH therapeutic target. Accordingly, in this study, a kind of curdlan-decorated fullerene nanoparticle (Cur-F) is fabricated to alleviate immune-mediated hepatic injury for treating AIH via reducing macrophage infiltration in a concanavalin A (Con A)-induced AIH mouse model. After intravenous administration, Cur-F primarily distributes in liver tissues, efficiently eliminates the excessive reactive oxygen species, significantly attenuates oxidative stress, and subsequently suppresses the nuclear factor kappa-B-gene binding (NF-κB) signal pathway, resulting in the lowered production of pro-inflammatory cytokines and the balancing of the immune homeostasis with the prevention of macrophage infiltration in the liver. The regulation of hepatic inflammation contributes to inhibiting inflammatory cytokines-induced hepatocyte apoptosis, decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) contents and thus ameliorating immune-mediated hepatic injury. Notably, there is no detectable toxicity to the body. Our findings may open up novel avenues for AIH based on curdlan and fullerene materials.
Collapse
Affiliation(s)
- Chenglong Fei
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemistry and Chemical Engineering, Inner
Mongolia University, Inner
Mongolia 010021, China
| | - Lei Liu
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hedong Qi
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyang Peng
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfen Han
- School
of Chemistry and Chemical Engineering, Inner
Mongolia University, Inner
Mongolia 010021, China
| | - Chunru Wang
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Biswas R, Batista Da Rocha C, Bennick RA, Zhang J. Water-Soluble Fullerene Monoderivatives for Biomedical Applications. ChemMedChem 2023; 18:e202300296. [PMID: 37728195 DOI: 10.1002/cmdc.202300296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Monoderivatives of fullerenes functionalized with hydrophilic groups make them water soluble, while preserving the hydrophobic fullerene cage. This class of molecules have intriguing biomedical applications, including drug delivery, photodynamic therapy (PDT), antiviral and antimicrobial activity and reactive oxygen species (ROS)-scavenging abilities. In this Concept we discuss the synthesis and biomedical applications of water-soluble fullerene monoderivatives and their biological behavior based on their structures.
Collapse
Affiliation(s)
- Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Cassiana Batista Da Rocha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ryan A Bennick
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
13
|
Aktanova AA, Boeva OS, Barkovskaya MS, Kovalenko EA, Pashkina EA. Influence of Cucurbiturils on the Production of Reactive Oxygen Species by T- and B-Lymphocytes, Platelets and Red Blood Cells. Int J Mol Sci 2023; 24:ijms24021441. [PMID: 36674954 PMCID: PMC9864653 DOI: 10.3390/ijms24021441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive chemical molecules containing oxygen. ROS play an important role in signaling and cell homeostasis at low and moderate concentrations. ROS could be a cause of damage to proteins, nucleic acids, lipids, membranes and organelles at high concentrations. There are a lot of cells that can produce ROS to maintain functional activity. It is known that metal nanoparticles can increase production of ROS in cells. However, the effect of cucurbiturils on ROS production is still unknown. In our study, we evaluated production of ROS by the immune (T-, B-lymphocytes, NK-cells) and non-immune cells (red blood cells, platelets), as well as tumor cells line (1301, K562) after treatment with cucurbiturils in vitro. Assessment of reactive oxide species (ROS) were provided by using dihydrorhodamine 123 (DHR 123). Fluorescence intensity and percentage DHR123 were measured by flow cytometry. Platelets, erythrocytes and activated T-helpers were changed the level of ROS production in response to stimulation with cucurbiturils. It was found that the percentage of these ROS-producing cells was reduced by cucurbiturils. Thus, cucurbiturils may affect the production of ROS by cells, but further research is needed in this area.
Collapse
Affiliation(s)
- Alina A. Aktanova
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Olga S. Boeva
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
- Department of Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Margarita Sh. Barkovskaya
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Ekaterina A. Kovalenko
- Laboratory of Cluster and Supramolecular Chemistry, Nicolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
- Correspondence:
| | - Ekaterina A. Pashkina
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| |
Collapse
|
14
|
Li X, Zhao Y, Peng H, Gu D, Liu C, Ren S, Miao L. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway. Front Bioeng Biotechnol 2022; 10:1081977. [PMID: 36588945 PMCID: PMC9798290 DOI: 10.3389/fbioe.2022.1081977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress in periodontitis has emerged as one of the greatest barriers to periodontal tissue restoration. In this study, we synthesized controlled drug release nanoparticles (MitoQ@PssL NPs) by encasing mitoquinone (MitoQ; an autophagy enhancer) into tailor-made reactive oxygen species (ROS)-cleavable amphiphilic polymer nanoparticles (PssL NPs) to regulate the periodontitis microenvironment. Once exposed to reactive oxygen species, which were substantially overproduced under oxidative stress conditions, the ROS-cleavable PssL was disintegrated, promoting the release of the encapsulated MitoQ. The released mitoquinone efficiently induced mitophagy through the PINK1-Parkin pathway and successfully reduced oxidative stress by decreasing the amount of reactive oxygen species. With the gradual decrease in the reactive oxygen species level, which was insufficient to disintegrate PssL, the release of mitoquinone was reduced and eventually eliminated, which contributed to a redox homeostasis condition and facilitated the regeneration of periodontal tissue. MitoQ@PssL NPs have great potential in the treatment of periodontitis via microenvironment-controlled drug release, which will provide a new avenue for periodontal regeneration and diseases related to imbalanced redox metabolism.
Collapse
Affiliation(s)
- Xincong Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| |
Collapse
|
15
|
Lv Q, Li Z, Sui A, Yang X, Han Y, Yao R. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Front Microbiol 2022; 13:977187. [PMID: 36060752 PMCID: PMC9433831 DOI: 10.3389/fmicb.2022.977187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Karthick V, Kumar Shrestha L, Kumar VG, Pranjali P, Kumar D, Pal A, Ariga K. Nanoarchitectonics horizons: materials for life sciences. NANOSCALE 2022; 14:10630-10647. [PMID: 35842941 DOI: 10.1039/d2nr02293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics relies on the fabrication of materials at the atomic/molecular level to achieve the desired shape and function. Significant advances have been made in understanding the characteristics and spatial assemblies that contribute to material performance. Biomaterials undergo several changes when presented with various environmental cues. The ability to overcome such challenges, maintaining the integrity and effective functioning of native properties, can be regarded as a characteristic of a successful biomaterial. Control over the shape and efficacy of target materials can be tailored via various processes, like self-assembly, supramolecular chemistry, atomic/molecular manipulation, etc. Interplay between the physicochemical properties of materials and biomolecule recognition sites defines the structural rigidity in hierarchical structures. Materials including polymers, metal nanoparticles, nucleic acid systems, metal-organic frameworks, and carbon-based nanostructures can be viewed as promising prospects for developing biocompatible systems. This review discusses recent advances relating to such biomaterials for life science applications, where nanoarchitectonics plays a decisive role either directly or indirectly.
Collapse
Affiliation(s)
- V Karthick
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - V Ganesh Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
| | - Pranjali Pranjali
- Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
17
|
Wang T, Ménard-Moyon C, Bianco A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem Soc Rev 2022; 51:3535-3560. [PMID: 35412536 DOI: 10.1039/d1cs01064f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amino acids are one of the simplest biomolecules and they play an essential role in many biological processes. They have been extensively used as building blocks for the synthesis of functional nanomaterials, thanks to their self-assembly capacity. In particular, amphiphilic amino acid derivatives can be designed to enrich the diversity of amino acid-based building blocks, endowing them with specific properties and/or promoting self-assembly through hydrophobic interactions, hydrogen bonding, and/or π-stacking. In this review, we focus on the design of various amphiphilic amino acid derivatives able to self-assemble into different types of nanostructures that were exploited for biomedical applications, thanks to their excellent biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
18
|
Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. Antioxidants (Basel) 2022; 11:antiox11040664. [PMID: 35453350 PMCID: PMC9030210 DOI: 10.3390/antiox11040664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (Hy) is a natural linear polymer that is widely distributed in different organisms, especially in the articular cartilage and the synovial fluid. During tissue injury due to oxidative stress, Hy plays an important protective role. All the beneficial properties of Hy make the polymer attractive for many biomedical uses; however, the low stability and short biological half-life limit Hy application. To overcome these problems, the addition of small antioxidant molecules to Hy solution has been employed to protect the molecular integrity of Hy or delay its degradation. Carnosine (β-alanyl-L-histidine, Car) protects cells from the damage due to the reactive species derived from oxygen (ROS), nitrogen (RNS) or carbonyl groups (RCS). Car inhibits the degradation of hyaluronan induced by free radical processes in vitro but, like Hy, the potential protective action of Car is drastically hampered by the enzymatic hydrolysis in vivo. Recently, we conjugated Hy to Car and the derivatives (HyCar) showed protective effects in experimental models of osteoarthritis and rheumatoid arthritis in vivo. Here we report the antioxidant activity exerted by HyCar against ROS, RNS and RCS. Moreover, we tested if the covalent conjugation between Hy and Car inhibits the enzymatic hydrolysis of the polymer and the dipeptide backbone. We found that the antioxidant properties and the resistance to the enzymatic hydrolysis of Hy and Car are greatly improved by the conjugation.
Collapse
|
19
|
Biswas R, Yang S, Crichton RA, Adly-Gendi P, Chen TK, Kopcha WP, Shi Z, Zhang J. C 60-β-cyclodextrin conjugates for enhanced nucleus delivery of doxorubicin. NANOSCALE 2022; 14:4456-4462. [PMID: 35262142 DOI: 10.1039/d2nr00777k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate the use of water-soluble C60-β-cyclodextrin conjugates to encapsulate and deliver doxorubicin to the cell nucleus. The behaviour of the fullerene aggregates inside cells is dictated by the functionalization of the C60 cage. While both the C60 conjugates are taken up by lysosomes upon cellular entry, only the one with a hydroxylated cage rapidly escaped the lysosome. The drug delivery system (DDS) with a hydroxylated C60 cage showed significantly enhanced doxorubicin delivery to the cell nucleus, whereas the DDS with a hydrophobic C60 cage was trapped in the lysosome for a longer time and showed significantly reduced doxorubicin delivery to the nucleus. This study opens new paths towards advanced fullerene-based DDSs for small molecule drugs.
Collapse
Affiliation(s)
- Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Ryan A Crichton
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Patrick Adly-Gendi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Tyler K Chen
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
20
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
21
|
Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021; 32:2269-2289. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
22
|
Gao N, Jing J, Zhao H, Liu Y, Yang C, Gao M, Chen B, Zhang R, Zhang X. Defective Ag-In-S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. J Mater Chem B 2021; 9:8971-8979. [PMID: 34643636 DOI: 10.1039/d1tb01681d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress plays an important role in the development of inflammatory diseases including allergy, heart disease, diabetes and cancer. Nanomaterial-mediated antioxidant therapy is regarded as a promising strategy to treat oxidative stress-mediated inflammation. Herein, defective Ag-In-S/ZnS quantum dots (AIS/ZnS QDs) with oxygen-derived radical-scavenging capabilities are developed. Owing to their intrinsic defects and abundant surface functional groups, these quantum dots exhibit excellent oxygen-derived free radical removal efficiency in vitro. In macrophages, AIS/ZnS QDs can eliminate intracellular excessive ROS stimulated by either H2O2 or lipopolysaccharide (LPS), thus can effectively protect macrophages against ROS-induced oxidative injury. Moreover, in the model of LPS-triggered macrophage inflammation, they exhibit benign anti-inflammatory ability by inhibiting the expression of related proinflammatory cytokines (e.g., TNF-α and IL-6). These findings indicate that AIS/ZnS QDs hold great potential for the treatment of ROS-related inflammatory disorders.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Hengzhi Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yazhou Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Chunlei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Mengxu Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Bingkun Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rubo Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
23
|
Functionalized Gadofullerene Ameliorates Impaired Glycolipid Metabolism in Type 2 Diabetic Mice. J Genet Genomics 2021; 49:364-376. [PMID: 34687945 DOI: 10.1016/j.jgg.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese MKR mouse T2DM models. In both mouse models, the diabetic phenotypes including hyperglycemia, impaired glucose tolerance and insulin sensitivity were ameliorated following 2 or 4 weeks of i.p. administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist 10 days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for re-balancing gluconeogenesis and glycogen synthesis in vivo and in vitro. In addition, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.
Collapse
|
24
|
Soldatova YV, Areshidze DA, Zhilenkov AV, Kraevaya OA, Peregudov AS, Poletaeva DA, Faingold II, Troshin PA, Kotelnikova RA. Water-soluble fullerene derivatives: the inhibition effect on polyol pathway enzymes and antidiabetic potential on high-fat diet/low-dose streptozotocin-induced diabetes in rats. JOURNAL OF NANOPARTICLE RESEARCH 2021; 23:202. [DOI: 10.1007/s11051-021-05313-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2025]
|
25
|
Zhou JY, Lin HL, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol Nutr Food Res 2021; 65:e2100406. [PMID: 34216418 DOI: 10.1002/mnfr.202100406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Indexed: 12/23/2022]
Abstract
SCOPE The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| |
Collapse
|
26
|
Sharoyko VV, Iamalova NR, Ageev SV, Meshcheriakov AA, Iurev GO, Petrov AV, Nerukh DA, Farafonov VS, Vasina LV, Penkova AV, Semenov KN. In Vitro and In Silico Investigation of Water-Soluble Fullerenol C 60(OH) 24: Bioactivity and Biocompatibility. J Phys Chem B 2021; 125:9197-9212. [PMID: 34375109 DOI: 10.1021/acs.jpcb.1c03332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light fullerenes, C60 and C70, have significant potential in biomedical applications due to their ability to absorb reactive oxygen species, inhibit the development of tumors, inactivate viruses and bacteria, and as the basis for developing systems for targeted drug delivery. However, the hydrophobicity of individual fullerenes complicates their practical use; therefore, creating water-soluble derivatives of fullerenes is increasingly important. Currently, the most studied soluble adducts of fullerenes are polyhydroxy fullerenes or fullerenols. Unfortunately, investigations of fullerenol biocompatibility are fragmental. They often lack reproducibility both in the synthesis of the compounds and their biological action. We here investigate the biocompatibility of a well-defined fullerenol C60(OH)24 obtained using methods that minimize the content of impurities and quantitatively characterize the product's composition. We carry out comprehensive biochemical and biophysical investigations of C60(OH)24 that include photodynamic properties, cyto- and genotoxicity, hemocompatibility (spontaneous and photo-induced hemolysis, platelet aggregation), and the thermodynamic characteristics of C60(OH)24 binding to human serum albumin and DNA. The performed studies show good biocompatibility of fullerenol C60(OH)24, which makes it a promising object for potential use in biomedicine.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg 197758, Russia
| | - Nailia R Iamalova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg 195220, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg 197341, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, Birmingham B4 7ET, U.K
| | - Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svobody ploshchad, Kharkiv 61022, Ukraine
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia
| | - Anastasia V Penkova
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg 197758, Russia
| |
Collapse
|
27
|
Kandhasamy S, Liang B, Yang DP, Zeng Y. Antibacterial Vitamin K3 Carnosine Peptide-Laden Silk Fibroin Electrospun Fibers for Improvement of Skin Wound Healing in Diabetic Rats. ACS APPLIED BIO MATERIALS 2021; 4:4769-4788. [PMID: 35007027 DOI: 10.1021/acsabm.0c01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The utilization of a multifunctional bioactive molecule functionalized electrospun dressing in tissue repair and regenerative function is a prominent therapeutic strategy for preparing efficient biomaterials to promote chronic wound healing. Designing robust and highly efficient antibacterial agents in resistance against microbes and bacterial infections is a key challenge for accelerating diabetic wound healing until today. In this study, we developed a vitamin K3 carnosine peptide (VKC)-laden silk fibroin electrospun scaffold (SF-VKC) for diabetic wound healing. The structural confirmation of synthesized VKC was characterized by 1H NMR, 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and the cell viability of VKC was evaluated by the CCK-8 assay in HFF1 and NIH 3T3 cells. VKC shows excellent cell viability on both cell lines, and the VKC and SF-VKC electrospun mats exhibited excellent antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Prepared SF and SF-VKC fibrous mats were well characterized, and the SF-VKC nanofiber mat presented good biodegradability, adhesiveness, unique mechanical property, expedient water uptake property, sustained drug release, and excellent biocompatibility for chronic wound healing. The in vitro tissue engineering study depicted excellent cell migration and cell-cell interaction in the NIH 3T3 cells over the VKC-impregnated silk fibroin (SF-VKC) mat. A higher population of cell migration was observed in cells' denuded area (scratched region) compared to the native SF fibrous mat. Interestingly, our results demonstrated that the prepared VKC-impregnated SF mat had potentially promoted the STZ-induced diabetic wound healing in a shorter period than the pure SF mat. Thus, obtained in vitro and in vivo outcomes suggest that the VKC-laden SF electrospun fibrous mat could be a better and inexpensive fibrous antibacterial biomaterial to elicit earlier re-epithelialization and efficient matrix remodeling for accelerating chronic infected wound reconstruction in skin diabetic wound healing applications.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
28
|
Fullerene C60 Protects Against Intestinal Injury from Deoxynivalenol Toxicity by Improving Antioxidant Capacity. Life (Basel) 2021; 11:life11060491. [PMID: 34071941 PMCID: PMC8229202 DOI: 10.3390/life11060491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is involved in a wide variety of pathologies, and fullerene has been shown to have an antioxidant ability. Mycotoxins exert toxic effects through induction of excessive reactive oxygen species (ROS). Here, we evaluated water-soluble fullerene C60 for its anti-mycotoxin and antioxidant effects in vitro and in vivo. Intestinal epithelial cells were cultured with fullerene during deoxynivalenol (DON) exposure. The results revealed that fullerene C60 significantly promoted cell viability, decreased apoptosis and necrotic cell number, and significantly reduced intracellular ROS levels during DON exposure (p < 0.05). To investigate the role of fullerene in antioxidant capacity in vivo further, 40 three-week-old male C57BL/6 mice were randomly divided into four groups. There were no significant differences between the control and fullerene groups (p > 0.05). In mice exposed to DON, supplementation with fullerene C60 significantly improved growth performance, and enhanced the total antioxidant status and the activities of SOD and GPX in the intestine and liver (p < 0.05). In addition, fullerene C60 supplementation improved intestinal morphology, as indicated by a higher villus height and tight junction protein expression (p < 0.05). Furthermore, fullerene supplementation decreased serum concentrations of inflammatory cytokine and lipopolysaccharide (LPS; a penetrability marker) compared to the DON-challenged group (p < 0.05). The current study suggests that fullerene C60 improves intestinal antioxidant status against DON-induced oxidative stress in vitro and in vivo.
Collapse
|
29
|
Ma H, Zhang X, Yang Y, Li S, Huo J, Liu Y, Guan M, Zhen M, Shu C, Li J, Wang C. Cellular Uptake, Organelle Enrichment, and In Vitro Antioxidation of Fullerene Derivatives, Mediated by Surface Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2740-2748. [PMID: 33586439 DOI: 10.1021/acs.langmuir.0c03483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophilic fullerene derivatives get notable performance in various biological applications, especially in cancer therapy and antioxidation. The biological behaviors of functional fullerenes are much dependent on their surface physicochemical properties. The excellent reactive oxygen species-scavenging capabilities of functional fullerenes promote their outstanding performances in inhibiting pathological symptoms associated with oxidative stress, including neurodegenerative diseases, cardiovascular diseases, acute and chronic kidney disease, and diabetes. Herein, fullerene derivatives with reversed surface charges in aqueous solutions are prepared: cationic C60-EDA and anionic C60-(EDA-EA). Under the driving force of membrane potential (negative inside) in the cell and mitochondria, C60-EDA is much rapidly taken in by cells and transported into mitochondria compared with C60-(EDA-EA) that is enriched in lysosomes. With high cellular uptake and mitochondrial enrichment, C60-EDA exhibits stronger antioxidation capabilities in vitro than C60-(EDA-EA), indicating its better performance in the therapy of oxidation-induced diseases. It is revealed that the cellular uptake rate, subcellular location, and intracellular antioxidation behavior of fullerene derivatives are primarily mediated by their surface charges, providing new strategies for the design of fullerene drugs and their biological applications.
Collapse
Affiliation(s)
- Haijun Ma
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaoyan Zhang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yang Yang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Shumu Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jiawei Huo
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yang Liu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mirong Guan
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mingming Zhen
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chunying Shu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jie Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chunru Wang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
30
|
Yuan Q, Huang J, Xian C, Wu J. Amino Acid- and Growth Factor-Based Multifunctional Nanocapsules for the Modulation of the Local Microenvironment in Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2165-2178. [PMID: 33400482 DOI: 10.1021/acsami.0c15133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxidative damage to cells from metabolites at a wound site is one of the trickiest factors inhibiting tissue regeneration, especially with bulk damage. In addition, an excessive inflammatory reaction by the body at the wound site can make it even worse. How to scavenge the reactive oxygen species (ROS) produced from metabolism and inflammatory reactions has become a critical issue in tissue engineering. Here, we utilize the natural bioactive small molecules l-arginine and l-phenylalanine and the growth factor inositol to synthesize a branched poly(ester amide) (BPEA) to fabricate BPEA nanocapsules for vitamin E delivery at wound sites. BPEA nanocapsules loaded with vitamin E (BPEA@VE NCs) could protect cells from both extracellular and intracellular damage by scavenging ROS. Simultaneously, the inflammatory reaction could also be downregulated, benefiting from the introduction of l-arginine. Furthermore, the biodegradation products of BPEA are natural metabolites of the body, such as amino acids and growth factors, guaranteeing the biocompatibility of the BPEA@VE NCs. The protective ability of the BPEA@VE NCs was also investigated in vivo for accelerated wound healing. All the results indicate that the BPEA@VE NCs have promising potential for the modulation of the local microenvironment in tissue engineering for excellent antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen UniversityRINGGOLD, Guangzhou 510006, China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen UniversityRINGGOLD, Guangzhou 510006, China
| | - Caihong Xian
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen UniversityRINGGOLD, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen UniversityRINGGOLD, Guangzhou 510006, China
| |
Collapse
|
31
|
|