1
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
2
|
Che G, Yang W, Wang C, Li M, Li X, Fu Y, Pan Q. Light-driven uranyl-organic frameworks used as signal-enhanced photoelectrochemical sensors for monitoring anthrax. Anal Chim Acta 2023; 1265:341327. [PMID: 37230572 DOI: 10.1016/j.aca.2023.341327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
The semiconductor-like characteristics and light absorption ability of metal-organic frameworks (MOFs) make it have the potential for photoelectrochemical sensing. Compared with composite and modified materials, the specific recognition of harmful substances directly using MOFs with suitable structures can undoubtedly simplify the fabrication of sensors. Herein, two photosensitive uranyl-organic frameworks (UOFs) named HNU-70 and HNU-71 were synthesized and explored as the novel "turn-on" photoelectrochemical sensors, which can be directly applied to monitor the biomarker of anthrax (dipicolinic acid). Both sensors have good selectivity and stability towards dipicolinic acid with the low detection limits of 1.062 and 1.035 nM, respectively, which are far lower than the human infection concentration. Moreover, they exhibit good applicability in the real physiological environment of human serum, demonstrating a good application prospect. Spectroscopic and electrochemical studies show that the mechanism of photocurrent enhancement results from the interaction between dipicolinic acid and UOFs, which facilitates the photogenerated electron transport.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yamin Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Sun ZH, Sheng PP, Li ZJ, Wang LY, Bao WL, Yuan LY, Shi WQ, Zhang ZH. A case study for the uranyl recovery over magnetically retrievable Cu-BTC@Fe3O4 nanocomposites. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Liu H, Wang X, Li Y, Min Z, You H, Xie S, Liu Y, Yang H. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18156-18167. [PMID: 36207633 DOI: 10.1007/s11356-022-23492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The production of large amounts of uranium-containing wastewater and its potential hazards has stimulated green and efficient material removal of uranium (VI). Inspired by the natural mineralization of bone, a facile and eco-friendly biomimetic synthesis of nano-hydroxyapatite (HAP) was carried out using chitosan (CS) as a template. It was found that the reaction temperature and the amount of precursors influence the particle size, crystallinity and specific surface area of the CS/HAP nanorods, and consequently their U(VI) adsorption efficiency. Moreover, the synthesized CS/HAP-40 with smaller particle size, lower crystallinity, and larger specific surface area show a more efficient U(VI) removal compared with CS/HAP-55 and CS/HAP-55-AT. It has a maximum adsorption capacity of 294.12 mg·g-1 of the CS/HAP-40. Interestingly, the U(VI) removal mechanism of CS/HAP-40 in acidic (pH = 3) and alkaline (pH = 8) aqueous solutions was found to be different. As one of the main results, the U(VI) adsorption mechanisms at pH 8 could be surface complexation and ion exchange. On the contrary, three different mechanisms could be observed at pH 3: dissolution-precipitation to form chernikovite, surface complexation, and ion exchange.
Collapse
Affiliation(s)
- Hongjuan Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Xi Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yongjiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Zefu Min
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Hang You
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
5
|
Mei D, Liu L, Yan B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
7
|
Xiong T, Jia L, Li Q, Zhang Y, Zhu W. Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156916. [PMID: 35753449 DOI: 10.1016/j.scitotenv.2022.156916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
An environment-friendly, low-cost and efficient kaolin aerogel adsorbent (named as KLA) was synthesized via a freeze-drying-calcination method to solve the defect of low uranium removal rate for kaolin (KL). The removal rate of uranium on KLA reached 90.6 %, which was much higher than that of KL (69.2 %) (C0 = 10 mg L-1, t = 24 h, pH = 5.0, T = 298 K and m/V = 1.0 g L-1). The uranium removal behavior on KLA was satisfied with Pseudo-second-order and Langmuir model, which meant that the uranium ions were immobilized on the surface of KLA via chemical reaction. Meanwhile, high temperature was in favor of the removal of uranium on KLA, indicating that the removal process was a spontaneous endothermic reaction. Compared with KL, KLA also presented better cycle ability and its removal rate of uranium was up to 80.5 % after three cycles, which was still higher than that of KL at the first cycle (74.5 %). On basis of the results of SEM, XRD, FT-IR and XPS, it could be concluded that uranium ions were adsorbed by KLA via complexation. Hence, KLA could be regarded as a feasible candidate for the removal of uranium from aqueous solution.
Collapse
Affiliation(s)
- Ting Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qichen Li
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
8
|
A ternary mechanism for the facilitated transfer of metal ions onto metal—organic frameworks: implications for the “versatility” of these materials as solid sorbents. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Che G, Yang W, Wang C, Li M, Li X, Pan Q. Efficient Photocatalytic Oxidative Coupling of Benzylamine over Uranyl-Organic Frameworks. Inorg Chem 2022; 61:12301-12307. [PMID: 35881495 DOI: 10.1021/acs.inorgchem.2c01594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible-light-driven organic transformation photocatalyzed by metal-organic frameworks (MOFs) under mild conditions is considered a feasible route to conserve energy and simplify synthesis. Herein, a light-sensitized, three-dimensional uranyl-organic framework (HNU-64) with twofold interpenetration and its derivatives HNU-64-CH3 and HNU-64-Cl with functionalized ligands of -CH3 and -Cl groups were obtained. These MOFs have broad optical absorption bands and suitable band energy levels in photooxidation, which makes them exhibit high activity and selectivity for the photooxidation of benzylamine to N-benzylbenzoimide under mild conditions. This work provides an efficient and simple synthetic option for oxidative coupling of amines to directly produce imines.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Liu H, Fu T, Mao Y. Metal-Organic Framework-Based Materials for Adsorption and Detection of Uranium(VI) from Aqueous Solution. ACS OMEGA 2022; 7:14430-14456. [PMID: 35557654 PMCID: PMC9089359 DOI: 10.1021/acsomega.2c00597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
The steady supply of uranium resources and the reduction or elimination of the ecological and human health hazards of wastewater containing uranium make the recovery and detection of uranium in water greatly important. Thus, the development of effective adsorbents and sensors has received growing attention. Metal-organic frameworks (MOFs) possessing fascinating characteristics such as high surface area, high porosity, adjustable pore size, and luminescence have been widely used for either uranium adsorption or sensing. Now pertinent research has transited slowly into simultaneous uranium adsorption and detection. In this review, the progress on the research of MOF-based materials used for both adsorption and detection of uranium in water is first summarized. The adsorption mechanisms between uranium species in aqueous solution and MOF-based materials are elaborated by macroscopic batch experiments combined with microscopic spectral technology. Moreover, the application of MOF-based materials as uranium sensors is focused on their typical structures, sensing mechanisms, and the representative examples. Furthermore, the bifunctional MOF-based materials used for simultaneous detection and adsorption of U(VI) from aqueous solution are introduced. Finally, we also discuss the challenges and perspectives of MOF-based materials for uranium adsorption and detection to provide a useful inspiration and significant reference for further developing better adsorbents and sensors for uranium containment and detection.
Collapse
Affiliation(s)
- Hongjuan Liu
- School
of Nuclear Science and Technology, University
of South China, Hengyang 421001, China
- Department
of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tianyu Fu
- School
of Nuclear Science and Technology, University
of South China, Hengyang 421001, China
| | - Yuanbing Mao
- Department
of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
11
|
Pu Y, Qiang T, Ren L. Waste feather fiber based high extraction capacity bio-adsorbent for sustainable uranium extraction from seawater. Int J Biol Macromol 2022; 206:699-707. [PMID: 35259433 DOI: 10.1016/j.ijbiomac.2022.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Recycling uranium from seawater is of great significance to the development of nuclear industry. However, due to high salinity and low uranium concentration in seawater, there are still many challenges in current seawater uranium extraction technology. In this study, waste feather fibers (FF) were used as raw materials to develop a phosphonate-functionalized feather fiber (FF-PT). The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The adsorption capacity reaches up to 342.5 mg·g-1 in the 8 ppm uranium solution, and service life of at least 10 cycles were obtained. In addition, in the environment with high salinity and the coexistence of metal competitive ions, FF-PT also shows excellent selectivity, and it can reach 3.22 mg·g-1 adsorption capacity after immersed in natural seawater for 30 days. Combined with the results of economic analysis, we believe that the FF-PT has broad application prospects in the industrialized uranium extraction from seawater.
Collapse
Affiliation(s)
- Yadong Pu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
12
|
Li JL, Xiao Y, Wang LY, Xing YH, Bai FY, Shi Z. Oriented construction of the Mixed-metal organic framework with triazine hexacarboxylic acid and fluorescence detection: Fe3+, Cr2O72- and TNP. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Feng L, Wang H, Feng T, Yan B, Yu Q, Zhang J, Guo Z, Yuan Y, Ma C, Liu T, Wang N. In Situ Synthesis of Uranyl‐Imprinted Nanocage for Selective Uranium Recovery from Seawater. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Tiantian Feng
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Bingjie Yan
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
14
|
Hang MT, Cheng Y, Wang YT, Li H, Zheng MQ, He MY, Chen Q, Zhang ZH. Rational synthesis of isomorphic rare earth metal–organic framework materials for simultaneous adsorption and photocatalytic degradation of organic dyes in water. CrystEngComm 2022. [DOI: 10.1039/d1ce01411k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two isomorphic rare earth metal–organic frameworks (MOFs) were synthesized by a solvothermal method. These MOFs have good removal effects on cationic and neutral dyes through simultaneous adsorption and photocatalysis.
Collapse
Affiliation(s)
- Meng-Ting Hang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yi Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yi-Tong Wang
- China International Engineering Consulting Corporation, Beijing 100089, China
| | - Huan Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Meng-Qi Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| |
Collapse
|
15
|
Yang L, Huang C, Luo X, Zhang L, Ye Y, Jun H, Wang Y. Chitosan-based aerogel with anti-swelling for U(VI) adsorption from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Patra K, Ansari SA, Mohapatra PK. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J Chromatogr A 2021; 1655:462491. [PMID: 34482010 DOI: 10.1016/j.chroma.2021.462491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Efficient separation of hazardous radionuclides from radioactive waste remains a challenge to the global acceptance of nuclear power due to complex nature of the waste, high radiotoxicities and presence of large number of interfering elements. Sorption of radioactive elements from liquid phase, gas phase or their solid particulates on various synthetic organic, inorganic or biological sorbents is looked as one of the options for their remediation. In this context, highly porous materials, termed as metal-organic frameworks (MOFs), have shown promise for efficient capturing of various types of radioactive elements. Major advantages that have been advocated for the application of MOFs in radionuclide sorption are their excellent chemical stability, and their large surface area due to abundant functional groups, and porosity. In this review, recent developments on the application of MOFs for radionuclide sequestration are briefly discussed. Focus has been devoted to address the separation of few crucial radioactive elements such as Th, U, Tc, Re, Se, Sr and Cs from aqueous solutions, which are important for liquid radioactive waste management. Apart from these radioactive metal ions, removal of radionuclide bearing gases such as I2, Xe, and Kr are also discussed. Aspects related to the interaction of MOFs with the radionuclides are also discussed. Finally, a perspective for comprehensive investigation of MOFs for their applications in radioactive waste management has been outlined.
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycles Board, Bhabha Atomic Research Centre, Tarapur 401502, India
| | - Seraj A Ansari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Prasanta K Mohapatra
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
17
|
Zhao Z, Cheng G, Zhang Y, Han B, Wang X. Metal-Organic-Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionality-Activity Relationships. Chempluschem 2021; 86:1177-1192. [PMID: 34437774 DOI: 10.1002/cplu.202100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Uranium recovery has profound significance in both uranium resource acquisition and pollution treatment. In recent years, metal-organic frameworks (MOFs) have attracted much attention as potential uranium adsorbents owing to their tunable structural topology and designable functionalities. This review explores the research progress in representative classic MOFs (MIL-101, UiO-66, ZIF-8/ZIF-67) and other advanced MOF-based materials for efficient uranium extraction in aqueous or seawater environments. The uranium uptake mechanism of the MOF-based materials is refined, and the structure/functionality-property relationship is further systematically elucidated. By summarizing the typical functionalization and structure design methods, the performance improvement strategies for MOF-based adsorbents are emphasized. Finally, the present challenges and potential opportunities are proposed for the breakthrough of high-performance MOF-based materials in uranium extraction.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Gong Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Yizhe Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Bing Han
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
18
|
Tong YJ, Yu LD, Huang Y, Fu Q, Li N, Peng S, Ouyang S, Ye YX, Xu J, Zhu F, Pawliszyn J, Ouyang G. Polymer Ligand-Sensitized Lanthanide Metal-Organic Frameworks for an On-Site Analysis of a Radionuclide. Anal Chem 2021; 93:9226-9234. [PMID: 34165288 DOI: 10.1021/acs.analchem.1c01490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a new strategy to increase the sensitivity of a lanthanide metal-organic framework (Ln-MOF) to UO22+ was proposed by using polymeric ligands. By utilizing [Tb(1,3,5-benzenetrisbenzoate)]n (Tb-TBT) MOF as the host, preloaded 2-vinyl terephthalic acid (VTP) was polymerized in situ, which produced a novel fluorescent composite denoted as PVTP⊂Tb-TBT. Benefiting from the coordination of PVTP to the Tb nodes, the polymeric chains performed both as molecular scaffolds that improved the water stability of the framework and as additional antennae that sensitized the photoluminescence of the Tb nodes. More importantly, the detection sensitivity and selectivity of PVTP⊂Tb-TBT to UO22+ were much improved compared to those of Tb-TBT. Detailed characterizations indicated that the incorporation of PVTP efficiently enriched UO22+ in the probe, which promoted the energy dissipation to UO22+. Besides, UO22+ was also supposed to release PVTP from PVTP⊂Tb-TBT and, thus, exposed the open metal sites to water molecules, which interrupted the sensitization effect of PVTP and induced a nonradiative energy dissipation. A limit of detection (LOD) as low as 0.75 nm was recorded by suspending the PVTP⊂Tb-TBT probe in a water sample, far below the limit in drinking water set by the United States Environmental Protection Agency (130 nm). Furthermore, a remotely controlled sampling and an on-site analysis of real water samples were realized by facilely loading PVTP⊂Tb-TBT on thin films (TFs). The LOD for UO22+ was 2.5 nm by using the TFs. This study reports a new strategy for boosting the sensitivity and selectivity of Ln-MOF to monitor UO22+ and expands the application of the strategy to an on-site analysis.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Sai Ouyang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
19
|
Nayak S, Kumal RR, Liu Z, Qiao B, Clark AE, Uysal A. Origins of Clustering of Metalate-Extractant Complexes in Liquid-Liquid Extraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24194-24206. [PMID: 33849269 DOI: 10.1021/acsami.0c23158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Effective and energy-efficient separation of precious and rare metals is very important for a variety of advanced technologies. Liquid-liquid extraction (LLE) is a relatively less energy intensive separation technique, widely used in separation of lanthanides, actinides, and platinum group metals (PGMs). In LLE, the distribution of an ion between an aqueous phase and an organic phase is determined by enthalpic (coordination interactions) and entropic (fluid reorganization) contributions. The molecular scale details of these contributions are not well understood. Preferential extraction of an ion from the aqueous phase is usually correlated with the resulting fluid organization in the organic phase, as the longer-range organization increases with metal loading. However, it is difficult to determine the extent to which organic phase fluid organization causes, or is caused by, metal loading. In this study, we demonstrate that two systems with the same metal loading may impart very different organic phase organizations and investigate the underlying molecular scale mechanism. Small-angle X-ray scattering shows that the structure of a quaternary ammonium extractant solution in toluene is affected differently by the extraction of two metalates (octahedral PtCl62- and square-planar PdCl42-), although both are completely transferred into the organic phase. The aggregates formed by the metalate-extractant complexes (approximated as reverse micelles) exhibit a more long-range order (clustering) with PtCl62- compared to that with PdCl42-. Vibrational sum frequency generation spectroscopy and complementary atomistic molecular dynamics simulations on model Langmuir monolayers indicate that the two metalates affect the interfacial hydration structures differently. Furthermore, the interfacial hydration is correlated with water extraction into the organic phase. These results support a strong relationship between the organic phase organizational structure and the different local hydration present within the aggregates of metalate-extractant complexes, which is independent of metalate concentration.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhu Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Baofu Qiao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aurora E Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
20
|
Zeng LW, Hu KQ, Huang ZW, Mei L, Kong XH, Liu K, Zhang XL, Zhang ZH, Chai ZF, Shi WQ. Controlling the secondary assembly of porous anionic uranyl-organic polyhedra through organic cationic templates. Dalton Trans 2021; 50:4499-4503. [PMID: 33877170 DOI: 10.1039/d1dt00289a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we report a new uranyl-organic polyhedron U4L4 (L = BTPCA) assembled from uranyl and a semirigid tritopic ligand. By adjusting the carbon chain length of organic templates, two complexes can be obtained based on the diverse secondary assembly of U4L4 cages. The mechanism of different arrangements of U4L4 cages induced by organic templates was explored in detail.
Collapse
Affiliation(s)
- Li-Wen Zeng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Dong C, Qiao T, Huang Y, Yuan X, Lian J, Duan T, Zhu W, He R. Efficient Photocatalytic Extraction of Uranium over Ethylenediamine Capped Cadmium Sulfide Telluride Nanobelts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11968-11976. [PMID: 33683098 DOI: 10.1021/acsami.0c22800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photocatalysts for hexavalent uranium (U(VI)) reduction suffered from the low uranium uptake capacity and weak long-wavelength light absorption. Herein, we synthesized the CdSxTe1-x nanobelts capped by ethylenediamine (EDA), which provided amino groups as the adsorption sites. With the increase of the Te content, the amino groups on the CdSxTe1-x nanobelts decreased because of the variation of the electron density of Cd2+, whereas the light adsorption was enhanced due to the narrowed bandgap. In photocatalytic reduction of U(VI), the CdS0.95Te0.05-EDA nanobelts exhibited a considerable U(VI) removal ratio of 97.4% with a remarkable equilibrium U(VI) extraction amount on per weight unit of the adsorbent (qe) of 836 mg/g. The bandgap structure and Fourier transform infrared spectroscopy (FT-IR) spectra analysis revealed that the optimum photocatalytic activity of CdSxTe1-x nanobelts was achieved at a 5% of Te2- doping, which balanced the factors of amino groups and bandgap. This adsorption-photoreduction process offers an ultrahigh uranium extraction capacity over wide uranium concentrations.
Collapse
Affiliation(s)
- Changxue Dong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tiantao Qiao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yubin Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xin Yuan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Lian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
23
|
Feng L, Wang H, Feng T, Yan B, Yu Q, Zhang J, Guo Z, Yuan Y, Ma C, Liu T, Wang N. In-situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. Angew Chem Int Ed Engl 2021; 61:e202101015. [PMID: 33590940 DOI: 10.1002/anie.202101015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/09/2022]
Abstract
Adaptive coordination structure is vital for selective uranium extraction from seawater. By strategy of molecular imprinting, uranyl is introduced into the m ultivariate metal-organic framework (MOF) during the synthesis process to guide the in-situ construction of proper nanocage structure for targeting uranyl binding. Except for the coordination between uranium with four oxygen from the materials, the axial oxygen of uranyl also forms hydrogen bonds with hydrogen from the phenolic hydroxyl group, which enhances the binding affinity of the material to uranyl. Attributing to the high binding affinity, the adsorbent shows high uranium binding selectivity to uranyl against not only the interfering metal ions, but also the carbonate group that coordinates with uranyl to form [UO 2 (CO) 3 ] 4 - in seawater. In natural seawater, the adsorbent realizes a high uranium adsorption capacity of 7.35 mg g -1 , t ogether with an 18.38 times higher selectivity to vanadium. Integrated into account the high reusability, this adsorbent is a promising alternative for uranium recovery from seawater.
Collapse
Affiliation(s)
- Lijuan Feng
- Hainan University, State Key Laboratory of Marine Resources Utilization in South China Sea, CHINA
| | - Hui Wang
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Tiantian Feng
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Bingjie Yan
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Qiuhan Yu
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Jiacheng Zhang
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Zhanhu Guo
- University of Tennessee, Department of Chemical & Biomolecular Engineering, UNITED STATES
| | - Yihui Yuan
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Chunxin Ma
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Tao Liu
- Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, CHINA
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University,, State Key Laboratory of Marine Resource Utilization in South China Sea, No. 58, Renmin Avenue, Haikou, Hainan Province, 570228, 577028, Haikou, CHINA
| |
Collapse
|
24
|
Zheng Z, Lu H, Wang Y, Bao H, Li ZJ, Xiao GP, Lin J, Qian Y, Wang JQ. Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorg Chem 2021; 60:1359-1366. [PMID: 33321039 DOI: 10.1021/acs.inorgchem.0c02447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted synthesis, through a heteroleptic methodology, has resulted in three types of lanthanide (Ln) coordination polymers (CPs) with tailored dimensionality, tunable photoluminescent colors, and distinct luminescence quenching upon UV and X-ray irradiation. The homoleptic Ln(tpbz)(NO3)2 [CP-1; tpbz = 4-(2,2':6',2″-terpyridin-4'-yl)benzoate] is assembled from Ln cations and bridging tpbz ligands, accompanied by the decoration of NO3- anions, forming a one-dimensional (1D) chain structure. The presence of ancillary dicarboxylate linkers, 1,4-benzenedicarboxylate (bdc) and 2,5-thiophenedicarboxylate (tdc), promotes additional bridging between 1D chains to form a two-dimensional layer and a three-dimensional framework for Ln(tpbz)(bdc) (CP-2) and Ln(tpbz)(tdc) (CP-3), respectively. The multicolor and luminescence properties of the obtained CPs were investigated, displaying typical red EuIII-based and green TbIII-based emissions. The SmIII-bearing CP-1-CP-3, however, exhibit diverse ratiometric LnIII- and ligand-based emissions, with the photoluminescent colors varying from pink to orange to cyan. Notably, the TbIII-containing CP-1-CP-3 display distinct luminescence quenching upon continuous exposure to UV and X-ray irradiation. To our best knowledge, CP-2-Tb represents one of the most sensitive UV dosage probes (3.2 × 10-7 J) among all CPs.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yumin Wang
- School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guo-Ping Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
25
|
Jin K, Lee B, Park J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Zhang Q, Zhang S, Zhao J, Wei P, Wang C, Liu P, Zhao X, Zeng K, Wu F, Liu Z. Unexpected ultrafast and highly efficient removal of uranium from aqueous solutions by a phosphonic acid and amine functionalized polymer adsorbent. NEW J CHEM 2021. [DOI: 10.1039/d1nj00218j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
P(DMAA–B2MP) was prepared by solvothermal polymerization and exhibits fast and efficient sorption of uranium(vi) from aqueous solutions.
Collapse
Affiliation(s)
- Qinghua Zhang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Shiao Zhang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Jizhou Zhao
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Peng Wei
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Pan Liu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Xiaohong Zhao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Kai Zeng
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Faming Wu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| |
Collapse
|
27
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|