1
|
Jain N, Waidi YO. The Multifaceted Role of 3D Printed Conducting Polymers in Next-Generation Energy Devices: A Critical Perspective. JACS AU 2025; 5:411-425. [PMID: 40017762 PMCID: PMC11862948 DOI: 10.1021/jacsau.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
The increasing human population is leading to growing consumption of energy sources which requires development in energy devices. The modern iterations of these devices fail to offer sustainable and environmentally friendly answers since they require costly equipment and produce a lot of waste. Three-dimensional (3D) printing has spurred incredible innovation over the years in a variety of fields and is clearly an attractive option because technology can create unique geometric items quickly, cheaply, and with little waste. Conducting polymers (CPs) are a significant family of functional materials that have garnered interest in the research community because of their high conductivity, outstanding sustainability, and economic significance. They have an extensive number of applications involving supercapacitors, power sources, electrochromic gadgets, electrostatic components, conducting pastes, sensors, and biological devices thanks to their special physical and electrical attributes, ease of synthesis, and appropriate frameworks for functional attachment. The use of three-dimensional printing has become popular as an exact way to enhance prepared networks. Rapid technological advancements are reproducing patterns and building structures that enable automated deposition of polymers for intricate structures. Different composites have been created using oxides of metals and carbon to improve the efficiency of the CPs. Such composites have been actively investigated as exceptional energy producers for low-power electronic techniques, and by increasing the range of applications, they have verified increasing surface area, electronic conductivity, and remarkable electrochemical behavior. The hybridization with such materials has produced a range of equipment, such as gathering energy, sensors, protective gadgets, and storage facilities. A few possible uses for these CPs such as sensors and energy storage devices are discussed in this perspective. We also provide an overview of the key strategies for scientific and industrial applications with an eye on potential improvements for a sustainable future.
Collapse
Affiliation(s)
- Nipun Jain
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Yusuf Olatunji Waidi
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
2
|
Tang X, Jiang H, Lin Z, Wang X, Wang W, Li G. Wafer-Scale Vertical 1D GaN Nanorods/2D MoS 2/PEDOT:PSS for Piezophototronic Effect-Enhanced Self-Powered Flexible Photodetectors. NANO-MICRO LETTERS 2024; 17:56. [PMID: 39497008 PMCID: PMC11534966 DOI: 10.1007/s40820-024-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024]
Abstract
van der Waals (vdW) heterostructures constructed by low-dimensional (0D, 1D, and 2D) materials are emerging as one of the most appealing systems in next-generation flexible photodetection. Currently, hand-stacked vdW-type photodetectors are not compatible with large-area-array fabrication and show unimpressive performance in self-powered mode. Herein, vertical 1D GaN nanorods arrays (NRAs)/2D MoS2/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly. The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W-1 and a high detectivity of 1.2 × 1011 Jones, as well as a fast response speed of 54/71 µs, thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction. Notably, the strain-tunable photodetection performances of device have been demonstrated. Impressively, the device at - 0.78% strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W-1, a detectivity of 2.6 × 1011 Jones, and response times of 40/45 µs, which are superior to the state-of-the-art self-powered flexible photodetectors. This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection, which performs well in flexible sensors.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhengliang Lin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xuan Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
3
|
Chen PA, Liu Y, Xia J, Ding J, Zhang Y, Gong Z, Zeng X, Xue J, Liu G, Jiang L, Liao L, Hu Y. Photolithography-Free, Solution-Processable Perovskite Electrodes for High-Performance Organic Transistors. NANO LETTERS 2024. [PMID: 39269918 DOI: 10.1021/acs.nanolett.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.
Collapse
Affiliation(s)
- Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| | - Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiaqi Ding
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yu Zhang
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Zhenqi Gong
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xi Zeng
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Jiakun Xue
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Guowei Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Liao
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| |
Collapse
|
4
|
Lee J, Kim MS, Jang W, Wang DH. Conductive PEDOT-Dominant Surface of Transparent Electrode Patch via Selective Phase Transfer for Efficient Flexible Photoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38310-38323. [PMID: 38988312 DOI: 10.1021/acsami.4c07526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this study, a conductive patch for a flexible organic optoelectronic device is proposed and implemented using a poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) polymer electrode based on a transfer process to achieve its high conductivity with an efficient conductive pathway. This PEDOT-dominant surface is induced by phase inversion during the transfer process owing to the solvent affinity of the PSS phase. The PEDOT:PSS patch formed by the transfer process minimizes the power loss in a flexible optoelectronic device due to the improved charge collection and suppressed leakage current responses. In addition, the bending stability of the flexible photoelectronic device is also enhanced by maintaining performance for 1000 bending cycles. Therefore, in the fabrication of a transparent flexible conductive PEDOT:PSS patch, the transfer process of a conducting polymer constitutes an effective strategy that can improve conductivity and embellished morphology.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min Soo Kim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Woongsik Jang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Hwan Wang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Zhao P, Wang X, Tong Y, Zhao X, Tang Q, Liu Y. Transfer-Printing of Insoluble Conducting Polymer for Soft 3D Conformal All-Organic Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309263. [PMID: 38321840 DOI: 10.1002/smll.202309263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Indexed: 02/08/2024]
Abstract
The development of high-precision insoluble conducting polymer patterns for soft electronics is extremely challenging, mainly because of the incompatibility of the synthesis process with the underlying layers. In this study, a novel transfer-printing method is designed that enables the fabrication of photolithographic insoluble conducting polypyrrole (PPy) electrode patterns on soft substrates with high precision, demonstrating compatibility with various soft organic functional layers. Excellent mechanical stability, good biocompatibility, ultra-smooth surface, and outstanding conformability are observed. The photolithographic PPy electrode patterns, combined with an elastic organic semiconductor and dielectric, produce conformal all-organic transistors with mobility of 1.8 cm2 V-1 s-1. This study paves the way to use insoluble conducting polymers to develop complex, high-density flexible patterns and offers a promising organic electrode for the new-generation soft all-organic electronics.
Collapse
Affiliation(s)
- Pengfei Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
6
|
Xiao X, Shen X, Tie Y, Zhao Y, Yang R, Li Y, Li W, Tang L, Li R, Wang YX, Hu W. Stepwise Aggregation Control of PEDOT:PSS Enabled High-Conductivity, High-Resolution Printing of Polymer Electrodes for Transparent Organic Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29217-29225. [PMID: 38776472 DOI: 10.1021/acsami.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Electrohydrodynamic (EHD) jet printing is a widely employed technology to create high-resolution patterns and thus has enormous potential for circuit production. However, achieving both high conductivity and high resolution in printed polymer electrodes is a challenging task. Here, by modulating the aggregation state of the conducting polymer in the solution and solid phases, a stable and continuous jetting of PEDOT:PSS is realized, and high-conductivity electrode arrays are prepared. The line width reaches less than 5 μm with a record-high conductivity of 1250 S/cm. Organic field-effect transistors (OFETs) are further developed by combining printed source/drain electrodes with ultrathin organic semiconductor crystals. These OFETs show great light sensitivity, with a specific detectivity (D*) value of 2.86 × 1014 Jones. In addition, a proof-of-concept fully transparent phototransistor is demonstrated, which opens up new pathways to multidimensional optical imaging.
Collapse
Affiliation(s)
- Xixi Xiao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xianfeng Shen
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuan Tie
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yaru Zhao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ruhe Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Liqun Tang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Rongjin Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Guo R, Yan G, Niu W, Li X. Fabrication of SU-8 polymer micro/nanoscale nozzle by hot embossing method. NANOTECHNOLOGY 2024; 35:255301. [PMID: 38467057 DOI: 10.1088/1361-6528/ad3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
Electrohydrodynamic-jet printing (E-jet printing) is a direct-writing technology for manufacturing micro-nano devices. To further reduce the inner diameter of the nozzle to improve the printing resolution, a large-scale manufacturing method of SU-8 polymer micro/nanoscale nozzle by means of a process combining UV exposure and hot embossing was proposed. To improve the adhesive strength between the UV mask and SU-8, the influence of the oxygen plasma treatment parameters on the water contact angles of the UV mask was analyzed. The effect of hot embossing time and temperature on the replication precision was studied. The influence of UV exposure parameters and thermal bonding parameters on the micro and nanochannel pattern was investigated. The SU-8 polymer nozzles with 188 ± 3 nm wide and 104 ± 2 nm deep nanochannels were successfully fabricated, and the replication precision can reach to 98.5%. The proposed manufacturing method of SU-8 polymer nozzles in this study will significantly advance the research on the transport properties of nanoscale channels in E-jet nozzles and facilitate further advancements in E-jet based applications.
Collapse
Affiliation(s)
- Ran Guo
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, 215137, People's Republic of China
| | - Gaige Yan
- Innovision Technology (Suzhou) Co., Ltd, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Weilong Niu
- School of Rail Transportation, Soochow University, Suzhou, Jiangsu, 215137, People's Republic of China
| | - Xuan Li
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, 215137, People's Republic of China
| |
Collapse
|
8
|
Li X, Zhang Z, Peng Z, Yan X, Hong Y, Liu S, Lin W, Shan Y, Wang Y, Yang Z. Fast and versatile electrostatic disc microprinting for piezoelectric elements. Nat Commun 2023; 14:6488. [PMID: 37838731 PMCID: PMC10576804 DOI: 10.1038/s41467-023-42159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Nanoparticles, films, and patterns are three critical piezoelectric elements with widespread applications in sensing, actuations, catalysis and energy harvesting. High productivity and large-area fabrication of these functional elements is still a significant challenge, let alone the control of their structures and feature sizes on various substrates. Here, we report a fast and versatile electrostatic disc microprinting, enabled by triggering the instability of liquid-air interface of inks. The printing process allows for fabricating lead zirconate titanate free-standing nanoparticles, films, and micro-patterns. The as-fabricated lead zirconate titanate films exhibit a high piezoelectric strain constant of 560 pm V-1, one to two times higher than the state-of-the-art. The multiplexed tip jetting mode and the large layer-by-layer depositing area can translate into depositing speeds up to 109 μm3 s-1, one order of magnitude faster than current techniques. Printing diversified functional materials, ranging from suspensions of dielectric ceramic and metal nanoparticles, to insulating polymers, to solutions of biological molecules, demonstrates the great potential of the electrostatic disc microprinting in electronics, biotechnology and beyond.
Collapse
Affiliation(s)
- Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuanyi Wang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Kong X, Li H, Wang J, Wang Y, Zhang L, Gong M, Lin X, Wang D. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9906-9915. [PMID: 36762969 DOI: 10.1021/acsami.2c22885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct writing of one-dimensional nanomaterials with large aspect ratios into customized, highly conductive, and high-resolution patterns is a challenging task. In this work, thin silver nanowires (AgNWs) with a length-to-diameter ratio of 730 are employed as a representative example to demonstrate a potent direct ink writing (DIW) strategy, in which aqueous inks using a natural polymer, sodium alginate, as the thickening agent can be easily patterned with arbitrary geometries and controllable structural features on a variety of planar substrates. With the aid of a quick spray-and-dry postprinting treatment at room temperature, the electrical conductivity and substrate adhesion of the written AgNWs-patterns improve simultaneously. This simple, environment benign, and low-temperature DIW strategy is effective for depositing AgNWs into patterns that are high-resolution (with line width down to 50 μm), highly conductive (up to 1.26 × 105 S/cm), and mechanically robust and have a large alignment order of NWs, regardless of the substrate's hardness, smoothness, and hydrophilicity. Soft electroadhesion grippers utilizing as-manufactured interdigitated AgNWs-electrodes exhibit an increased shear adhesion force of up to 15.5 kPa at a driving voltage of 3 kV, indicating the strategy is very promising for the decentralized and customized manufacturing of soft electrodes for future soft electronics and robotics.
Collapse
Affiliation(s)
- Xiangyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hejian Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianping Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yangyang Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Song Y, Tang J, Qi Y, Zhang J, Li Y, Wang F. A review on the dominating factor for the conductivity enhancement of PEDOTs: The affinity of polyanion shell toward post-processing reagents? POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. CRYSTALS 2022. [DOI: 10.3390/cryst12050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Organic ultraviolet (UV) phototransistors are promising for diverse applications. However, wide-bandgap organic semiconductors (OSCs) with intense UV absorption tend to exhibit large contact resistance (Rc) because of an energy-level mismatch with metal electrodes. Herein, we discovered that the molecular dopant of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) was more efficient than the transition metal oxide dopant of MoO3 in doping a wide-bandgap OSC, although the former showed smaller electron affinity (EA). By efficient contact doping, a low Rc of 889 Ω·cm and a high mobility of 13.89 cm2V−1s−1 were achieved. As a result, UV-sensitive phototransistors showed high photosensitivity and responsivity.
Collapse
|
12
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
13
|
Criado-Gonzalez M, Dominguez-Alfaro A, Lopez-Larrea N, Alegret N, Mecerreyes D. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS APPLIED POLYMER MATERIALS 2021; 3:2865-2883. [PMID: 35673585 PMCID: PMC9164193 DOI: 10.1021/acsapm.1c00252] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 05/19/2023]
Abstract
Conducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of the current devices are rigid two-dimensional systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable three-dimensional (3D) (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic, and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene), polypyrrole, and polyaniline. It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene, and silver nanowires. Afterward, the foremost applications of CPs processed by 3D printing techniques in the biomedical and energy fields, that is, wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Instituto
de Ciencia y Tecnología de Polímeros CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Antonio Dominguez-Alfaro
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Naroa Lopez-Larrea
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Wang S, Wang Z, Huang Y, Hu Y, Yuan L, Guo S, Zheng L, Chen M, Yang C, Zheng Y, Qi J, Yu L, Li H, Wang W, Ji D, Chen X, Li J, Li L, Hu W. Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17852-17860. [PMID: 33825449 DOI: 10.1021/acsami.1c01386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conductive polymers are considered promising electrode materials for organic transistors, but the reported devices with conductive polymer electrodes generally suffer from considerable contact resistance. Currently, it is still highly challenging to pattern conductive polymer electrodes on organic semiconductor surfaces with good structure and interface quality. Herein, we develop an in situ polymerization strategy to directly pattern the top-contacted polypyrrole (PPy) electrodes on hydrophobic surfaces of organic semiconductors by microchannel templates, which is also applicable on diverse hydrophobic and hydrophilic surfaces. Remarkably, a width-normalized contact resistance as low as 1.01 kΩ·cm is achieved in the PPy-contacted transistors. Both p-type and n-type organic field-effect transistors (OFETs) exhibit ideal electrical characteristics, including almost hysteresis-free, low threshold voltage, and good stability under long-term test. The facile patterning method and high device performance indicate that the in situ polymerization strategy in confined microchannels has application prospects in all-organic, transparent, and flexible electronics.
Collapse
Affiliation(s)
- Shuguang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Zhongwu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Yinan Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Liqian Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Shujing Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Lei Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, 300072 Tianjin, China
| | - Mingxi Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, 300072 Tianjin, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, 300072 Tianjin, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Jiannan Qi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Li Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Hongwei Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, 518060 Shenzhen, China
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, 48149 Münster, Germany
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Xiaosong Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207 Fuzhou, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, 300072 Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207 Fuzhou, China
| |
Collapse
|
15
|
Liu G, Liu Z, Wang L, Xie X. An organic-inorganic hybrid hole transport bilayer for improving the performance of perovskite solar cells. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Tang X, Kwon HJ, Li Z, Wang R, Kim SJ, Park CE, Jeong YJ, Kim SH. Strategy for Selective Printing of Gate Insulators Customized for Practical Application in Organic Integrated Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1043-1056. [PMID: 33356127 DOI: 10.1021/acsami.0c18477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct drawing techniques have contributed to the ease of patterning soft electronic materials, which are the building blocks of analog and digital integrated circuits. In parallel with the printing of semiconductors and electrodes, selective deposition of gate insulators (GI) is an equally important factor in simplifying the fabrication of integrated devices, such as NAND and NOR gates, and memory devices. This study demonstrates the fabrication of six types of printed GI layers (high/low-k polymer and organic-inorganic hybrid material), which are utilized as GIs in organic field-effect transistors (OFETs), using the electrostatic-force-assisted dispensing printing technique. The selective printing of GIs on the gate electrodes enables us to develop practical integrated devices that go beyond unit OFET devices, exhibiting robust switching performances, non-destructive operations, and high gain values. Moreover, the flexible integrated devices fabricated using this technique exhibit excellent operational behavior. Therefore, this facile fabrication technique can pave a new path for the production of practical integrated device arrays for next-generation devices.
Collapse
Affiliation(s)
- Xiaowu Tang
- Department of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyeok-Jin Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Zhijun Li
- Department of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rixuan Wang
- Department of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Se Jin Kim
- Department of Materials Science & Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Chan Eon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yong Jin Jeong
- Department of Materials Science & Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Se Hyun Kim
- Department of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|