1
|
Nabawy A, Chattopadhyay AN, Makabenta JMV, Hassan MA, Yang J, Park J, Jiang M, Jeon T, Im J, Rotello VM. Cationic conjugated polymers with tunable hydrophobicity for efficient treatment of multidrug-resistant wound biofilm infections. Biomaterials 2025; 316:123015. [PMID: 39705926 PMCID: PMC11755787 DOI: 10.1016/j.biomaterials.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Biofilm-associated infections arising from antibiotic-resistant bacteria pose a critical challenge to global health. We report the generation of a library of cationic conjugated poly(phenylene ethynylene) (PPE) polymers featuring trimethylammonium terminated sidechains with tunable hydrophobicity. Screening of the library identified an amphiphilic polymer with a C11 hydrophobic spacer as the polymer with the highest antimicrobial efficacy against biofilms in the dark with excellent selectivity. These polymers are highly fluorescent, allowing label-free monitoring of polymer-bacteria/biofilm interactions. The amphiphilic conjugated polymer penetrated the biofilm matrix in vitro and eradicated resident bacteria through membrane disruption. This C11 polymer was likewise effective in an in vivo murine model of antibiotic-resistant wound biofilm infections, clearing >99.9 % of biofilm colonies and efficient alleviation of biofilm-associated inflammation. The results demonstrate the therapeutic potential of the fluorescent conjugated polymer platform as a multi-modal antimicrobial and imaging tool, surpassing conventional antimicrobial strategies against resilient biofilm infection.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Junwhee Yang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Tan C, Wang S, Barboza-Ramos I, Schanze KS. A Perspective Looking Backward and Forward on the 25th Anniversary of Conjugated Polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38584485 DOI: 10.1021/acsami.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.
Collapse
Affiliation(s)
- Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Sun H, Barboza-Ramos I, Wang X, Schanze KS. Phosphonium-Substituted Conjugated Polyelectrolytes Display Efficient Visible-Light-Induced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38265208 DOI: 10.1021/acsami.3c16335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We report the light-activated antibacterial activity of a new class of phosphonium (R-PMe3+)-substituted conjugated polyelectrolytes (CPEs). These polyelectrolytes feature a poly(phenylene ethynylene) (PPE) conjugated backbone substituted with side groups with the structure -O-(CH2)nPMe3+, where n = 3 or 6. The length of the side groups has an effect on the hydrophobic character of the CPEs and their propensity to interact with bacterial membranes. In a separate study, these phosphonium-substituted PPE CPEs were demonstrated to photosensitize singlet oxygen (1O2) and reactive oxygen species, a key factor for the photoinduced inactivation of bacteria. In this study, in vitro antibacterial assays against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were performed by employing the series of polyelectrolytes under both dark and illumination conditions. In general, the phosphonium-substituted CPEs displayed profound light-activated biocidal activity, with >99% colony forming unit (CFU) reduction after 15 min of light exposure (16 mW cm-2) at a ≤20 μM CPE concentration. Strong biocidal activity was also observed in the dark for a CPE concentration of 20 μM against S. aureus; however, higher concentrations (200 μM) were needed to enable dark inactivation of E. coli. The dark activity is ascribed to bacterial membrane disruption by the CPEs, supported by a correlation of dark biocidal activity with the chain length of the side groups. The light-activated biocidal activity is associated with the ability of the CPEs to sensitize ROS, which is cytotoxic to the microorganisms. Serial dilution bacterial plating experiments revealed that the series of CPEs was able to induce a >5-log kill versus E. coli with 15 min of exposure to a blue LED source (16 mW cm-2).
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Xiaodan Wang
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Moreland AS, Limwongyut J, Holton SJ, Bazan GC. Structural modulation of membrane-intercalating conjugated oligoelectrolytes decouples outer membrane permeabilizing and antimicrobial activities. Chem Commun (Camb) 2023; 59:12172-12175. [PMID: 37747122 DOI: 10.1039/d3cc02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We report a series of membrane-intercalating conjugated oligoelectrolytes (MICOEs) to probe how structural features impact bacterial membrane integrity and antibiotic activity. Minimum inhibitory concentrations (MICs) and outer membrane (OM) permeability correlated to different structural parameters suggesting that the antimicrobial mechanism is not related to OM permeabilization. However, lipid order parameters and MICs correlated to the same structural feature suggesting a possible link.
Collapse
Affiliation(s)
- Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Samuel J Holton
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, National University of Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117544, Singapore.
| |
Collapse
|
5
|
Elgiddawy N, Elnagar N, Korri-Youssoufi H, Yassar A. π-Conjugated Polymer Nanoparticles from Design, Synthesis to Biomedical Applications: Sensing, Imaging, and Therapy. Microorganisms 2023; 11:2006. [PMID: 37630566 PMCID: PMC10459335 DOI: 10.3390/microorganisms11082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In the past decade, π-conjugated polymer nanoparticles (CPNs) have been considered as promising nanomaterials for biomedical applications, and are widely used as probe materials for bioimaging and drug delivery. Due to their distinctive photophysical and physicochemical characteristics, good compatibility, and ease of functionalization, CPNs are gaining popularity and being used in more and more cutting-edge biomedical sectors. Common synthetic techniques can be used to synthesize CPNs with adjustable particle size and dispersion. More importantly, the recent development of CPNs for sensing and imaging applications has rendered them as a promising device for use in healthcare. This review provides a synopsis of the preparation and functionalization of CPNs and summarizes the recent advancements of CPNs for biomedical applications. In particular, we discuss their major role in bioimaging, therapeutics, fluorescence, and electrochemical sensing. As a conclusion, we highlight the challenges and future perspectives of biomedical applications of CPNs.
Collapse
Affiliation(s)
- Nada Elgiddawy
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt
| | - Noha Elnagar
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt
| | - Hafsa Korri-Youssoufi
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France;
| |
Collapse
|
6
|
Wang K, Liu J, Liu P, Wang D, Han T, Tang BZ. Multifunctional Fluorescent Main-Chain Charged Polyelectrolytes Synthesized by Cascade C-H Activation/Annulation Polymerizations. J Am Chem Soc 2023; 145:4208-4220. [PMID: 36763076 DOI: 10.1021/jacs.2c12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
7
|
Mitigation of Air Pollutants by UV-A Photocatalysis in Livestock and Poultry Farming: A Mini-Review. Catalysts 2022. [DOI: 10.3390/catal12070782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet (UV)-based photocatalysis has been the subject of numerous investigations focused on mitigating undesirable pollutants in the gas phase. Few works report on applications beyond the proof of the concept. Even less is known about the current state of the art of UV photocatalysis in the context of animal agriculture. A growing body of research published over the last 15 years has advanced the knowledge and feasibility of UV-A photocatalysis for swine and poultry farm applications. This review paper summarizes UV-A photocatalysis technology’s effectiveness in mitigating targeted air pollutants in livestock and poultry farms. Specifically, air pollutants include odor, odorous VOCs, NH3, H2S and greenhouse gases (CO2, CH4, N2O). We trace the progression of UV-A photocatalysis applications in animal farming since the mid-2000 and developments from laboratory to farm-scale trials. In addition, this review paper discusses the practical limitations and outlines the research needs for increasing the technology readiness and practical UV application in animal farming.
Collapse
|
8
|
Wang K, Yan S, Han T, Wu Q, Yan N, Kang M, Ge J, Wang D, Tang BZ. Cascade C-H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for Intracellular pH Mapping and Cancer Cell Killing. J Am Chem Soc 2022; 144:11788-11801. [PMID: 35736562 DOI: 10.1021/jacs.2c04032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of straightforward and efficient synthetic methods toward ring-fused heteroaromatic polymers with attractive functionalities has great significance in both chemistry and materials science. Herein, we develop a facile cascade C-H-activated polyannulation route that can in situ generate multiple ring-fused aza-heteroaromatic polymers from readily available monomers in an atom-economical manner. A series of complex polybenzimidazole derivatives with high absolute molecular weights of up to 24 000 are efficiently produced in high yields within 2 h. Benefiting from their unique imidazole-containing ring-fused structures with multiple aryl pendants, the obtained polymers show excellent thermal and morphological stability, good solution processability, high refractive index, small chromic dispersion, as well as remarkable acid-base-responsive fluorescence. Taking advantage of the ratiometric fluorescence response of the triphenylamine-substituted heteroaromatic polymer to pH variations, we successfully apply it as a sensitive fluorescence probe for the mapping and quantitative analysis of intracellular pH in live cells. Furthermore, through the simple N-methylation reaction of the ring-fused polybenzimidazoles, diverse azonia-containing polyelectrolytes are readily produced, which can efficiently kill cancer cells via the synergistic effects of dark toxicity and phototoxicity.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Saisai Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Neng Yan
- Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Sinsinbar G, Palaniappan A, Yildiz UH, Liedberg B. A Perspective on Polythiophenes as Conformation Dependent Optical Reporters for Label-Free Bioanalytics. ACS Sens 2022; 7:686-703. [PMID: 35226461 DOI: 10.1021/acssensors.1c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(3-alkylthiophene) (PT)-based conjugated polyelectrolytes (CPEs) constitute an important class of responsive polymers with excellent optical properties. The electrostatic interactions between PTs and target analytes trigger complexation and concomitant conformational changes of the PT backbones that produce distinct optical responses. These conformation-induced optical responses of the PTs enable them to be utilized as reporters for detection of various analytes by employing simple UV-vis spectrophotometry or the naked eye. Numerous PTs with unique pendant groups have been synthesized to tailor their interactions with analytes such as nucleotides, ions, surfactants, proteins, and bacterial and viral pathogens. In this perspective, we discuss PT-target analyte complexation for bioanalytical applications and highlight recent advancements in point-of-care and field deployable assays. Subsequently, we highlight a few areas of critical importance for future applications of PTs as reporters, including (i) design and synthesis of specific PTs to advance the understanding of the mechanisms of interaction with target analytes, (ii) using arrays of PTs and linear discriminant analysis for selective and specific detection of target analytes, (iii) translation of conventional homogeneous solution-based assays into heterogeneous membrane-based assay formats, and finally (iv) the potential of using PT as an alternative to conjugated polymer nanoparticles and dots in bioimaging.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Alagappan Palaniappan
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Photonic Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| |
Collapse
|
10
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
11
|
Kaya K, Khalil M, Fetrow B, Fritz H, Jagadesan P, Bondu V, Ista L, Chi EY, Schanze KS, Whitten DG, Kell A. Rapid and Effective Inactivation of SARS-CoV-2 with a Cationic Conjugated Oligomer with Visible Light: Studies of Antiviral Activity in Solutions and on Supports. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4892-4898. [PMID: 35040619 PMCID: PMC8790820 DOI: 10.1021/acsami.1c19716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/30/2021] [Indexed: 05/12/2023]
Abstract
This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 μg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 μg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.
Collapse
Affiliation(s)
- Kemal Kaya
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131-0001, United States
- Department
of Biochemistry, Kutahya Dumlupinar University, Kutahya 43000, Turkey
| | - Mohammed Khalil
- Center
for Biomedical Engineering and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Benjamin Fetrow
- Center
for Biomedical Engineering and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Hugh Fritz
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Pradeepkumar Jagadesan
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249-1644, United States
| | - Virginie Bondu
- Department
of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001, United States
| | - Linnea Ista
- Center
for Biomedical Engineering and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Eva Y. Chi
- Center
for Biomedical Engineering and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Kirk S. Schanze
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249-1644, United States
| | - David G. Whitten
- Center
for Biomedical Engineering, Department of Chemistry and Chemical Biology,
and Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Alison Kell
- Department
of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
12
|
Livshits MY, Yang J, Maghsoodi F, Scheberl A, Greer SM, Khalil MI, Strach E, Brown D, Stein BW, Reimhult E, Rack JJ, Chi E, Whitten DG. Understanding the Photochemical Properties of Polythiophene Polyelectrolyte Soft Aggregates with Sodium Dodecyl Sulfate for Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55953-55965. [PMID: 34788015 DOI: 10.1021/acsami.1c18553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The threat of antibiotic-resistant bacteria is an ever-increasing problem in public health. In this report, we examine the photochemical properties with a proof-of-principle biocidal assay for a novel series of regio-regular imidazolium derivative poly-(3-hexylthiophene)/sodium dodecyl sulfate (P3HT-Im/SDS) materials from ultrafast sub-ps dynamics to μs generation of reactive oxygen species (ROS) and 30 min biocidal reactivity with Escherichia coli (E. coli). This broad series encompassing pure P3HT-Im to cationic, neutral, and anionic P3HT-Im/SDS materials are all interrogated by a variety of techniques to characterize the physical material structure, electronic structure, and antimicrobial activity. Our results show that SDS complexation with P3HT-Im results in aggregate materials with reduced ROS generation and light-induced anti-microbial activity. However, our characterization reveals that the presence of non-aggregated or lightly SDS-covered polymer segments is still capable of ROS generation. Full encapsulation of the P3HT-Im polymer completely deactivates the light killing pathway. High SDS concentrations, near and above critical micelle concentration, further deactivate all anti-microbial activity (light and dark) even though the P3HT-Im regains its electronic properties to generate ROS.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jianzhong Yang
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Andrea Scheberl
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU Wien) Muthgasse 11-II, Vienna A-1190, Austria
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | - Mohammed I Khalil
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Edward Strach
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dylan Brown
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU Wien) Muthgasse 11-II, Vienna A-1190, Austria
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David G Whitten
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, Xiao H. Functionalized Masks: Powerful Materials against COVID-19 and Future Pandemics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102453. [PMID: 34319644 PMCID: PMC8420174 DOI: 10.1002/smll.202102453] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of COVID-19 revealed the vulnerability of commercially available face masks. Without having antibacterial/antiviral activities, the current masks act only as filtering materials of the aerosols containing microorganisms. Meanwhile, in surgical masks, the viral and bacterial filtration highly depends on the electrostatic charges of masks. These electrostatic charges disappear after 8 h, which leads to a significant decline in filtration efficiency. Therefore, to enhance the masks' protection performance, fabrication of innovative masks with more advanced functions is in urgent demand. This review summarizes the various functionalizing agents which can endow four important functions in the masks including i) boosting the antimicrobial and self-disinfectant characteristics via incorporating metal nanoparticles or photosensitizers, ii) increasing the self-cleaning by inserting superhydrophobic materials such as graphenes and alkyl silanes, iii) creating photo/electrothermal properties by forming graphene and metal thin films within the masks, and iv) incorporating triboelectric nanogenerators among the friction layers of masks to stabilize the electrostatic charges and facilitating the recharging of masks. The strategies for creating these properties toward the functionalized masks are discussed in detail. The effectiveness and limitation of each method in generating the desired properties are well-explained along with addressing the prospects for the future development of masks.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chao Deng
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yajie Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yuqian Liu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yang Huang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chengcheng Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New BrunswickFrederictonNew BrunswickE3B 5A3Canada
| |
Collapse
|
16
|
Saxena V, Pandey LM. Design and characterization of biphasic ferric hydroxyapatite-zincite nanoassembly for bone tissue engineering. CERAMICS INTERNATIONAL 2021; 47:28274-28287. [DOI: 10.1016/j.ceramint.2021.06.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
17
|
Eskandari R, Asoodeh A, Mousavi SD, Firouzi Z. The effect of a novel drug delivery system using encapsulated antimicrobial peptide Protonectin (IL-12) into Nano micelle PEG-PCL on A549 adenocarcinoma lung cell line. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Liao W, Shi X, Zhuo LG, Yang X, Zhao P, Kan W, Wang G, Wei H, Yang Y, Zhou Z, Wang J. Comparison and Mechanism Study of Antibacterial Activity of Cationic and Neutral Oligo-Thiophene-Ethynylene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41012-41020. [PMID: 34410119 DOI: 10.1021/acsami.1c02474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photodynamic therapy (PDT) is a potential approach to resolve antibiotic resistance, and phenylene/thiophene-ethynylene oligomers have been widely studied as effective antibacterial reagents. Oligomers with thiophene moieties usually exhibit good antibacterial activity under light irradiation and dark conditions. In the previous study, we verified that neutral oligo-p-phenylene-ethynylenes (OPEs) exhibit better antibacterial activity than the corresponding cationic ones; however, whether this regular pattern also operates in other kinds of oligomers such as oligo-thiophene-ethynylene (OTE) is unknown. Also, the antibacterial activity comparison of OTEs bearing cyclic and acyclic amino groups will offer useful information to further understand the role of amino groups in the antibacterial process and guide the antibacterial reagent design as amino groups affect the antibacterial activity a lot. We synthesized four OTEs bearing neutral or cationic, cyclic, or acyclic amino groups and studied their antibacterial activity in detail. The experimental results indicated that the OTEs exhibited better antibacterial activity than the OPEs, the neutral OTEs exhibited better antibacterial activity in most cases, and OTEs bearing cyclic amino groups exhibited better antibacterial activity than those bearing acyclic ones in most cases. This study provides useful guidelines for further antibacterial reagent design and investigations.
Collapse
Affiliation(s)
- Wei Liao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Xiaoyi Shi
- West China Hospital of Sichuan University Cleaning and Disinfection Supply Center, Chengdu, Sichuan 610041, P. R. China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Wentao Kan
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Zhijun Zhou
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China.,Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China.,Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| |
Collapse
|
19
|
Gangemi CMA, Barattucci A, Bonaccorsi PM. A Portrait of the OPE as a Biological Agent. Molecules 2021; 26:3088. [PMID: 34064279 PMCID: PMC8196911 DOI: 10.3390/molecules26113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Oligophenylene ethynylenes, known as OPEs, are a sequence of aromatic rings linked by triple bonds, the properties of which can be modulated by varying the length of the rigid main chain or/and the nature and position of the substituents on the aromatic units. They are luminescent molecules with high quantum yields and can be designed to enter a cell and act as antimicrobial and antiviral compounds, as biocompatible fluorescent probes directed towards target organelles in living cells, as labelling agents, as selective sensors for the detection of fibrillar and prefibrillar amyloid in the proteic field and in a fluorescence turn-on system for the detection of saccharides, as photosensitizers in photodynamic therapy (due to their capacity to highly induce toxicity after light activation), and as drug delivery systems. The antibacterial properties of OPEs have been the most studied against very popular and resistant pathogens, and in this paper the achievements of these studies are reviewed, together with almost all the other roles held by such oligomers. In the recent decade, their antifungal and antiviral effects have attracted the attention of researchers who believe OPEs to be possible biocides of the future. The review describes, for instance, the preliminary results obtained with OPEs against severe acute respiratory syndrome coronavirus 2, the virus responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), Università degli Studi di Messina, 98168 Messina, Italy; (C.M.A.G.); (P.M.B.)
| | | |
Collapse
|
20
|
Wang J, Yang X, Zhao P, Deng H, Zhuo LG, Wang G, Yang Y, Wei H, Zhou Z, Liao W. Investigating Antibacterial Efficiency and Mechanism of Oligo-thiophenes under White Light and Specific Biocidal Activity against E. coli in Dark. ACS APPLIED BIO MATERIALS 2021; 4:3561-3570. [DOI: 10.1021/acsabm.1c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People’s Republic of China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Zhijun Zhou
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| |
Collapse
|
21
|
Elgiddawy N, Ren S, Ghattas W, Rouby WMAE, El-Gendy AO, Farghali AA, Yassar A, Korri-Youssoufi H. Antimicrobial Activity of Cationic Poly(3-hexylthiophene) Nanoparticles Coupled with Dual Fluorescent and Electrochemical Sensing: Theragnostic Prospect. SENSORS (BASEL, SWITZERLAND) 2021; 21:1715. [PMID: 33801383 PMCID: PMC7958628 DOI: 10.3390/s21051715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Designing therapeutic and sensor materials to diagnose and eliminate bacterial infections remains a significant challenge for active theragnostic nanoprobes. In the present work, fluorescent/electroactive poly(3-hexylthiophene) P3HT nanoparticles (NPs) stabilized with quaternary ammonium salts using cetyltrimethylammonium bromide (CTAB), (CTAB-P3HT NPs) were prepared using a simple mini-emulsion method. The morphology, spectroscopic properties and electronic properties of CTAB-P3HT NPs were characterized by DLS, zeta potential, SEM, TEM, UV-vis spectrophotometry, fluorescence spectroscopy and electrochemical impedance spectroscopy (EIS). In an aqueous solution, CTAB-P3HT NPs were revealed to be uniformly sized, highly fluorescent and present a highly positively charged NP surface with good electroactivity. Dual detection was demonstrated as the binding of the bacteria to NPs could be observed by fluorescence quenching as well as by the changes in EIS. Binding of E. coli to CTAB-P3HT NPs was demonstrated and LODs of 5 CFU/mL and 250 CFU/mL were obtained by relying on the fluorescence spectroscopy and EIS, respectively. The antimicrobial activity of CTAB-P3HT NPs on bacteria and fungi was also studied under dark and nutritive conditions. An MIC and an MBC of 2.5 µg/mL were obtained with E. coli and with S. aureus, and of 0.312 µg/mL with C. albicans. Additionally a good biocompatibility toward normal human cells (WI38) was observed, which opens the way to their possible use as a therapeutic agent.
Collapse
Affiliation(s)
- Nada Elgiddawy
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 91400 Orsay, France; (N.E.); (W.G.)
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt
| | - Shiwei Ren
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.R.); (A.Y.)
| | - Wadih Ghattas
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 91400 Orsay, France; (N.E.); (W.G.)
| | - Waleed M. A. El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt; (W.M.A.E.R.); (A.A.F.)
| | - Ahmed O. El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt; (W.M.A.E.R.); (A.A.F.)
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.R.); (A.Y.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 91400 Orsay, France; (N.E.); (W.G.)
| |
Collapse
|
22
|
Monge F, Jagadesan P, Bondu V, Donabedian PL, Ista L, Chi EY, Schanze KS, Whitten DG, Kell AM. Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55688-55695. [PMID: 33267577 PMCID: PMC7724758 DOI: 10.1021/acsami.0c17445] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 05/08/2023]
Abstract
In the present study, we examined the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by synthetic conjugated polymers and oligomers developed in our laboratories as antimicrobials for bacteria, fungi, and nonenveloped viruses. The results show highly effective light-induced inactivation with several of these oligomers and polymers including irradiation with near-UV and visible light. In the best case, one oligomer induced a 5-log reduction in pfu/mL within 10 min. In general, the oligomers are more active than the polymers; however, the polymers are active with longer wavelength visible irradiation. Although not studied quantitatively, the results show that in the presence of the agents at concentrations similar to those used in the light studies, there is essentially no dark inactivation of the virus. Because three of the five materials/compounds examined are quaternary ammonium derivatives, this study indicates that conventional quaternary ammonium antimicrobials may not be active against SARS-CoV-2. Our results suggest several applications involving the incorporation of these materials in wipes, sprays, masks, and clothing and other personal protection equipment that can be useful in preventing infections and the spreading of this deadly virus and future outbreaks from similar viruses.
Collapse
Affiliation(s)
- Florencia
A. Monge
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque 87131-0001, New Mexico, United States
- Biomedical
Engineering Graduate Program, University
of New Mexico, Albuquerque 87131-0001, New Mexico, United States
| | - Pradeepkumar Jagadesan
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio 78249-1644, Texas, United States
| | - Virginie Bondu
- Department
of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque 87131-0001, New Mexico, United States
| | - Patrick L. Donabedian
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque 87131-0001, New Mexico, United States
- Nanoscience
and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque 87131-0001, New Mexico, United States
| | - Linnea Ista
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque 87131-0001, New Mexico, United States
- Department
of Chemical and Biological Engineering, University of New Mexico, Albuquerque 87131, New Mexico, United States
| | - Eva Y. Chi
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque 87131-0001, New Mexico, United States
- Department
of Chemical and Biological Engineering, University of New Mexico, Albuquerque 87131, New Mexico, United States
| | - Kirk S. Schanze
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio 78249-1644, Texas, United States
| | - David G. Whitten
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque 87131-0001, New Mexico, United States
- Department
of Chemical and Biological Engineering, University of New Mexico, Albuquerque 87131, New Mexico, United States
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque 87131-0001, New Mexico, United States
| | - Alison M. Kell
- Department
of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque 87131-0001, New Mexico, United States
| |
Collapse
|
23
|
Zamani E, Johnson TJ, Chatterjee S, Immethun C, Sarella A, Saha R, Dishari SK. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49346-49361. [PMID: 33089982 PMCID: PMC8926324 DOI: 10.1021/acsami.0c12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic, π-conjugated oligo-/polyelectrolytes (CCOEs/CCPEs) have shown great potential as antimicrobial materials to fight against antibiotic resistance. In this work, we treated wild-type and ampicillin-resistant (amp-resistant) Escherichia coli (E. coli) with a promising cationic, π-conjugated polyelectrolyte (P1) with a phenylene-based backbone and investigated the resulting morphological, mechanical, and compositional changes of the outer membrane of bacteria in great detail. The cationic quaternary amine groups of P1 led to electrostatic interactions with negatively charged moieties within the outer membrane of bacteria. Using atomic force microscopy (AFM), high-resolution transmission electron microscopy (TEM), we showed that due to this treatment, the bacterial outer membrane became rougher, decreased in stiffness/elastic modulus (AFM nanoindentation), formed blebs, and released vesicles near the cells. These evidences, in addition to increased staining of the P1-treated cell membrane by lipophilic dye Nile Red (confocal laser scanning microscopy (CLSM)), suggested loosening/disruption of packing of the outer cell envelope and release and exposure of lipid-based components. Lipidomics and fatty acid analysis confirmed a significant loss of phosphate-based outer membrane lipids and fatty acids, some of which are critically needed to maintain cell wall integrity and mechanical strength. Lipidomics and UV-vis analysis also confirmed that the extracellular vesicles released upon treatment (AFM) are composed of lipids and cationic P1. Such surface alterations (vesicle/bleb formation) and release of lipids/fatty acids upon treatment were effective enough to inhibit further growth of E. coli cells without completely disintegrating the cells and have been known as a defense mechanism of the cells against cationic antimicrobial agents.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tyler J. Johnson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
24
|
Schanze KS, Whitten DG, Kell AM, Chi EY, Ista LK, Monge FA, Jagadesan P, Bondu V, Donabedian PL. Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.29.20204164. [PMID: 33052358 PMCID: PMC7553178 DOI: 10.1101/2020.09.29.20204164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current Covid-19 Pandemic caused by the highly contagious SARS-CoV-2 virus has proven extremely difficult to prevent or control. Currently there are few treatment options and very few long-lasting disinfectants available to prevent the spread. While masks and protective clothing and social distancing may offer some protection, their use has not always halted or slowed the spread. Several vaccines are currently undergoing testing; however there is still a critical need to provide new methods for inactivating the virus before it can spread and infect humans. In the present study we examined the inactivation of SARS-CoV-2 by synthetic conjugated polymers and oligomers developed in our laboratories as antimicrobials for bacteria, fungi and non-enveloped viruses. Our results show that we can obtain highly effective light induced inactivation with several of these oligomers and polymers including irradiation with near-UV and visible light. With both the oligomers and polymers, we can reach several logs of inactivation with relatively short irradiation times. Our results suggest several applications involving the incorporation of these materials in wipes, sprays, masks and clothing and other Personal Protection Equipment (PPE) that can be useful in preventing infections and the spreading of this deadly virus and future outbreaks from similar viruses.
Collapse
|
25
|
Liao W, Zhuo LG, Yang X, Zhao P, Kan W, Wang G, Song H, Wei H, Yang Y, Tian G, Zhao R, Zhou Z, Wang J. Biocidal Activity and Mechanism Study of Unsymmetrical Oligo-Phenylene-Ethynylenes. ACS APPLIED BIO MATERIALS 2020; 3:5644-5651. [DOI: 10.1021/acsabm.0c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Liao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Lian-gang Zhuo
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Wentao Kan
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Hu Song
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou 215123, P. R. China
| | - Guozhong Tian
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P. R. China
| | - Rongtao Zhao
- PLA Center for Disease Control and Prevention, Beijing 100071, P. R. China
| | - Zhijun Zhou
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, P. R. China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang 621999, P. R. China
| |
Collapse
|