1
|
Zhao W, Zhang Y, Chen J, Hu D. Revolutionizing oral care: Reactive oxygen species (ROS)-Regulating biomaterials for combating infection and inflammation. Redox Biol 2025; 79:103451. [PMID: 39631247 PMCID: PMC11664010 DOI: 10.1016/j.redox.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The human oral cavity is home to a delicate symbiosis between its indigenous microbiota and the host, the balance of which is easily perturbed by local or systemic factors, leading to a spectrum of oral diseases such as dental caries, periodontitis, and pulp infections. Reactive oxygen species (ROS) play crucial roles in the host's innate immune defenses. However, in chronic inflammatory oral conditions, dysregulated immune responses can result in excessive ROS production, which in turn exacerbates inflammation and causes tissue damage. Conversely, the potent antimicrobial properties of ROS have inspired the development of various anti-infective therapies. Therefore, the strategic modulation of ROS by innovative biomaterials is emerging as a promising therapeutic approach for oral infection and inflammation. This review begins by highlighting the state-of-the-art of ROS-regulating biomaterials, which are designed to generate, scavenge, or modulate ROS in a bidirectional manner. We then delve into the latest innovations in these biomaterials and their applications in treating a range of oral diseases, including dental caries, endodontic and periapical conditions, periodontitis, peri-implantitis, and oral candidiasis. The review concludes with an overview of the current challenges and future potential of these biomaterials in clinical settings. This review provides novel insights for the ongoing development of ROS-based therapeutic strategies for oral diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology Sichuan University, Chengdu, 610041, PR China.
| | - Danrong Hu
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
3
|
Mamone L, Tomás R, Di Venosa G, Gándara L, Durantini E, Buzzola F, Casas A. Laser NIR Irradiation Enhances Antimicrobial Photodynamic Inactivation of Biofilms of Staphylococcus aureus. Lasers Surg Med 2024; 56:783-795. [PMID: 39360552 DOI: 10.1002/lsm.23847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Photodynamic inactivation (PDI) is a powerful technique for eradicating microorganisms, and our group previously demonstrated its effectiveness against planktonic cultures of Staphylococcus aureus bacteria using 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and visible light irradiation. However, biofilms exhibit a lower sensitivity to PDI, mainly due to limited penetration of the photosensitizer (PS). In the context of emerging antibacterial strategies, near-infrared treatments (NIRTs) have shown promise, especially for combating resistant strains. NIRT can act either through photon absorption by water, causing a thermal effect on bacteria, or by specific chromophores without a significant temperature increase. Our objective was to enhance biofilm sensitivity to TAPP-PDI by pretreatment with NIRT. This combined approach aims to disrupt biofilms and increase the efficacy of TAPP-PDI against bacterial biofilms. MATERIALS AND METHODS In vitro biofilm models of S. aureus RN6390 were utilized. NIRTs involved a 980 nm laser (continuous mode, 7.5 W/cm2, 30 s, totaling 225 J/cm2) post-TAPP exposure to enhance photosensitizer accumulation. Subsequent visible light irradiation at 180 J/cm2 was employed to perform PDI. Colony-forming unit counts evaluated the synergistic effect on bacterial viability. Scanning electron microscopy visualized the architectural changes in the biofilm structure. TAPP was extracted from bacteria to estimate the impact of NIRT on biofilm penetration. RESULTS Using in vitro biofilm models, NIRT application following biofilm exposure to TAPP increased PS accumulation per bacteria. Under these conditions, NIRT induced a transient increase in the temperature of PBS to 46.0 ± 2.6°C (ΔT = 21.5°C). Following exposure to visible light, a synergistic effect emerged, yielding a substantial 4.4 ± 0.1-log CFU reduction. In contrast, the PDI and NIRT treatments individually caused a decrease in viability of 0.9 ± 0.1 and 0.8 ± 0.2-log respectively. Interestingly, preheating TAPP-PBS to 46°C had no significant impact on TAPP-PDI efficacy, suggesting the involvement of thermal and nonthermal effects of NIR action. In addition to the enhanced TAPP penetration, NIRT dispersed the biofilms and induced clefts in the biofilm matrix. CONCLUSION Our findings suggest that NIR irradiation serves as a complementary treatment to PDI. This combined strategy reduces bacterial numbers at lower PS concentrations than standalone PDI treatment, highlighting its potential as an effective and resource-efficient antibacterial approach.
Collapse
Affiliation(s)
- Leandro Mamone
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Roberto Tomás
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| | - Lautaro Gándara
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edgardo Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Fernanda Buzzola
- Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Adriana Casas
- Universidad de Buenos Aires, CONICET, Hospital de Clínicas José de San Martín, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Zhou K, Yu Y, Xu L, Wang S, Li Z, Liu Y, Kwok RTK, Sun J, Lam JWY, He G, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogen Based Wearable Visible-Light Penetrator for Deep Photodynamic Therapy. ACS NANO 2024; 18:29930-29941. [PMID: 39423317 DOI: 10.1021/acsnano.4c10452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a preferred nonsurgical treatment in clinical applications due to its capacity to selectively eradicate diseased tissues while minimizing damage to normal tissue. Nevertheless, its clinical efficacy is constrained by the limited penetration of visible light. Although near-infrared (NIR) lasers offer enhanced tissue penetration, the dearth of suitable photosensitizers and a pronounced imaging-treatment disparity pose challenges. Additionally, clinical implementation via optical fiber implantation carries infection risks and necessitates minimally invasive surgery, contradicting PDT's noninvasive advantage. In this study, we introduce a brilliant approach utilizing aggregation-induced emission luminogens (AIEgen) to develop a visible-light penetrator (VLP), coupled with wireless light emitting diodes (LEDs), enabling deep photodynamic therapy. We validate the therapeutic efficacy of this visible-light penetrator in tissues inaccessible to conventional PDT, demonstrating significant suppression of inflammatory diffusion in vivo using AIEgen TBPPM loaded within the VLP, which exhibits a transmittance of 86% in tissues with a thickness of 3 mm. This innovative visible-light penetrator effectively overcomes the substantial limitations of PDT in clinical settings and holds promise for advancing phototherapy.
Collapse
Affiliation(s)
- Kun Zhou
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Ying Yu
- Hohai University (Changzhou Campus), Changzhou, Jiangsu 213200, China
| | - Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640 Guangzhou, China
| | - Siyuan Wang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuojian Li
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yong Liu
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, Guangdong 510530, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zheng Zhao
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, Guangdong 510530, China
| |
Collapse
|
5
|
Ding R, Liu X, Zhao X, Sun Q, Cheng Y, Li A, Pei D, He G. Membrane-anchoring selenophene viologens for antibacterial photodynamic therapy against periodontitis via restoring subgingival flora and alleviating inflammation. Biomaterials 2024; 307:122536. [PMID: 38522327 DOI: 10.1016/j.biomaterials.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Antibacterial photodynamic therapy (aPDT) has emerged as a promising strategy for treating periodontitis. However, the weak binding of most photosensitizers to bacteria and the hypoxic environment of periodontal pockets severely hamper the therapeutic efficacy. Herein, two novel oxygen-independent photosensitizers are developed by introducing selenophene into viologens and modifying with hexane chains (HASeV) or quaternary ammonium chains (QASeV), which improve the adsorption to bacteria through anchoring to the negatively charged cell membrane. Notably, QASeV binds only to the bacterial surface of Porphyromonas gingivalis and Fusobacterium nucleatum due to electrostatic binding, but HASeV can insert into their membrane by strong hydrophobic interactions. Therefore, HASeV exhibits superior antimicrobial activity and more pronounced plaque biofilm disruption than QASeV when combined with light irradiation (MVL-210 photoreactor, 350-600 nm, 50 mW/cm2), and a better effect on reducing the diversity and restoring the structure of subgingival flora in periodontitis rat model was found through 16S rRNA gene sequencing analysis. The histological and Micro-CT analyses reveal that HASeV-based aPDT has a better therapeutic effect in reducing periodontal tissue inflammation and alveolar bone resorption. This work provides a new strategy for the development of viologen-based photosensitizers, which may be a favorable candidate for the aPDT against periodontitis.
Collapse
Affiliation(s)
- Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xu Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qi Sun
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
6
|
Wang X, Shi G, Wei R, Li M, Zhang Q, Zhang T, Chen CF, Hu HY. Fine-tuning of stable organic free-radical photosensitizers for photodynamic immunotherapy. Chem Sci 2024; 15:6421-6431. [PMID: 38699264 PMCID: PMC11062115 DOI: 10.1039/d3sc06826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
7
|
Hazra A, Samanta SK. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2417-2438. [PMID: 38253020 DOI: 10.1021/acs.langmuir.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polyelectrolytes have attracted a lot of attention spanning across disciplines, including polymer chemistry, materials chemistry, chemical biology, chemical engineering, as well as device physics, as a result of their widespread applications in sensing, biomedicine, food industry, wastewater treatment, optoelectronic devices, and renewable energy. In this review, we focus on the crucial synthetic strategies of structurally different classes of main-chain cationic polyelectrolytes. As a result of the presence of charged moieties in the main polymeric backbone, their solubility and photophysical properties can be easily tuned. Main-chain cationic polyelectrolytes provide various unique characteristics, including solubility in aqueous and organic solvents, easy processability, ease of film formation, ionic interaction, main-chain-directed charge transport, high conductivity, and aggregation. These properties make the main-chain polyelectrolyte a potential candidate for numerous applications ranging from chemo- and biosensing, antibacterial activity, optoelectronics, electrocatalysis, water splitting, ion conduction, to dye-sensitized solar cells.
Collapse
Affiliation(s)
- Amrita Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
9
|
Sun Q, Song W, Gao Y, Ding R, Shi S, Han S, Li G, Pei D, Li A, He G. A telluroviologen-anchored tetraphenylporphyrin as sonosensitizer for periodontitis sonodynamic therapy. Biomaterials 2024; 304:122407. [PMID: 38048744 DOI: 10.1016/j.biomaterials.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Periodontitis is a chronic disease caused by bacteria (e.g. Porphyromonas gingivalis, P.gingivalis) that currently lacks effective non-invasive treatment options. Sonodynamic therapy (SDT) is an emerging non-invasive antimicrobial therapeutic strategy. Since ultrasonic tooth cleaning is widely used in dental treatments, SDT has significant potential for the facile implementation of treat periodontitis. However, hypoxia in periodontitis severely limits the effectiveness of traditional sonosensitizers. To address this issue, we have developed a new sonosensitizer termed as TPP-TeV, which combines the traditional sonosensitizer tetraphenylporphyrin (TPP) with a new photosensitizer telluroviologen (TeV). Under ultrasound radiation, TPP-TeV can produce numerous cationic free radicals (TPP-TeV•), which subsequently generate ROS free radicals (O2•-, •OH) efficiently via electron transfer mechanism, resulting in the effective killing of anaerobic P.gingivalis both in vivo and in vitro. As a result, the dental environment is improved, and the inhibition rate of alveolar bone loss reaches 80 %. The introduction of tellurium into the viologen molecule induces changes in its reduction potential, resulting in increased rigidity of the molecule. This modification systematically reduces the biotoxicity of our novel sonosensitizer by 75 % at 50 μM based on bacterial experiments. These promising findings could potentially establish new options for sonodynamic therapy (SDT) in periodontitis clinical treatments.
Collapse
Affiliation(s)
- Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Weijie Song
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yujing Gao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Rui Ding
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Suxia Han
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China.
| |
Collapse
|
10
|
Xu Y, Chen B, Su D, Li J, Qi Q, Hu Y, Wang Q, Xia F, Lou X, Zhao Z, Dai J, Dong X, Zhou J. Near-Infrared Conjugated Polymers Containing Thermally Activated Delayed Fluorescence Units Enable Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56314-56327. [PMID: 37983087 DOI: 10.1021/acsami.3c13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.
Collapse
Affiliation(s)
- Yating Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Deliang Su
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Qiang Qi
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
11
|
Chen P, Ze R, Xia X, Zhang Z, Lu K, Wei L, Zhou B. Composite porphyrin-based conjugated microporous polymer/graphene oxide capable of photo-triggered combinational antibacterial therapy and wound healing. BIOMATERIALS ADVANCES 2023; 154:213662. [PMID: 37862813 DOI: 10.1016/j.bioadv.2023.213662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Developing antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent. GO-TAPP, prepared via the self-oxidation coupling of tetraethynyl porphyrin on the surface of graphene oxide, could exert synergistic photothermal (PTT, ascribed to the graphene) and photodynamic (PDT, derived from the Porphyrin polymer) antimicrobial effectiveness. Both the in vivo and in vitro experiments have confirmed GO-TAPP are extremely potent against the Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) pathogens, which presents a remarkably enhanced sterilizing effect in comparison with its counterparts (the bare GO, and TAPP). Meanwhile, the synergistic effect of GO-TAPP could significantly accelerate the healing of open wound infected by bacterial. Altogether, this work proposed a new approach for the rational preparation of highly biocompatible graphene-based composite materials as antibiotic-free agents with synergistic antibacterial effect to combat bacterial infections.
Collapse
Affiliation(s)
- Peilei Chen
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Runsong Ze
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Xiaohui Xia
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Zifan Zhang
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Keliang Lu
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China.
| | - Liuya Wei
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| | - Baolong Zhou
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| |
Collapse
|
12
|
Zhu Y, Luo X, Yu Z, Wen S, Bao G, Zhang L, Zhang C, Xian Y. Dye-sensitized rare-earth-doped nanoprobe for simultaneously enhanced NIR-II imaging and precise treatment of bacterial infection. Acta Biomater 2023; 170:532-542. [PMID: 37669712 DOI: 10.1016/j.actbio.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for causing life-threatening infections that result in high morbidity and mortality rates. The development of advanced imaging and therapeutic methods for in vivo diagnosis and treatment of MRSA infections remains challenging. Here, we develop a hybrid nanoplatform based on rare-earth-doped nanoparticles (RENPs) sensitized by a moiety-engineered near-infrared (NIR) TPEO-820 dye and with a ZIF-8 layer that incorporates CysNO, a photochemically triggered nitric oxide donor. We then use the hybrid for both NIR-II bioimaging and photoactivatable treatment of MRSA-infected wounds. We show that the NIR dye sensitization leads to an 8.5-fold enhancement of the downshifting emission and facilitates deep-tissue NIR-II imaging of bacterial infections. Moreover, the sensitization strategy enhances the UV emission of RENPs by two orders of magnitude, leading to the efficiently controllable release of nitric oxide for effective disinfection of MRSA in vitro and in vivo. The hybrid nanoplatform thus offers promising opportunities for simultaneous localization and controllable treatment of MRSA. STATEMENT OF SIGNIFICANCE: Early detection and treatment of MRSA infections are crucial for reducing public health risks. It is a significant challenge that develops sensitive in vivo diagnosis and complete elimination of drug-resistant bacterial infections. Herein, a nanoplatform has been developed for photoactivatable therapy of MRSA infections and deep tissue NIR-II imaging. This platform utilizes lanthanide-doped rare earth nanoparticles (RENPs) that are sensitized by a moiety-engineered near-infrared (NIR) dye TPEO-820. The TPEO-820 sensitized RENPs exhibit 5 times increase in the release of NO concentration for MRSA treatment compared to unsensitized RENPs, enabling precise therapy of MRSA infection both in vitro and in vivo. Moreover, the platform demonstrates NIR-II luminescence in vivo, allowing for sensitive imaging in deep tissue for MRSA infection.
Collapse
Affiliation(s)
- Yingxin Zhu
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zihang Yu
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Cuiling Zhang
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
14
|
Li Y, Li N, Li G, Qiao Y, Zhang M, Zhang L, Guo QH, He G. The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host-Guest Interactions, and Visible-Light Photocatalysis. J Am Chem Soc 2023; 145:9118-9128. [PMID: 37015020 DOI: 10.1021/jacs.3c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 μmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Naiyao Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Yi Qiao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| |
Collapse
|
15
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
16
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
17
|
Wang Q, Shi Q, Li Y, Lu S, Xie X. Visible light-regulated cationic polymer coupled with photodynamic inactivation as an effective tool for pathogen and biofilm elimination. J Nanobiotechnology 2022; 20:492. [DOI: 10.1186/s12951-022-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Pathogenic microorganism pollution has been a challenging public safety issue, attracting considerable scientific interest. A more problematic aspect of this phenomenon is that planktonic bacteria exacerbate biofilm formation. There is an overwhelming demand for developing ultra-efficient, anti-drug resistance, and biocompatibility alternatives to eliminate stubborn pathogenic strains and biofilms.
Results
The present work aims to construct a visible light-induced anti-pathogen agents to ablate biofilms using the complementary merits of ROS and cationic polymers. The photosensitizer chlorin e6-loaded polyethyleneimine-based micelle (Ce6-TPP-PEI) was constructed by an amphiphilic dendritic polymer (TPP-PEI) and physically loaded with photosensitizer chlorin e6. Cationic polymers can promote the interaction between photosensitizer and Gram-negative bacteria, resulting in enhanced targeting of PS and lethality of photodynamic therapy, and remain active for a longer duration to prevent bacterial re-growth when the light is turned off. As expected, an eminent antibacterial effect was observed on the Gram-negative Escherichia coli, which is usually insensitive to photosensitizers. Surprisingly, the cationic polymer and photodynamic combination also exert significant inhibitory and ablative effects on fungi and biofilms. Subsequently, cell hemolysis assessments suggested its good biocompatibility.
Conclusions
Given the above results, the platform developed in this work is an efficient and safe tool for public healthcare and environmental remediation.
Collapse
|
18
|
Zhang X, Liu X, Zhang H, Wang Z, Zhang Y, Li G, Li MJ, He G. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48727-48733. [PMID: 36257057 DOI: 10.1021/acsami.2c14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of chalcogenophene viologens ([(NPr)2FV]Cl4, [(NPr)2TV]Cl4, and [(NPr)2SeV]Cl4) as anolytes for neutral aqueous organic redox flow batteries (AORFBs) via a combination of chalcogenophenes (furan, thiophene, and selenophene) and viologens are reported. The chalcogenophene viologens showed narrow HOMO-LUMO energy gap, high solubility, and stable electrochemical properties. Compared with the parent [(NPr)2V]Cl4, the introduction of π-conjugated chalcogenophene groups reduced the redox potential and enhanced the stability of their free radical state, which endowed the chalcogenophene viologens/FcNCl-based AORFBs with a higher theoretical battery voltage of 1.20 V and enhanced stability for one-electron storage. In particular, the [(NPr)2FV]Cl4/FcNCl-based AORFB exhibited excellent long-cycle stability for 3000 cycles with 0.0006% capacity decay per cycle for one-electron storage and 300 cycles with 0.06% capacity decay per cycle for two-electron storage at a charge voltage of 1.9 V (1.42 V theoretical battery voltage). This work provided a new strategy for regulating the voltage and improving the performance of neutral AORFBs.
Collapse
Affiliation(s)
- Xuri Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Yueyan Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Ming-Jia Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| |
Collapse
|
19
|
Lv H, Liu J, Wang Y, Xia X, Li Y, Hou W, Li F, Guo L, Li X. Upconversion nanoparticles and its based photodynamic therapy for antibacterial applications: A state-of-the-art review. Front Chem 2022; 10:996264. [PMID: 36267658 PMCID: PMC9577018 DOI: 10.3389/fchem.2022.996264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Major medical advances in antibiotics for infectious diseases have dramatically improved the quality of life and greatly increased life expectancy. Nevertheless, the widespread and inappropriate exploitation of antibacterial agents has resulted in the emergence of multi-drug-resistant bacteria (MDR). Consequently, the study of new drugs for the treatment of diseases associated with multi-drug-resistant bacteria and the development of new treatments are urgently needed. Inspiringly, due to the advantages of a wide antimicrobial spectrum, fast sterilization, low resistance, and little damage to host tissues and normal flora, antibacterial photodynamic therapy (APDT), which is based on the interaction between light and a nontoxic photosensitizer (PS) concentrated at the lesion site to generate reactive oxygen species (ROS), has become one of the most promising antibacterial strategies. Recently, a burgeoning APDT based on a variety of upconversion nanoparticles (UCNPs) such as PS and near-infrared (NIR) light has been fully integrated in antibacterial applications and achieved excellent performances. Meanwhile, conjugated nanoparticles have been frequently reported in UCNP design, including surface-modified PS conjugates, antibiotic-PS conjugates, and dual or multiple antibacterial modal PS conjugates. This article provides an overview of the state-of-the-art design and bactericidal effects of UCNPs and their based APDTs. The first part discusses the design and mechanisms for UCNPs currently implemented in biomedicine. The second part focuses on the applications and antimicrobial effects of diverse APDT based on UCNPs in antibacterial-related infectious diseases.
Collapse
Affiliation(s)
- Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Wenxue Hou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lantian Guo
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Xue Li,
| |
Collapse
|
20
|
Jin W, Song P, Wu Y, Tao Y, Yang K, Gui L, Zhang W, Ge F. Biofilm Microenvironment-Mediated MoS 2 Nanoplatform with Its Photothermal/Photodynamic Synergistic Antibacterial Molecular Mechanism and Wound Healing Study. ACS Biomater Sci Eng 2022; 8:4274-4288. [PMID: 36095153 DOI: 10.1021/acsbiomaterials.2c00856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-resistant bacterial infections pose a serious threat to human public health. Biofilm formation is one of the main factors contributing to the development of bacterial resistance, characterized by a hypoxic and microacidic microenvironment. Traditional antibiotic treatments have been ineffective against multidrug-resistant (MDR) bacteria. Novel monotherapies have had little success. On the basis of the photothermal effect, molybdenum disulfide (MoS2) nanoparticles were used to link quaternized polyethylenimine (QPEI), dihydroporphyrin e6 (Ce6), and Panax notoginseng saponins (PNS) in a zeolitic imidazolate framework-8 (ZIF-8). A multifunctional nanoplatform (MQCP@ZIF-8) was constructed with dual response to pH and near-infrared light (NIR), which resulted in synergistic photothermal and photodynamic antibacterial effects. The nanoplatform exhibited a photothermal conversion efficiency of 56%. It inhibited MDR Escherichia coli (E. coli) and MDR Staphylococcus aureus (S. aureus) by more than 95% and effectively promoted wound healing in mice infected with MDR S. aureus. The nanoplatform induced the death of MDR bacteria by promoting biofilm ablation, disrupting bacterial cell membranes and intracellular DNA, and interfering with intracellular material and energy metabolism. In this study, a multifunctional nanoplatform with good antibacterial effect was developed. The molecular mechanisms of MDR bacteria were also elucidated for possible clinical application.
Collapse
Affiliation(s)
- Weihao Jin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yujia Wu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
21
|
Ning X, He G, Zeng W, Xia Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Front Med (Lausanne) 2022; 9:915548. [PMID: 36035433 PMCID: PMC9403269 DOI: 10.3389/fmed.2022.915548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Wound repair remains a clinical challenge and bacterial infection is a common complication that may significantly delay healing. Therefore, proper and effective wound management is essential. The photosensitizer-based therapies mainly stimulate the photosensitizer to generate reactive oxygen species through appropriate excitation source irradiation, thereby killing pathogenic microorganisms. Moreover, they initiate local immune responses by inducing the recruitment of immune cells as well as the production of proinflammatory cytokines. In addition, these therapies can stimulate the proliferation, migration and differentiation of skin resident cells, and improve the deposition of extracellular matrix; subsequently, they promote the re-epithelialization, angiogenesis, and tissue remodeling. Studies in multiple animal models and human skin wounds have proved that the superior sterilization property and biological effects of photosensitizer-based therapies during different stages of wound repair. In this review, we summarize the recent advances in photosensitizer-based therapies for enhancing tissue regeneration, and suggest more effective therapeutics for patients with skin wounds.
Collapse
Affiliation(s)
- Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yumin Xia,
| |
Collapse
|
22
|
Yang GP, Meng XL, Xiao SJ, Zheng QQ, Tan QG, Liang RP, Zhang L, Zhang P, Qiu JD. Construction of D-A-Conjugated Covalent Organic Frameworks with Enhanced Photodynamic, Photothermal, and Nanozymatic Activities for Efficient Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28289-28300. [PMID: 35675646 DOI: 10.1021/acsami.2c05953] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial infection causes serious threats to human life, especially with the appearance of antibiotic-resistant bacteria. Phototherapeutic approaches have become promising due to their noninvasiveness, few adverse effects, and high efficiency. Herein, a covalent organic framework (TAPP-BDP) with a conjugated donor-acceptor (D-A) structure has been constructed for efficient photoinduced bacteriostasis. Under the irradiation with a single near-infrared (NIR) light (λ = 808 nm), TAPP-BDP alone involves triple and synergistic bacterial inhibition based on the integration of photodynamic, photothermal, and peroxidase-like enzymatic activities. The unique D-A structure endows TAPP-BDP with a narrow energy band gap, improving its photodynamic and nanozyme activities to generate reactive oxygen species (ROS) to realize the broad-spectrum bactericidal activity. The extended π-conjugated skeleton of TAPP-BDP results in enhanced absorption in NIR, and the remarkable photothermal activity can increase the temperature up to 65 °C to cause efficient bacterial degeneration. TAPP-BDP shows excellent antibacterial efficiency against both Gram-negative and Gram-positive bacteria. Animal experiments further suggest that TAPP-BDP can effectively heal wounds infected with Staphylococcus aureus in living systems.
Collapse
Affiliation(s)
- Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Meng
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Pu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
23
|
Hu T, Liu Q, Zhou Z, Zhao W, Huang H, Meng F, Liu W, Zhang Q, Gu L, Liang R, Tan C. Preparation of Dye Molecule-Intercalated MoO 3 Organic/Inorganic Superlattice Nanoparticles for Fluorescence Imaging-Guided Catalytic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200595. [PMID: 35599433 DOI: 10.1002/smll.202200595] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Intercalation of organic molecules into the van der Waals gaps of layered materials allows for the preparation of organic/inorganic superlattices for varying promising applications. Herein, the preparation of a series of dye molecule/MoO3 organic/inorganic superlattice nanoparticles by aqueous intercalation of several dye molecules into layered MoO3 for fluorescence imaging-guided catalytic therapy is reported. The long MoO3 nanobelts are treated by ball milling and subsequent aqueous intercalation followed by a cation ion exchange to obtain the dye molecule-intercalated MoO3 organic/inorganic superlattices. Importantly, because of the activation induced by organic intercalation, the Nile blue (NB)-intercalated MoO3-x (NB-MoO3-x ) nanoparticles show excellent catalytic activity for the generation of reactive oxygen species, that is, hydroxyl radical (·OH) and superoxide anion (·O2- ), through catalyzing H2 O2 and O2 , respectively. Moreover, the intense fluorescence of the intercalated NB molecules endows NB-MoO3-x with the in vivo fluorescence imaging capability. Thus, the polyvinylpyrrolidone-modified NB-MoO3-x nanoparticles can be used for tumor-specific catalytic therapy to realize efficient cancer cell elimination in vitro and fluorescence imaging-guided tumor ablation in vivo.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Wei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
24
|
Guo M, Zhou K, Ding R, Zhao X, Zhang Y, Zhang Z, He G. Water-soluble thienoviologen derivatives for imaging bacteria and antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:3097-3103. [PMID: 35343554 DOI: 10.1039/d2tb00129b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of water-soluble cationic thienoviologen derivative photosensitizers (nTPy-Rs) for photodynamic therapy (PDT) is reported. Cationic pyridine groups were introduced into the thiophene framework to enhance solubility and bacteria-binding ability, which effectively improved bacteriological imaging and antibacterial activity. The optoelectronic properties of nTPy-Rs were regulated by adjusting the number of thiophene groups, and the differences in antibacterial activity due to the functional scaffolds were compared. The results showed that nTPy-Rs could generate reactive oxygen species (ROS, including macroscopic free radicals), efficiently inhibit bacterial growth, and achieve the minimum inhibitory concentration (MIC) to the ng mL-1 level. Remarkably, 2TPyC6, containing two thiophene groups and modified by alkyl side chains, showed the best bacteriostatic performance, with the MIC of 20 ng mL-1 and 4.5 ng mL-1 for E. coli and S. aureus, respectively, which are the lowest photosensitizer concentrations used in PDT to date. The low cell cytotoxicity and excellent antibacterial performance give nTPy-Rs great potential as PDT agents in vivo.
Collapse
Affiliation(s)
- Mengying Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Kun Zhou
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Yueyan Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, 510640, China
| |
Collapse
|
25
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He YL, He G. Bacteria-Triggered Solar Hydrogen Production via Platinum(II)-Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022; 61:e202115298. [PMID: 34982500 DOI: 10.1002/anie.202115298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Multifunctional solar energy conversion offers a feasible strategy to solve energy, environmental and water crises. Herein, a series of platinum(II)-tethered chalcogenoviologens (PtL+ -EV2+ , E=S, Se, Te) is reported, which integrate the functions of photosensitizer, electron mediator and catalyst. PtL+ -EV2+ (particularly for PtL+ -SeV2+ )-based one-component solar H2 production could be triggered not only by EDTA, but also by facultative anaerobic and aerobic bacteria relying on a simplified mechanism, along with efficient antibacterial activities. In addition, by using real pool water, PtL+ -SeV2+ achieved multiple functions, including H2 production, antibacterial action and acid removal, which supplied a new strategy to solve various problems in real life via a single system.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Kun Zhou
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, China
| | - Bin Rao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ya-Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
26
|
Xie Y, Gan C, Li Z, Liu W, Yang D, Qiu X. Fabrication of a Lignin-Copper Sulfide-Incorporated PVA Hydrogel with Near-Infrared-Activated Photothermal/Photodynamic/Peroxidase-like Performance for Combating Bacteria and Biofilms. ACS Biomater Sci Eng 2022; 8:560-569. [PMID: 35077128 DOI: 10.1021/acsbiomaterials.1c01406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-resistant bacteria and biofilms are among the most difficult challenges in infection treatment. Herein, lignin-copper sulfide (LS-CuS) nanocomposites were incorporated into a poly(vinyl alcohol) (PVA) hydrogel to fabricate a LS-CuS@PVA composite hydrogel with near-infrared-activated photothermal, photodynamic, and peroxidase-like performance. The antibacterial tests of LS-CuS@PVA exhibited the highest antibacterial rate that caused 3.8-log and 4.8-log reductions of colony forming units (CFUs) against Escherichia coli and Staphylococcus aureus in the presence of H2O2 under near-infrared (NIR) light irradiation for 10 min. The significantly improved bactericidal performance could be attributed to the synergistic effects of hyperthermia and reactive oxygen species (ROS). Furthermore, the LS-CuS@PVA hydrogel could eradicate the already formed biofilm and inhibit biofilm formation. Considering the highly effective antibacterial and antibiofilm activity of the LS-CuS@PVA hydrogel, this work could provide new insights for the design of poly(vinyl alcohol)-based composite hydrogels for wound healing and wound dressing.
Collapse
Affiliation(s)
- Yuanxiang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Chuchu Gan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
27
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He Y, He G. Bacteria‐Triggered Solar Hydrogen Production via Platinum(II)‐Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Qi Sun
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xu Liu
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xuri Zhang
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering Xidian University China
| | - Bin Rao
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ya‐Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
28
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
29
|
Liu ZY, Tang XY, Huang C, Zhang J, Huang WQ, Ye Y. 808 nm NIR-triggered Camellia sapogein/curcumin based antibacterial upconversion nanoparticles for synergistic photodynamic-chemical combined therapy. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01569a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibacterial upconversion nanoparticles (UCNP) based photodynamic-chemical combined therapy (UCNP-aPCCT) provides an ideal method to solve the antibiotic-resistant bacteria in deep-tissue infection. Saponin is a kind natural product exhibiting promising antibacterial...
Collapse
|
30
|
Zhang S, Feng S, Ma L, Yang Y, Liu C, Song N, Yang Y. Research of Synergistic Photothermal Antibacterial Strategy Based on Polymeric Guanidine Derivative Grafted on Mesoporous Carbon Nanospheres. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhou K, Chigan D, Xu L, Liu C, Ding R, Li G, Zhang Z, Pei D, Li A, Guo B, Yan X, He G. Anti-Sandwich Structured Photo-Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101858. [PMID: 34250738 DOI: 10.1002/smll.202101858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Photo-electronic devices based on reactive oxygen species (ROS) generation suffer a crucial limitation in wound treatment due to their sandwich structure, which prevents the contact of ROS with wound tissue. In this work, the first anti-sandwich structured visible-light/electricity dual-responsive wound dressing is constructed for treatment of methicillin-resistant Staphylococcus aureus (MRSA), based on selenoviologen-appendant polythiophene (SeV2+ -PT)-containing polyacrylamide hydrogels. The new wound dressing is named an anti-sandwich structured photo-electronic wound dressing (PEWD). The unique structure of PEWD enables its use in synergistic electrodynamic and photodynamic therapy (EDT and PDT), providing rapid, on-demand, and sustained generation of ROS in situ via short-time light irradiation and/or wireless-controlled electrification. The PEWD possesses good flexibility, excellent biocompatibility, and fast response, as well as sustained ROS generation in a physiological environment. Animal experiments demonstrate effective ROS generation in 6 s under irradiation and electrification, inhibiting infection at an early stage, and substantially shortening the healing time of bacterial infection (to within 7 days). This proof-of-concept research holds great promise in developing new flexible PEWD, and novel strategies to improve wound treatment.
Collapse
Affiliation(s)
- Kun Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dongdong Chigan
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gang He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
32
|
Liu YS, Wei X, Zhao X, Chen LJ, Yan XP. Near-Infrared Photothermal/Photodynamic-in-One Agents Integrated with a Guanidinium-Based Covalent Organic Framework for Intelligent Targeted Imaging-Guided Precision Chemo/PTT/PDT Sterilization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27895-27903. [PMID: 34101418 DOI: 10.1021/acsami.1c05705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phototherapy holds great promise in the treatment of bacterial infections, especially the multidrug resistant bacterial infections. However, most therapeutic agents are based on the integration of individual photothermal agents and photosensitizers, always in the activated state, and generally lack bacterial specificity, resulting in uncertain pharmacokinetics and serious nonspecific damage to normal tissues. Herein, we report a pH-responsive nanoplatform with synergistic chemo-phototherapy function for smart fluorescence imaging-guided precision sterilization. pH reversible activated symmetric cyanine was designed and prepared as a bacterial-specific imaging unit and PTT/PDT-in-one agent. Meanwhile, a guanidinium-based covalent organic framework (COF) was employed as a nanocarrier and chemotherapy agent to build the intelligent nanoplatform via electrostatic self-assembly. The self-assembly of the PTT/PDT-in-one agent and the COF greatly improves the stability and blood circulation of the PTT/PDT-in-one agent and provides charge-reversed intelligent targeting ability. The developed smart nanoplatform not only enables bacterial-targeted imaging but also possesses chemo/PTT/PDT synergetic high-efficiency bactericidal effects with little side effects, showing great potential in practical applications.
Collapse
Affiliation(s)
- Yu-Shi Liu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Wei
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Wang J, Li Y, Han X, Zhang H, Fan A, Yao X, Tang B, Zhang X. Light-Triggered Antibacterial Hydrogels Containing Recombinant Growth Factor for Treatment of Bacterial Infections and Improved Wound Healing. ACS Biomater Sci Eng 2021; 7:1438-1449. [PMID: 33691399 DOI: 10.1021/acsbiomaterials.0c01588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microbial infection and the limitation of tissue regeneration are main obstacles to chronic wound healing. Herein, a biofunctional hydrogel is prepared to simultaneously kill bacteria efficiently and promote would healing. First, a rose bengal/polypyrrole hybrid poly(vinyl alcohol) hydrogel (RB/PPy PVA HD) is synthesized and its antibacterial property is investigated under coirradiation of 550 nm visible light and 808 near-infrared light. The hydrogel exhibits excellent antibacterial activity within 10 min below 45 °C in vitro due to the synergistic effect of photothermal and photodynamic antibacterial therapy. Next, the recombined human epidermal growth factor (rhEGF) is physically absorbed on the surface of the porous hydrogel to form a RB/PPy/rhEGF hybrid PVA HD (rhEGF/RB/PPy PVA HD). The introduction of rhEGF enables the hydrogel to promote fibroblast proliferation and collagen secretion. Furthermore, the in vivo results indicate that the rhEGF/RB/PPy PVA HD can control infection effectively and promote wound healing significantly.
Collapse
Affiliation(s)
- Jiameng Wang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanan Li
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiang Han
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongyu Zhang
- Second Hospital of Shanxi Medical University, Taiyuan 030024, China
| | - Ailan Fan
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
34
|
Liu CL, Yang J, Bai XH, Cao ZK, Yang C, Ramakrishna S, Yang DP, Zhang J, Long YZ. Dual Antibacterial Effect of In Situ Electrospun Curcumin Composite Nanofibers to Sterilize Drug-Resistant Bacteria. NANOSCALE RESEARCH LETTERS 2021; 16:54. [PMID: 33826006 PMCID: PMC8026794 DOI: 10.1186/s11671-021-03513-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Bacterial infection especially caused by multidrug-resistant bacteria still endangers human life. Photodynamic therapy (PDT) can effectively kill bacteria, and nanofiber-based PDT can effectively reduce damage to normal tissues. However, current photosensitizers coated on the surfaces of fibers would release to the wound, causing some side effects. And nanofibers prepared by traditional method exhibit poor adhesion on the wound, which severely reduces the PDT effect due to its short-range effect. Herein, core-shell curcumin composite nanofibers are prepared by in situ electrospinning method via a self-made portable electrospinning device. The obtained composite nanofibers show superior adhesiveness on different biological surface than that of traditional preparation method. Upon 808-nm irradiation, these composite nanofibers effectively produced singlet oxygen (1O2) without curcumin falling off. After these composite nanofibers' exposure to drug-resistant bacteria, they exhibit dual antibacterial behaviors and efficiently kill the drug-resistant bacteria. These dual antibacterial nanofiber membranes with excellent adhesiveness may benefit the application of wound infection as antibacterial dressing.
Collapse
Affiliation(s)
- Chun-Li Liu
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Jun Yang
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xiao-Han Bai
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Chen Yang
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
35
|
Dai X, Ma J, Chen N, Cai Y, He Y, Li X, Gao F. MSNs-Based Nanocomposite for Biofilm Imaging and NIR-Activated Chem/Photothermal/Photodynamic Combination Therapy. ACS APPLIED BIO MATERIALS 2021; 4:2810-2820. [PMID: 35014320 DOI: 10.1021/acsabm.1c00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial infections caused by biofilms are severe clinical problems, resulting in high drug resistance by limiting the penetration of antibiotics. Herein, a near-infrared (NIR)-activated chem/photodynamic/photothermal combined therapeutic agent is proposed by loading fluorescein isothiocyanate (FITC), ultrasmall copper sulfide nanoparticles (Cu2-xSNPs), and ε-polylysine (PLL) onto mesoporous silica nanoparticles (MSNs) through a layer-by-layer self-assembly approach. FITC-doped MSNs are prepared to monitor the permeability and accumulation of nanocomposites into biofilms. MSNs can also act as hosts for the synthesis of ultrasmall Cu2-xSNPs, which has effective photodynamic and photothermal ablation against bacteria under NIR light irradiation. Moreover, biodegradable PLL introduced can not only enhance adhesion toward the bacterial surface to increase the effectiveness of phototherapy but also damage bacteria through electrostatic interaction. As a result, the prepared nanocomposites could not only penetrate biofilms but also ablate biofilms through combined chem/photodynamic/photothermal effects under NIR light irradiation. Furthermore, the nanocomposites could treat bacterial infections in vivo with negligible tissue toxicity. Overall, the finely designed nanocomposites are anticipated to display promising applications in imaging-guided chem/photodynamic/photothermal combined therapy for bacterial infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jifang Ma
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ningning Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yuanyuan Cai
- Anhui Province Key Laboratory of Active Biological Macro-molecules Research, Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Yanping He
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiangzi Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules Research, Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
36
|
Ma W, Xu L, Zhang S, Li G, Ma T, Rao B, Zhang M, He G. Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. J Am Chem Soc 2021; 143:1590-1597. [DOI: 10.1021/jacs.0c12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Sikun Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Tianyu Ma
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Bin Rao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
37
|
Wu H, Gu D, Xia S, Chen F, You C, Sun B. One-for-all intelligent core-shell nanoparticles for tumor-specific photothermal-chemodynamic synergistic therapy. Biomater Sci 2020; 9:1020-1033. [PMID: 33325928 DOI: 10.1039/d0bm01734e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reasonable management of the one-for-all nanoplatform can facilitate improved cancer therapy. Here, the metal-organic frameworks (MOFs) based on iron(iii) carboxylate material (MIL-101-NH2) were in situ decorated on stabilized polydopamine nanoparticles (PDANPs), which subsequently loaded glucose oxidase (GOx) via hyaluronic acid (HA) coating to structure the one-for-all intelligent core-shell nanoparticles (HG-MIL@PDANPs). Because of the inner PDANPs, the HG-MIL@PDANPs could realize near-infrared (NIR)-controllable site-specific photothermal therapy (PTT). Additionally, the core-shell nanoparticles exhibited a pH-triggered and NIR-reinforced release of Fe3+ and GOx owing to the controllable degradation of the outer shell. Hydroxyl radicals (˙OH) were produced for chemodynamic therapy (CDT) employing the Fe2+-driven Fenton reaction, which could be greatly promoted by Fe3+-involved glutathione (GSH) depletion and GOx-catalyzed acidity recovery and H2O2 self-sufficiency. Moreover, the HA ligand could enhance the tumor accumulation of the HG-MIL@PDANPs through the long blood circulation time and CD44-targeted cell recognition. The ingenious integration of PTT and CDT in one fully equipped system presented excellent synergistic antitumor efficiency in vitro and in vivo with favorable biosafety. The one-for-all intelligent core-shell nanoparticles with CD44 targeting provide a new avenue for engineering on-demand tumor-specific therapy.
Collapse
Affiliation(s)
- Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | | | | | | | | | | |
Collapse
|
38
|
Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2020; 4:3937-3961. [DOI: 10.1021/acsabm.0c01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhijun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637549, Singapore
| |
Collapse
|
39
|
Liu X, Cheng Z, Wen H, Zhang S, Chen M, Wang J. Hybrids of Upconversion Nanoparticles and Silver Nanoclusters Ensure Superior Bactericidal Capability via Combined Sterilization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51285-51292. [PMID: 33151062 DOI: 10.1021/acsami.0c15710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is highly desired to develop new antibacterial agents with superior bactericidal efficiency for minimizing the damage to biological cells. We developed a combined antibacterial nanohybrid exhibiting a superb bactericidal effect and excellent biocompatibility by integrating upconversion nanoparticles (UCNPs) with silver nanoclusters (AgNCs). UCNPs and methylene blue (MB) molecules were encapsulated with silica microspheres via microemulsion, with MB as the photosensitizer. Silver ions (Ag+) were reduced by amino groups on the surface of silica spheres, wherein silver nanoclusters (AgNCs) were formed in situ to produce the nanohybrid, UCNPs@SiO2(MB)@AgNCs. UCNPs emit visible light at 655 nm under excitation by near-infrared radiation (NIR, 980 nm). MB absorbs the emission from UCNPs to generate toxic singlet oxygen (1O2), which leads to the apoptosis of bacteria cells. Meanwhile, silver ions released from AgNCs destroy the bacteria membrane structure. Upon NIR irradiation at 980 nm for 10 min, 8.33 μg mL-1 nanohybrid results in a 100% killing rate for both Gram-positive S. aureus (+) and Gram-negative E. coli (-).
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zihan Cheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hui Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shangqing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
40
|
Wei G, Yang G, Wang Y, Jiang H, Fu Y, Yue G, Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020; 10:12241-12262. [PMID: 33204340 PMCID: PMC7667673 DOI: 10.7150/thno.52729] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
The development of nanomedicine is expected to provide an innovative direction for addressing challenges associated with multidrug-resistant (MDR) bacteria. In the past decades, although nanotechnology-based phototherapy has been developed for antimicrobial treatment since it rarely causes bacterial resistance, the clinical application of single-mode phototherapy has been limited due to poor tissue penetration of light sources. Therefore, combinatorial strategies are being developed. In this review, we first summarized the current phototherapy agents, which were classified into two functional categories: organic phototherapy agents (e.g., small molecule photosensitizers, small molecule photosensitizer-loaded nanoparticles and polymer-based photosensitizers) and inorganic phototherapy agents (e.g., carbo-based nanomaterials, metal-based nanomaterials, composite nanomaterials and quantum dots). Then the development of emerging phototherapy-based combinatorial strategies, including combination with chemotherapy, combination with chemodynamic therapy, combination with gas therapy, and multiple combination therapy, are presented and future directions are further discussed. The purpose of this review is to highlight the potential of phototherapy to deal with bacterial infections and to propose that the combination therapy strategy is an effective way to solve the challenges of single-mode phototherapy.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiyong Fu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yue
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|