1
|
Zhang D, Chen H, Zhang Y, Yang J, Chen Q, Wu J, Liu Y, Zhao C, Tang Y, Zheng J. Antifreezing hydrogels: from mechanisms and strategies to applications. Chem Soc Rev 2025. [PMID: 40395069 DOI: 10.1039/d4cs00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Antifreezing hydrogels have emerged as an innovative solution for maintaining functional performance and mechanical integrity in subzero environments, offering a robust alternative to traditional water-free antifreezing materials that often fail under wet and cold conditions. These water-rich hydrogels leverage their porous, crosslinked, polymeric networks, which serve as the structural basis for implementing two parallel strategies: the incorporation of antifreezing additives (peptides/proteins, salts, ionic liquids, and organics) and the meticulous engineering of polymer systems and network structures for manipulating the water-ice phase equilibrium to significantly enhance antifreezing properties. This review synthesizes recent findings to provide a fundamental overview of the important advancements in antifreezing hydrogels, focusing on their designs, mechanisms, performances, and functional applications. Various types of antifreezing hydrogels have been developed, utilizing strategies like the incorporation of antifreeze agents, use of strongly water-bound polymers, and design of highly crosslinked networks to illustrate different antifreezing mechanisms: freezing point depression, ice recrystallization inhibition, and network freezing inhibition. This review also explores the diverse functions of antifreezing hydrogels in biomedical devices, soft robotics, flexible electronics, food industry, and environmental engineering. Finally, this review concludes with future directions, emphasizing the potential of integrating machine learning and advanced molecular simulations into materials design. This strategic vision is aimed at promoting continuous innovation and progress in the rapidly evolving field of antifreezing hydrogels.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Hong Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jintao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Chao Zhao
- Deptartment of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
2
|
Zhang Y, Guo J, Wang H, Zou F, Song X, Guan F, Li M, Sun J, Li Z, Yao Q. Polylactic acid aerogel with antibacterial, early warning and heat preservation functions applied to fresh trays. Int J Biol Macromol 2025; 306:141470. [PMID: 40020846 DOI: 10.1016/j.ijbiomac.2025.141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Fresh trays could not provide efficient protection and detection to the fresh foods during the transportation and sale processes due to its less functions. To address these challenges, one type of multifunctional fresh tray with antibacterial and detection properties was fabricated by the combining of two types of functionalized polylactic acid (PLA) aerogels, PLA/carvacrol (PLA/CA) aerogel and PLA-red cabbage anthocyanin (PLA-RCA) aerogel. The PLA/CA aerogel prepared by in situ encapsulation strategy exhibits a strong antioxidant effect with the free radical clearance rate of 69.57 % at 12 h, and a significant inhibitory effect on Staphylococcus aureus and Escherichia coli due to the existence of CA. The PLA- RCA aerogel prepared via the solute self-assembly strategy demonstrates a detection property due to the existence of RCA. Meanwhile, the microfiber structure of PLA aerogel provided more reaction sites for RCA which results in a fast response to ammonia in 5 s. Therefore, the novel fresh tray could not only extend the shelf life of food but also monitor the status of food in real time. Overall, the preparation of the novel fresh tray by the functionalization of PLA aerogel can provide a feasible solution for the storage and detection of fresh food.
Collapse
Affiliation(s)
- Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| | - Hongye Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fangxin Zou
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| | - Xuecui Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Minghan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Wang H, Liu W, Huang J, Xiao T, Lei W, Gao F, Liu M. High Output Voltage Aqueous Supercapacitors by Water Deactivated Electrolyte over Wide Temperature Range. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500385. [PMID: 39965081 PMCID: PMC11984914 DOI: 10.1002/advs.202500385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Indexed: 02/20/2025]
Abstract
Confined by factors such as low operating voltage, poor temperature resistance, and instability at high voltage, the energy density of conventional symmetric aqueous supercapacitors is undesirable over a wide temperature range. It is still challenging to develop aqueous flexible supercapacitors (AFSCs) that can provide stable and high voltage output (>2.0 V) at extreme ambient temperatures. Here, a strategy for constructing AFSC with ultrahigh output voltages over a wide temperature range is proposed through the development of organohydrogel electrolytes (OHEs) with excellent water deactivation, which achieve a notable output voltage of 3.0 V, and unprecedented energy densities of 23.16 µWh cm-2 at -40 °C (beyond 25 °C), surpassing the performance of all previously reported symmetric supercapacitors with aqueous electrolytes. Theoretical calculations and experimental analyses show that OHEs can deactivate water to increase the output voltage limit of AFSCs by enhancing intermolecular interactions and regulating inter Helmholtz plane. Meanwhile, it also shows excellent flexibility and cycling stability (80.5% after 20 000 cycles at 25 °C and 97.0% after 50 000 cycles at -40 °C). More importantly, OHEs enable AFSCs switchable output voltages (from 2.5 to 3.0 V), making it possible to operate supercapacitors with high energy density and stability at low temperatures.
Collapse
Affiliation(s)
- Hongji Wang
- School of Environmental and School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoHebei066004China
| | - Wenpeng Liu
- School of Environmental and School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoHebei066004China
| | - Jin Huang
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191China
| | - Tianliang Xiao
- School of Environmental and School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoHebei066004China
| | - Wenwei Lei
- School of Environmental and School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoHebei066004China
| | - Faming Gao
- School of Environmental and School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoHebei066004China
| | - Mingjie Liu
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191China
| |
Collapse
|
4
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
5
|
Hasany M, Kohestanian M, Rezaei B, Keller SS, Mehrali M. Hygroscopic Nature of Lithium Ions: A Simple Key to Super Tough Atmosphere-Stable Hydrogel Electrolytes. ACS NANO 2024; 18:30512-30529. [PMID: 39363426 DOI: 10.1021/acsnano.4c08687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Gel electrolytes have emerged as a versatile solution to address numerous limitations associated with liquid electrolytes in electrical energy storage (EES) devices, in terms of safety, flexibility, and affordability. Aqueous gel electrolytes, in particular, exhibit exceptional features by offering one of the highest ion solvation capacities and ionic conductivities. The two main challenges with hydrogel electrolytes are their easy freezing at subzero temperatures and rapid dehydration under open conditions, leading to the failure of the EES device. In response, we present an uncomplicated and quick-to-make hydrogel electrolyte system offering impressive mechanical properties (205.5 kPa tensile strength, 2880 kJ/m3 toughness, and 3030% strain at the break), along with antifreezing and antiflammability attributes. Notably, the hydrogel electrolyte demonstrates high ionic conductivity and superior performance in supercapacitor cells over a wide range of temperatures (-40 to 80 °C) and under various deformations. The hydrogel electrolyte maintains its capabilities under open conditions over an extended period of time, even at 50 °C, showcased by powering a wristwatch. The atmospheric stability of the hydrogel electrolyte demonstrated in this study introduces promising prospects for the future of EES devices spanning from production to end-user consumption.
Collapse
Affiliation(s)
- Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mohammad Kohestanian
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Liu H, Zhang XF, Li M, Yao J. Attapulgite-Reinforced Cellulose Hydrogels with High Conductivity and Antifreezing Property for Flexible Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20986-20994. [PMID: 39321402 DOI: 10.1021/acs.langmuir.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Ionic conductive cellulose hydrogels are some of the most promising candidates for flexible sensors. However, it is difficult to simultaneously prepare cellulose hydrogels with high mechanical strength, good ionic conductivity, and antifreeze performance. In this work, a natural clay (attapulgite)-reinforced cellulose hydrogel was fabricated. Through a one-pot method, cellulose and attapulgite were dispersed in a concentrated ZnCl2 solution. The obtained hydrogel exhibited a dual network of hydrogen bonds and Zn2+-induced ionic interactions. Attapulgite serves as an inorganic filler that can regulate the hydrogen-bonding density among cellulose molecules and provides abundant channels for fast ion transport. By optimizing the attapulgite loading, a mechanically strong (compressive strength up to 1.10 MPa), tough (fracture energy up to 0.36 MJ m-3), highly ionic conductive (4.15 S m-1), and freezing-tolerant hydrogel was prepared. These hydrogels can be used for sensitive and stable human motion sensing, demonstrating their great potential for healthcare applications.
Collapse
Affiliation(s)
- Hu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjie Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Huang Y, Yu F, Yang X, Wang L, Lü W. Design and Realization of Visual and Contact-Type Fast Charging Power Source. Chemistry 2024; 30:e202402020. [PMID: 38981857 DOI: 10.1002/chem.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Charging power supplies with both fast and visualization functions have a wide range of applications in the information and new energy industries. In this paper, the visualized and contact-type fast charging power supply based on WO3 film and Zn sheet is presented, and the prototype devices are fabricated. Different with the charging method of conventional batteries, charging is achieved by a Zn sheet contacting with a WO3 film moistened with water, resulting in a rapid discoloration of WO3. Theoretical investigation indicates that the interaction between Zn sheet and water molecules is the primary cause of the color change in the WO3 film. The WO3 film completes the colouring state within 10 s in the presence of Zn sheet and water, and the open-circuit voltage of the device is 0.7 V, which can be used to drive various electronics by series-parallel connection. This research introduces a novel method to induce colouring of WO3 films and proposes a fast charging mode different from traditional power sources. It provides valuable insights for the future development of fast charging in the field of electrical energy.
Collapse
Affiliation(s)
- Yuxin Huang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China
| |
Collapse
|
8
|
Bhuyan MM, Jeong JH. Gels/Hydrogels in Different Devices/Instruments-A Review. Gels 2024; 10:548. [PMID: 39330150 PMCID: PMC11430987 DOI: 10.3390/gels10090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Owing to their physical and chemical properties and stimuli-responsive nature, gels and hydrogels play vital roles in diverse application fields. The three-dimensional polymeric network structure of hydrogels is considered an alternative to many materials, such as conductors, ordinary films, constituent components of machines and robots, etc. The most recent applications of gels are in different devices like sensors, actuators, flexible screens, touch panels, flexible storage, solar cells, batteries, and electronic skin. This review article addresses the devices where gels are used, the progress of research, the working mechanisms of hydrogels in those devices, and future prospects. Preparation methods are also important for obtaining a suitable hydrogel. This review discusses different methods of hydrogel preparation from the respective raw materials. Moreover, the mechanism by which gels act as a part of electronic devices is described.
Collapse
Affiliation(s)
- Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Xu Y, Cai F, Zhou Y, Tang J, Mao J, Wang W, Li Z, Zhou L, Feng Y, Xi K, Gu Y, Chen L. Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. SCIENCE ADVANCES 2024; 10:eado7249. [PMID: 39151007 PMCID: PMC11328908 DOI: 10.1126/sciadv.ado7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Ferroptosis, caused by disorders of iron metabolism, plays a critical role in various diseases, making the regulation of iron metabolism essential for tissue repair. In our analysis of degenerated intervertebral disc tissue, we observe a positive correlation between the concentration of extracellular iron ions (ex-iron) and the severity of ferroptosis in intervertebral disc degeneration (IVDD). Hence, inspired by magnets attracting metals, we combine polyether F127 diacrylate (FDA) with tannin (TA) to construct a magnetically attracting hydrogel (FDA-TA). This hydrogel demonstrates the capability to adsorb ex-iron and remodel the iron metabolism of cells. Furthermore, it exhibits good toughness and self-healing properties. Notably, it can activate the PI3K-AKT pathway to inhibit nuclear receptor coactivator 4-mediated ferritinophagy under ex-iron enrichment conditions. The curative effect and related mechanism are further confirmed in vivo. Consequently, on the basis of the pathological mechanism, a targeted hydrogel is designed to reshape iron metabolism, offering insights for tissue repair.
Collapse
Affiliation(s)
- Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yidi Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, P. R. China
| |
Collapse
|
10
|
Yadav P, Samanta K, Arya V, Biswas D, Kim HS, Bakli C, Jung HY, Ghosh D. A 2.5 V In-Plane Flexi-Pseudocapacitor with Unprecedented Energy and Cycling Efficiency for All-Weather Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400975. [PMID: 38618920 DOI: 10.1002/smll.202400975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Indexed: 04/16/2024]
Abstract
As electronic devices for aviation, space, and satellite applications become more sophisticated, built-in energy storage devices also require a wider temperature spectrum. Herein, an all-climate operational, energy and power-dense, flexible, in-plane symmetric pseudocapacitor is demonstrated with utmost operational safety and long cycle life. The device is constructed with interdigital-patterned laser-scribed carbon-supported electrodeposited V5O12·6H2O as a binder-free electrode and a novel high-voltage anti-freezing water-in-salt-hybrid electrolyte. The anti-freezing electrolyte can operate over a wide temperature range of -40-60 °C while offering a stable potential window of ≈2.5 V. The device undergoes rigorous testing under diverse environmental conditions, including rapid and regular temperature and mechanical transition over multiple cycles. Additionally, detailed theoretical simulation studies are performed to understand the interfacial interactions with the active material as well as the local behavior of the anti-freeze electrolyte at different temperatures. As a result, the all-weather pseudocapacitor at 1 A g-1 shows a high areal capacitance of 234.7 mF cm-2 at room temperature and maintains a high capacitance of 129.8 mF cm-2 even at -40 °C. Besides, the cell operates very reliably for over 80 950 cycles with a capacitance of 25.7 mF cm-2 at 10 A g-1 and exhibits excellent flexibility and bendability under different stress conditions.
Collapse
Affiliation(s)
- Prahlad Yadav
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Kanakapura Road, Bangalore, Karnataka, 562112, India
| | - Ketaki Samanta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vinay Arya
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Diptesh Biswas
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Hun-Seong Kim
- Department of Energy System Engineering, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, South Korea
| | - Chirodeep Bakli
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Hyun Young Jung
- Department of Energy System Engineering, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, South Korea
- Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, South Korea
| | - Debasis Ghosh
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Kanakapura Road, Bangalore, Karnataka, 562112, India
- Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, South Korea
| |
Collapse
|
11
|
Hassanisaadi M, Kennedy JF, Rabiei A, Riseh RS, Taheri A. Nature's coatings: Sodium alginate as a novel coating in safeguarding plants from frost damages. Int J Biol Macromol 2024; 267:131203. [PMID: 38554900 DOI: 10.1016/j.ijbiomac.2024.131203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Frost damage remains a significant challenge for agricultural practices worldwide, leading to substantial economic losses and food insecurity. Practically, traditional methods for frost management have proven ineffective and come with several drawbacks, such as energy consumption and limited efficacy. Hence, proposing an anti-freezing coating can be an innovative idea. The potential of sodium alginate (SA) to construct anti-freezing hydrogels has been explored in several sciences. SA hydrogels can form protective films around plants as a barrier against freezing temperatures and ice crystals on the plant's surface. Sodium alginate exhibits excellent water retention, enhancing plant hydration during freezing conditions. This coating can provide insulation, effectively shielding the plant from frost damage. The advantages of SA as a coating material, such as its biocompatibility, biodegradability, and non-toxic nature, are highlighted. Therefore, the proposed use of SA as an innovative coating material holds promise for safeguarding plants from frost damage. Following SA potential and frost's huge damage, the present review provides a comprehensive overview of the recent developments in SA-based anti-freezing hydrogels, their applications, and their potential in agriculture as anti-freezing coatings. However, further research and field trials are necessary to optimize the application methods and understand the long-term effects on productivity.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratory Ltd, WR15 8FF Tenbury Walls, United Kingdom.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran 771751735.
| | - Abdolhossein Taheri
- Department of plant protection, faculty of plant production, Gorgan university of Agricultural sciences and natural resources, Iran.
| |
Collapse
|
12
|
Zhang Y, Sun Y, Nan J, Yang F, Wang Z, Li Y, Wang C, Chu F, Liu Y, Wang C. In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All-Hydrogel Supercapacitors with Low-Temperature Adaptability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309900. [PMID: 38312091 DOI: 10.1002/smll.202309900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yue Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jingya Nan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fusheng Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Zihao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Yuxi Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Chuchu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
13
|
Wu Y, Zhang XF, Li M, Yu M, Yao J. Self-Healing and Wide Temperature-Tolerant Cellulose-Based Eutectogels for Reversible Humidity Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5288-5296. [PMID: 38417256 DOI: 10.1021/acs.langmuir.3c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
A kind of ionic conductive gel (also named eutectogel) is developed from an inorganic salt (ZnCl2)-based deep eutectic solvent (DES). The ternary DES consists of ZnCl2, acrylic acid, and water, and cotton linter cellulose is introduced into the DES system to tailor its mechanical and conductive properties. Enabled by the extensive hydrogen bonds and ion-dipole interactions, the obtained eutectogel displays superior ionic conductivity (0.33 S/m), high stretchability (up to 2050%), large tensile strength (1.82 MPa), and wide temperature tolerance (-40 to 60 °C). In particular, the water-induced coordination interactions can tune the strength of hydrogen/ionic bonds in the eutectogels, imparting them with appealing humidity sensing ability in complex and extreme conditions.
Collapse
Affiliation(s)
- Yufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjie Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjiao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Zheng W, Fan L, Meng Z, Zhou J, Ye D, Xu W, Xu J. Flexible quasi-solid-state supercapacitors for anti-freezing power sources based on polypyrrole@cation-grafted bacterial cellulose. Carbohydr Polym 2024; 324:121502. [PMID: 37985090 DOI: 10.1016/j.carbpol.2023.121502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/22/2023]
Abstract
Polypyrrole (PPy)/cellulose nanofiber (CNF) composites have been widely used in flexible energy storage devices because of their lightweight, inherent mechanical flexibility and large specific surface area. However, it is still a challenge to obtain PPy/CNF composite electrodes with high cycling stability. Herein, an electrostatic self-assembly strategy was adopted to deposit anion-doped PPy onto cationic poly(methacryloxyethyltrimethyl ammonium chloride)-grafted bacterial cellulose (BCD) nanofibers. The optimized PPy@BCD electrode demonstrated a high areal capacitance of 6208 mF cm-2 at a current density of 0.5 mA cm-2 and superior cycling stability (a capacitance retention of 100 % after 10,000 charge-discharge cycles at 10 mA cm-2). A quasi-solid-state anti-freezing flexible supercapacitor (AF-FSC) was designed by employing polyacrylamide organohydrogel electrolyte, yielding an areal capacitance of 2930.6 mF cm-2 at 1 mA cm-2 and a capacitance retention of 92.2 % after 1000 cycles at -20 °C. The present AF-FSC is expected to serve as a power source in real-life low-temperature applications.
Collapse
Affiliation(s)
- Wenfeng Zheng
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Lingling Fan
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Zhenghua Meng
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070 Wuhan, China
| | - Jiangang Zhou
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Dezhan Ye
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| | - Weilin Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Jie Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
15
|
Xiao S, Lao Y, Liu H, Li D, Wei Q, Li Z, Lu S. Highly stretchable anti-freeze hydrogel based on aloe polysaccharides with high ionic conductivity for multifunctional wearable sensors. Int J Biol Macromol 2024; 254:127931. [PMID: 37944728 DOI: 10.1016/j.ijbiomac.2023.127931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels have limitations such as non-degradability, loss of electrical conductivity at sub-zero temperatures, and single functionality, which limit their applicability as materials for wearable sensors. To overcome these limitations, this study proposes a bio-based hydrogel using aloe polysaccharides as the matrix and degradable polyvinyl alcohol as a reinforcing material. The hydrogel was crosslinked with borax in a glycerol-water binary solvent system, producing good toughness and compressive strength. Furthermore, the hydrogel was developed as a sensor that could detect both small and large deformations with a low detection limit of 1 % and high stretchability of up to 300 %. Moreover, the sensor exhibited excellent frost resistance at temperatures above -50 °C, and the gauge factor of the hydrogel was 2.86 at 20 °C and 2.12 at -20 °C. The Aloe-polysaccharide-based conductive hydrogels also functioned effectively as a wearable sensor; it detected a wide range of humidities (0-98 % relative humidity) and exhibited fast response and recovery times (1.1 and 0.9 s) while detecting normal human breathing. The polysaccharide hydrogel was also temperature sensitive (1.737 % °C-1) and allowed for information sensing during handwriting.
Collapse
Affiliation(s)
- Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
16
|
Liu J, Zhao W, Li J, Li C, Xu S, Sun Y, Ma Z, Zhao H, Ren L. Multimodal and flexible hydrogel-based sensors for respiratory monitoring and posture recognition. Biosens Bioelectron 2024; 243:115773. [PMID: 37879270 DOI: 10.1016/j.bios.2023.115773] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
The accurate monitoring of respiratory events and human motion states holds paramount importance in the realm of health surveillance and disease prognostication. An exquisitely precise, multifaceted, portable, and environmentally resilient sensor designed for health monitoring would undeniably be of utmost desirability, despite its persisting as a formidable challenge. Here, we propose a breath monitoring and posture recognition system that utilizes hydrogel electrolytes based on polyvinyl alcohol, sodium alginate, and starch, suitable for supercapacitors and multimodal wearable sensors. The multimodal smart sensors can independently detect mechanical and thermal changes through the output signals of capacitance and resistance, respectively. Moreover, we have cultivated an artificial neural network to achieve a finger-pressing posture recognition accuracy of up to 99.259%. Our hydrogel sensors have also been successfully employed in the diagnosis of obstructive sleep apnea syndrome. The flexible electronic device derived from this study exhibit a plethora of functionalities, thereby affording a novel perspective for the design and fabrication of advanced flexible electronic contrivances that find applications across diverse domains such as medicine and virtual reality.
Collapse
Affiliation(s)
- Jize Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Wei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Jiakai Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Chaofan Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Shuting Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yang Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhichao Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| | - Luquan Ren
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| |
Collapse
|
17
|
Highly stretchable and conductive hybrid gel polymer electrolytes enabled by a dual cross-linking approach. Macromol Res 2023. [DOI: 10.1007/s13233-023-00120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
18
|
Deng Z, Liu Y, Dai Z. Gel Electrolytes for Electrochemical Actuators and Sensors Applications. Chem Asian J 2023; 18:e202201160. [PMID: 36537994 DOI: 10.1002/asia.202201160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Advanced functional materials, especially gel electrolytes, play a very important role in the preparation of electrochemical actuators and sensors, and have received extensive attention. In this review, a general classification of gel electrolytes is firstly introduced according to the type of medium. Then, the research progress of gel electrolytes with different types used to fabricate electrochemical actuators is summarized. Next, the current research progress of gel electrolytes used in different types of electrochemical sensors, including strain sensors, stress sensors, and gas sensors is introduced. Finally, the future challenges and development prospects of electrochemical actuators and sensors based on gel electrolytes are discussed. The huge application prospects of gel electrolyte are worthy of further focusing by researchers, which will have an indispensable impact on human life and development.
Collapse
Affiliation(s)
- Zhenzhen Deng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
19
|
Hasan K, Bashir S, Subramaniam R, Kasi R, Kamran K, Iqbal J, Algarni H, Al-Sehemi AG, Wageh S, Pershaanaa M, Kamarulazam F. Poly (Vinyl Alcohol)/Agar Hydrogel Electrolytes Based Flexible All-in-One Supercapacitors with Conducting Polyaniline/Polypyrrole Electrodes. Polymers (Basel) 2022; 14:4784. [PMID: 36365772 PMCID: PMC9658804 DOI: 10.3390/polym14214784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 04/04/2024] Open
Abstract
The major components of supercapacitor are electrodes and electrolytes which are fabricated using various materials and methods. Hydrogel is one such material that is used in supercapacitors as electrodes and electrolytes or both. Hydrogels are usually described as a soft and porous network of polymer materials that can swell in water because of the hydrophilic nature of its polymer chains, compriseng a 3D structure. It is well known that supercapacitors possess high-power density but low energy density. For enhancing energy density of these electrochemical cells and a boost in its electrochemical performance and specific capacity, binder free conducting polymer hydrogel electrodes have gained immense attention, especially polyaniline (PANI) and polypyrrole (PPy). Therefore, in this work, chemically crosslinked PVA/Agar hydrogel electrolytes have been prepared and employed. Agar has been added in PVA since it is environmentally friendly, biodegradable, and cost-effective natural polymer. Subsequently, the binder free polyaniline/polypyrrole electrodes were grown on the PVA/Agar hydrogel electrolytes to fabricate all-in-one flexible hydrogels. The synthesized hydrogels were characterized using X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) analysis, Field emission scanning electron microscope (FESEM) and mechanical studies. Then, the all-in-one flexible supercapacitors were fabricated using the hydrogels. The electrochemical studies such cyclic voltammetry (CV), galvanic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) studies. The fabricated all-in-one lamination free supercapacitors showed promising results and by comparing all four samples, PAP2 where 5 mL of PVA was used in combination with 3 mL of Agar and 5 mL of PANI and PPy each, exhibited the highest areal capacitance of 750.13 mF/cm2, energy density of 103.02 μWh/cm2, and 497.22 μW/cm2 power density. The cyclic stability study revealed the 149% capacity retention after 15,000 cycles.
Collapse
Affiliation(s)
- Khadija Hasan
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
| | - Ramesh Subramaniam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ramesh Kasi
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kashif Kamran
- Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M. Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
20
|
Long Y, Wang Z, Xu F, Jiang B, Xiao J, Yang J, Wang ZL, Hu W. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203956. [PMID: 36228096 DOI: 10.1002/smll.202203956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti3 C2 Tx nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti3 C2 Tx nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti3 C2 Tx nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.
Collapse
Affiliation(s)
- Yong Long
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Junfeng Xiao
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
21
|
Wang Y, Wang Y, Yan L. Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12189-12197. [PMID: 36174195 DOI: 10.1021/acs.langmuir.2c01770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A high-strength PVA-based eutectogel has been synthesized by a strategy of solvent-induced microphase separation. Here, PVA was dissolved in water, and green solvent DES (choline chloride/glycerol) was introduced to induce PVA to undergo microphase separation, leading to poorly solvated domains and highly solvated domains. In poorly solvated domains, the PVA chains were folded and crystallized, and the formed crystalline domains served as physical cross-linkers. Such cross-linking structures endowed the eutectogels with remarkable mechanical properties, showing strength in tension reaching up to 1.2 MPa and elongation at a break of 405%, with rupture toughness of 3.23 MJ m-3. Meanwhile, the as-obtained eutectogel possessed reprocessability and could be recycled through high-temperature dissolution and recasting. In addition, the eutectogel also exhibited excellent frost resistance, and its ionic conductivity could still reach 0.62 mS cm-1 at -40 °C. In addition, the eutectogel can maintain a stable output signal during a multiple strain cycle, showing the potential application in the flexible sensor. The eutectogel is capable of detecting the bending movement of joints and identifying the different bending angles of fingers, showing a certain applied potential in motion detection of the human body.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical Physics, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026Anhui, P.R. China
| | - Yu Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026Anhui, P.R. China
| | - Lifeng Yan
- Department of Chemical Physics, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026Anhui, P.R. China
| |
Collapse
|
22
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
23
|
Peng K, Zhang J, Yang J, Lin L, Gan Q, Yang Z, Chen Y, Feng C. Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39404-39419. [PMID: 35981091 DOI: 10.1021/acsami.2c11973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels (CHs) are ideal electrolyte materials for the preparation of flexible supercapacitors (FSCs) due to their excellent electrochemical properties, mechanical properties, and deformation restorability. However, most of the reported CHs are prepared by the chemical crosslinking of synthetic polymers and thus usually display the disadvantages of poor self-healing abilities and nonadaptability at environmental temperatures, which greatly limits their application. To overcome these problems, in the present work, we constructed a sodium alginate-borax/gelatin double-network conductive hydrogel (CH) by a dynamic crosslinking between sodium alginate (SA) and borax via borate bonds and hydrogen bonding between amino acids in gelatin and SA chains. The CH displays an excellent elongation of 305.7% and fast self-healing behavior in 60 s. Furthermore, a phase-change material (PCM), Na2SO4·10H2O, was introduced into the CH, which, combined with the nucleation effect of borax, improved the ionic conductivity and temperature adaptability of the CH. The flexible supercapacitor (FSC) assembled with the obtained CH as the electrolyte exhibits a high specific capacitance of 185.3 F·g-1 at a current density of 0.25 A·g-1 and good stability with 84% capacitance retention after 10 000 cycles and excellent temperature tolerance with a resistance variation of 2.11 Ω in the temperature range of -20-60 °C. This green CH shows great application potential as an electrolyte for FSCs, and the preparation method can be potentially expanded to the fabrication of self-repairing FSCs with good temperature adaptabilities.
Collapse
Affiliation(s)
- Kelin Peng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Jinghua Zhang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jueying Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lizhi Lin
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiang Gan
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziming Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, P. R. China
| | - Yu Chen
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Changgen Feng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| |
Collapse
|
24
|
Han GY, Park JY, Lee TH, Yi MB, Kim HJ. Highly Resilient Dual-Crosslinked Hydrogel Adhesives Based on a Dopamine-Modified Crosslinker. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36304-36314. [PMID: 35917444 DOI: 10.1021/acsami.2c04791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are promising material for wound dressing and tissue engineering. However, owing to their low tissue adhesion in a moist environment and lack of flexibility, hydrogels are still not widely applied in movable parts, such as joints. Herein, we report a dual-crosslinked hydrogel adhesive using a dopamine-modified and acrylate-terminated crosslinker, tri(ethylene glycol) diacrylate-dopamine crosslinker (TDC). The covalent crosslinking was formed by photopolymerization between acrylic acid (AA) and TDC, and the noncovalent crosslinking was formed by intermolecular dopamine-dopamine and dopamine-AA interactions. Our resultant hydrogel demonstrated strong tissue adhesion in a moist environment (approximately 71 kPa) and high mechanical resilience (approximately 94%) with immediate recovery at a 200% strain rate. Moreover, it accelerated wound healing upon dressing the wound site properly. Our study provides the potential for advanced polymer synthesis by introducing a functional crosslinking agent.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Hyung Lee
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Mo-Beom Yi
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Zheng H, Guan R, Liu Q, Ou K, Li DS, Fang J, Fu Q, Sun Y. A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0°C. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
An adhesive, anti-freezing, and environment stable zwitterionic organohydrogel for flexible all-solid-state supercapacitor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Chen M, Zhang J, Zhu X, Liu Z, Huang J, Jiang X, Fu F, Lin Z, Dong Y. Hybridizing Silver Nanoparticles in Hydrogel for High-Performance Flexible SERS Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26216-26224. [PMID: 35605108 DOI: 10.1021/acsami.2c04087] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ideal surface-enhanced Raman scattering (SERS) substrate should have high sensitivity, long-term stability, excellent repeatability, and strong anti-interference. In the present work, single-layer carbon-based dot (CD)-capped Ag nanoparticle aggregates (a-AgNPs/CDs) with high SERS activity are synthesized and hybridized with a hydrogel to prepare novel hydrogel SERS chips. Benefiting from the unique properties of a-AgNPs/CDs and the hydrogel, the constructed hydrogel SERS chips show excellent performances. Taking crystal violet detection as an example, the hydrogel SERS chips show a detection limit of around 1 × 10-16 mol/L (high sensitivity), maintain above 96.40% of SERS activity even after 14 weeks of storage (long-term stability), and display point-to-point relative standard deviation (RSD) in one chip as low as 1.43% (outstanding repeatability) and RSD in different chips as low as 2.75% (excellent reproducibility). Furthermore, the self-extraction effect of the hydrogel enables the flexible hydrogel SERS chips to be used for analyzing various real samples including soybean milk, juices, and fruits without any complex pretreatment. For instance, the hydrogel SERS chips are able to detect trace thiram and 2-(4-thiazolyl)benzimidazole with the detection limits of 1 and 5 ppb in liquid samples, respectively, and of 1 and 2.5 ng/cm2 on the peel of fruits, respectively. The self-extraction functional flexible SERS chips offer a reliable and convenient platform for the quick detection and on-site monitoring of chemical contaminants.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Jiaxin Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Xiajun Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Zhihong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Jianli Huang
- Institute of Grain and Oil Quality Supervision and Test of Fujian, Fuzhou 350012, China
| | - Xianchai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350025, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| |
Collapse
|
28
|
Ma Y, Liu K, Lao L, Li X, Zhang Z, Lu S, Li Y, Li Z. A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Int J Biol Macromol 2022; 205:491-499. [PMID: 35182565 DOI: 10.1016/j.ijbiomac.2022.02.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
Abstract
Self-healing conductive hydrogels have attracted widespread attention as a new generation of smart wearable devices and human motion monitoring sensors. To improve the biocompatibility and degradability of such strain sensors, we report a sensor with a sandwich structure based on a biomucopolysaccharide hydrogel. The sensor was constructed with a stretchable self-healing hydrogel composed of polyvinyl alcohol (PVA), okra polysaccharide (OP), borax, and a conductive layer of silver nanowires. The obtained OP/PVA/borax hydrogel exhibited excellent stretchability (~1073.7%) and self-healing ability (93.6% within 5 min), and the resultant hydrogel-based strain sensor demonstrated high sensitivity (gauge factor = 6.34), short response time (~20 ms), and good working stability. This study provides innovative ideas for the development of biopolysaccharide hydrogels for applications in the field of sensors.
Collapse
Affiliation(s)
- Yinghui Ma
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kuo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Li Lao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xing Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zuocai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
29
|
Hasan MM, Islam T, Shah SS, Awal A, Aziz MA, Ahammad AJS. Recent Advances in Carbon and Metal Based Supramolecular Technology for Supercapacitor Applications. CHEM REC 2022; 22:e202200041. [DOI: 10.1002/tcr.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Md. Mahedi Hasan
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Tamanna Islam
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Abdul Awal
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- K.A.CARE Energy Research & Innovation Center King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
30
|
A stretchable and self-healable conductive hydrogels based on gelation/polyacrylamide/polypyrrole for all-in-one flexible supercapacitors with high capacitance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Tang C, Li M, Du J, Wang Y, Zhang Y, Wang G, Shi X, Li Y, Liu J, Lian C, Li L. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. J Colloid Interface Sci 2022; 608:1162-1172. [PMID: 34735852 DOI: 10.1016/j.jcis.2021.10.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Increasing the electrochemical stability window and working temperature range of supercapacitor aqueous electrolyte is the major task in order to advance aqueous electrolyte-based supercapacitors. Here, a supramolecular induced new electrolyte of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in dimethyl sulfoxide (DMSO) and water co-solvent system is proposed. Adjusting the coordination structure among LiTFSI, DMSO, and water in the electrolyte via supramolecular interactions results in its high ionic conductivity, low viscosity, wide electrochemical stability window, and large working temperature range. The new electrolyte-based supercapacitors can work in 2.40 V working potential and 130 °C working-temperature range from -40 to 90 °C. The devices exhibit good electrochemical performances, especially the energy density over 21 Wh kg-1, which is much higher than that with traditional aqueous electrolytes (<10 Wh kg-1). The work paves a way to develop high-performance aqueous electrolytes for supercapacitors.
Collapse
Affiliation(s)
- Cheng Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Manni Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianglong Du
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaling Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Guolong Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaowei Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yingbo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Jiamei Liu
- Instrument Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
32
|
Ye S, Ma W, Shao W, Ejeromedoghene O, Fu G, Kang M. Gradient dynamic cross-linked photochromic multifunctional polyelectrolyte hydrogels for visual display and information storage application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Thibodeau J, Ignaszak A. A Flexible Ionic Polymer for “Soft Machines” – Where is the Low Temperature Limit? ChemElectroChem 2022. [DOI: 10.1002/celc.202100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jake Thibodeau
- Department of Chemistry University of New Brunswick 30 Dineen Drive Fredericton NB, E3B5 A3 Canada
| | - Anna Ignaszak
- Department of Chemistry University of New Brunswick 30 Dineen Drive Fredericton NB, E3B5 A3 Canada
| |
Collapse
|
34
|
Zhou H, Liu Y, Ren M, Zhai HJ. Mechanically exfoliated graphite paper with layered microstructures for enhancing flexible electrochemical energy storage. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01601f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work fabricates mechanically exfoliated graphite paper with layered microstructures, which not only ensures the high flexibility of the resulting electrochemical capacitor, but substantially boosts its electrochemical properties.
Collapse
Affiliation(s)
- Haihan Zhou
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuqin Liu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Mengyao Ren
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hua-Jin Zhai
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
35
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
36
|
Abstract
Hydrogels have three-dimensional network structures, high water content, good flexibility, biocompatibility, and stimulation response, which have provided a unique role in many fields such as industry, agriculture, and medical treatment. Poly(vinyl alcohol) PVA hydrogel is one of the oldest composite hydrogels. It has been extensively explored due to its chemical stability, nontoxic, good biocompatibility, biological aging resistance, high water-absorbing capacity, and easy processing. PVA-based hydrogels have been widely investigated in drug carriers, articular cartilage, wound dressings, tissue engineering, and other intelligent materials, such as self-healing and shape-memory materials, supercapacitors, sensors, and other fields. In this paper, the discovery, development, preparation, modification methods, and applications of PVA functionalized hydrogels are reviewed, and their potential applications and future research trends are also prospected.
Collapse
|
37
|
Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Carbohydr Polym 2021; 274:118667. [PMID: 34702485 DOI: 10.1016/j.carbpol.2021.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023]
Abstract
A self-charging power system composed of cellulose organohydrogel based supercapacitor and triboelectric nanogenerator is constructed in the present work. Cellulose organohydrogels with flexibility, optical transparency, conductivity and excellent low temperature tolerance are fabricated via a dissolution and regeneration process. The optical transmittance, elongation at break, and conductivity of the cellulose organohydrogel reach 93%, 242%, and 1.92 S/m, as well as excellent anti-freezing property down to -54.3 °C, potential as flexible conductive device in harsh conditions. When demonstrated as energy storage device, the cellulose organohydrogel based supercapacitor demonstrates excellent supercapacitor performances, durability against deformation and resistance to low temperature. When demonstrated as energy harvesting device, the cellulose organohydrogel based triboelectric nanogenerator displays stability, and resistance to both low temperature and a large number of operation cycles. As the cellulose based triboelectric nanogenerator is integrated with cellulose based supercapacitor, a flexible and anti-freezing self-charging power system is built, capable of driving miniaturized electronics, demonstrating great potential as wearable power system in harsh conditions.
Collapse
|
38
|
Zhang Q, Hou X, Liu X, Xie X, Duan L, Lü W, Gao G. Nucleotide-Tackified Organohydrogel Electrolyte for Environmentally Self-Adaptive Flexible Supercapacitor with Robust Electrolyte/Electrode Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103091. [PMID: 34643034 DOI: 10.1002/smll.202103091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Hydrogel electrolytes have attracted enormous attention in flexible and safe supercapacitors. However, the interfacial contact problem between hydrogel electrolyte and electrodes, and the environmental instability are the key factors restricting the development of hydrogel-based supercapacitors. Here, a nucleotide-tackified adhesive organohydrogel electrolyte is successfully constructed and exhibits freezing resistance and water-holding ability based on the water/glycerol binary solvent system. Adenosine monophosphate enables the organohydrogels to possess outstanding adhesion and mechanical robustness. The robust adhesion can ensure close contact between the organohydrogel electrolyte and electrodes for constructing an all-in-one supercapacitor with low interfacial contact resistance. Impressively, the integrated organohydrogel-based supercapacitors display an areal specific capacitance of 163.6 mF cm-2 . Besides, the supercapacitors feature prominent environmental stability with capacitance retention of 90.6% after 5000 charging/discharging cycles at -20 °C. Furthermore, based on the strong interfacial adhesion, the supercapacitors present excellent electrochemical stability without delamination/displacement between electrolyte and electrodes even under severe deformations such as bending and twisting. It is anticipated that this work will provide an encouraging way for developing flexible energy storage devices with electrochemical stability and environmental adaptability.
Collapse
Affiliation(s)
- Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xulin Hou
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xuan Xie
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
39
|
Ruano G, Molina BG, Torras J, Alemán C. Free-Standing, Flexible Nanofeatured Polymeric Films Prepared by Spin-Coating and Anodic Polymerization as Electrodes for Supercapacitors. Molecules 2021; 26:4345. [PMID: 34299621 PMCID: PMC8303661 DOI: 10.3390/molecules26144345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.
Collapse
Affiliation(s)
| | - Brenda G. Molina
- Departament d’Enginyeria Química, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain; (G.R.); (J.T.)
| | | | - Carlos Alemán
- Departament d’Enginyeria Química, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain; (G.R.); (J.T.)
| |
Collapse
|
40
|
Zhang B, Zhang X, Wan K, Zhu J, Xu J, Zhang C, Liu T. Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. RESEARCH 2021; 2021:9761625. [PMID: 33997787 PMCID: PMC8067885 DOI: 10.34133/2021/9761625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
The construction of ionic conductive hydrogels with high transparency, excellent mechanical robustness, high toughness, and rapid self-recovery is highly desired yet challenging. Herein, a hydrogen-bonding network densification strategy is presented for preparing a highly stretchable and transparent poly(ionic liquid) hydrogel (PAM-r-MVIC) from the perspective of random copolymerization of 1-methyl-3-(4-vinylbenzyl) imidazolium chloride and acrylamide in water. Ascribing to the formation of a dense hydrogen-bonding network, the resultant PAM-r-MVIC exhibited an intrinsically high stretchability (>1000%) and compressibility (90%), fast self-recovery with high toughness (2950 kJ m−3), and excellent fatigue resistance with no deviation for 100 cycles. Dissipative particle dynamics simulations revealed that the orientation of hydrogen bonds along the stretching direction boosted mechanical strength and toughness, which were further proved by the restriction of molecular chain movements ascribing to the formation of a dense hydrogen-bonding network from mean square displacement calculations. Combining with high ionic conductivity over a wide temperature range and autonomous adhesion on various surfaces with tailored adhesive strength, the PAM-r-MVIC can readily work as a highly stretchable and healable ionic conductor for a capacitive/resistive bimodal sensor with self-adhesion, high sensitivity, excellent linearity, and great durability. This study might provide a new path of designing and fabricating ionic conductive hydrogels with high mechanical elasticity, high toughness, and excellent fatigue resilience for skin-inspired ionic sensors in detecting complex human motions.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jixin Zhu
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Jingsan Xu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Yu M, Ji X, Ran F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydr Polym 2021; 255:117346. [DOI: 10.1016/j.carbpol.2020.117346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
|
42
|
Li G, Yang H, Zuo D, Zhang H. Performance enhancement of gel polymer electrolytes using sulfonated poly(ether ether ketone) for supercapacitors. POLYM INT 2021. [DOI: 10.1002/pi.6182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guoqiang Li
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - He Yang
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Danying Zuo
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| | - Hongwei Zhang
- College of Materials Science and Engineering Wuhan Textile University Wuhan China
| |
Collapse
|
43
|
Li Y, Liu X, Gong Q, Xia Z, Yang Y, Chen C, Qian C. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors. Int J Biol Macromol 2021; 172:41-54. [PMID: 33444652 DOI: 10.1016/j.ijbiomac.2021.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
A series of multifunctional conductive hydrogels (denoted as SA-B-DAPPy) is developed by combining sodium alginate (SA) and dopamine functionalized polypyrrole (DAPPy) nanofibers with borax as a cross-linking agent. By modulation of the DAPPy weight ratio to 3.5 wt%, the conductivity of the hydrogel can reach a high value of 1.33 ± 0.012 S/m. Both borate interactions and hydrogen bonds within hydrogel frameworks can account for the satisfactory stretchability (more than 800%) and instantaneous self-healing ability. More significantly, the SA-B-DAPPy hydorgels can be easily fabricated as electrode component in the symmetric supercapacitor with SA-B-DAPPy//SA-B//SA-B-DAPPy configuration. Due to the self-healing of the electrode/electrolyte interface, the obtained all-in-one device can deliver superior areal specific capacitance of 587 mF/cm2 at current density of 1.0 mA/cm2, high energy density of 52.18 μWh/cm2 at power density of 800 μW/cm2, good capacitance retention of 80% after 2000 cycles, as well as integration characteristics. Furthermore, on account of high conductivity, a thin SA-B-DAPPy hydrogel film can be fabricated into the motion sensor to detect and distinguish various human movements. The sensor exhibits high gauge factor (GF) up to 10.23, and stable, repeatable response signals, which permit supersensitive for monitoring large-scale joints motions and subtle muscle movements.
Collapse
Affiliation(s)
- Yueqin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaohui Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Zongbiao Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Chen
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Changhao Qian
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|