1
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
2
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
4
|
Kim DM, Park JS, Jung SW, Yeom J, Yoo SM. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3191. [PMID: 34064431 PMCID: PMC8125509 DOI: 10.3390/s21093191] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules. Moreover, we also provide recent examples of sensing strategies based on diverse nanostructure platforms, in addition to their advantages and limitations. Finally, this review discusses potential strategies for the development of biosensors with enhanced sensing performance.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| |
Collapse
|
5
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|