1
|
Liu X, Lian H, Zhao L, Qin Z, Xiao T, Jiang X, Guan T, Wang S, Müller-Buschbaum P, Dong Q. Engineering Conjugated Bridges in TPE-BT-Based Donor-Acceptor Molecules for Optimized Resistive Random Access Memory. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28459-28471. [PMID: 40314607 DOI: 10.1021/acsami.5c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Four donor-acceptor (D-A) type organic small molecules, namely, 4,7-bis(4-(1,2,2-triphenylvinyl)phenyl)benzo[c][1,2,5]thiadiazole(TPE-BT), 4,7-bis((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzo[c][1,2,5]thiadiazole(TPE-ynl-BT), 4,7-bis(5-(4-(1,2,2-triphenylvinyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TPE-Th-BT), and 4,7-bis((5-(4-(1,2,2-triphenylvinyl)phenyl)thiophen-2yl)ethynyl)benzo[c][1,2,5]thiadiazole(TPE-Th-ynl-BT), each incorporating unique conjugated bridges, are designed, synthesized, and integrated into resistive random access memory (RRAM) devices. Current-voltage (I-V) measurements indicate that the TPE-BT, TPE-ynl-BT and TPE-Th-BT based devices exhibit write-once-read-many-times (WORM) characteristics, while TPE-Th-ynl-BT based devices show a stable flash-type switching behavior. In comparison to TPE-BT, the memory devices constructed with TPE-ynl-BT, TPE-Th-BT and TPE-Th-ynl-BT, which include additional conjugated bridges, exhibit nonvolatile memory capabilities with reduced threshold voltages, higher ION/IOFF (104:1), enhanced stability, and improved reproducibility. The photophysical, electrochemical analyses, and X-ray diffraction (XRD) results reveal that incorporating conjugated bridges within molecular structures can enhance data storage performance while reducing power consumption. Our findings demonstrate that these conjugated bridges play a crucial role in optimizing electrical memory characteristics and resistive switching behavior. Moreover, the device fabricated with TPE-Th-ynl-BT is effectively applied to logic gate circuits and American Standard Code for Information Interchange (ASCII) art function, highlighting its promising potential as a smart sensor within artificial intelligence (AI) networks.
Collapse
Affiliation(s)
- Xinwei Liu
- School of Mechanical & Electronic Engineering and Automation, Shanghai University, No.99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Hong Lian
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, No.149 Yanchang Road, Jingan District, Shanghai 200072, China
| | - Liang Zhao
- MOE Key Laboratory of InterfaceScience and Engineering in Advanced Materials, Taiyuan University of Technology, No.79 Yingze West Street, Taiyuan 030024, China
| | - Zhitao Qin
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, No.149 Yanchang Road, Jingan District, Shanghai 200072, China
| | - Tianxiao Xiao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Kowloon 999077, Hong Kong, China
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xinyu Jiang
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Tianfu Guan
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Shuanglong Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Kowloon 999077, Hong Kong, China
| | - Peter Müller-Buschbaum
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Qingchen Dong
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, No.149 Yanchang Road, Jingan District, Shanghai 200072, China
| |
Collapse
|
2
|
Malik P, Naskar S, Sengupta D, Mandal D. Controlled Molecular Orientation through Intercalation in PVDF Thin Films: Exhibiting Ultralong Retention and Improved Leakage Current. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8400-8408. [PMID: 38598711 DOI: 10.1021/acs.langmuir.3c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Ferroelectric switching and retention performance of poly(vinylidene fluoride) (PVDF) thin films improve by the incorporation of unmodified smectite montmorillonite (MMT) clay nanodielectric. In the present study, an intercalated PVDF (clay/PVDF) thin film with edge-on β-crystallite is fabricated via a heat-controlled spin coating (HCSC) technique. This provides an efficient and simple way to fabricate the edge-on oriented crystallite lamellae with an electroactive β-phase, facilitating nanoscale ferroelectric switching at a lower voltage compared to the face-on orientation. Here, we demonstrate the polarization retention for periods longer than 20 days (∼480 h, i.e., 1.8 × 106 s), with no degradation in switched nanoscale domains. In addition, by maintaining the relatively high dielectric constant, the incorporation of nanoclay effectively lowers the leakage current by 102 factors. The obtained memory window in the edge-on orientation is 7 V, approximately twice the memory window obtained in the face-on orientation. In short, our findings provide a simple and promising route to fabricate edge-on oriented PVDF thin films, with ultralong retention, high dielectric constant, and improved leakage current.
Collapse
Affiliation(s)
- Pinki Malik
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
3
|
Liu S, He Z, Zhang B, Zhong X, Guo B, Chen W, Duan H, Tong Y, He H, Chen Y, Liu G. Approaching the Zero-Power Operating Limit in a Self-Coordinated Organic Protonic Synapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305075. [PMID: 37870184 DOI: 10.1002/advs.202305075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
High-performance artificial synapse with nonvolatile memory and low power consumption is a perfect candidate for brainoid intelligence. Unfortunately, due to the energy barrier paradox between ultra-low power and nonvolatile modulation of device conductances, it is still a challenge at the moment to construct such ideal synapses. Herein, a proton-reservoir type 4,4',4″,4'''-(Porphine-5,10,15,20-tetrayl) tetrakis (benzenesulfonic acid) (TPPS) molecule and fabricated organic protonic memristors with device width of 10 µm to 100 nm is synthesized. The occurrence of sequential proton migration and interfacial self-coordinated doping will introduce new energy levels into the molecular bandgap, resulting in effective and nonvolatile modulation of device conductance over 64 continuous states with retention exceeding 30 min. The power consumptions of modulating and reading the device conductance approach the zero-power operating limits, which range from 16.25 pW to 2.06 nW and 6.5 fW to 0.83 pW, respectively. Finally, a robust artificial synapse is successfully demonstrated, showing spiking-rate-dependent plasticity (SRDP) and spiking-timing-dependent plasticity (STDP) characteristics with ultra-low power of 0.66 to 0.82 pW, as well as 100 long-term depression (LTD)/potentiation (LTP) cycles with 0.14%/0.30% weight variations.
Collapse
Affiliation(s)
- Shuzhi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolong Zhong
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingjie Guo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongxiao Duan
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Tong
- Suzhou Laboratory, Suzhou, 215000, China
| | - Haidong He
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Yu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Li B, Zhang S, Xu L, Su Q, Du B. Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory. Polymers (Basel) 2023; 15:4374. [PMID: 38006098 PMCID: PMC10675020 DOI: 10.3390/polym15224374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Facing the era of information explosion and the advent of artificial intelligence, there is a growing demand for information technologies with huge storage capacity and efficient computer processing. However, traditional silicon-based storage and computing technology will reach their limits and cannot meet the post-Moore information storage requirements of ultrasmall size, ultrahigh density, flexibility, biocompatibility, and recyclability. As a response to these concerns, polymer-based resistive memory materials have emerged as promising candidates for next-generation information storage and neuromorphic computing applications, with the advantages of easy molecular design, volatile and non-volatile storage, flexibility, and facile fabrication. Herein, we first summarize the memory device structures, memory effects, and memory mechanisms of polymers. Then, the recent advances in polymer resistive switching materials, including single-component polymers, polymer mixtures, 2D covalent polymers, and biomacromolecules for resistive memory devices, are highlighted. Finally, the challenges and future prospects of polymer memory materials and devices are discussed. Advances in polymer-based memristors will open new avenues in the design and integration of high-performance switching devices and facilitate their application in future information technology.
Collapse
Affiliation(s)
- Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
- School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| | - Shiyang Zhang
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Lan Xu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Qiong Su
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Bin Du
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
5
|
Lee S, Kim S, Yoo H. Contribution of Polymers to Electronic Memory Devices and Applications. Polymers (Basel) 2021; 13:3774. [PMID: 34771332 PMCID: PMC8588209 DOI: 10.3390/polym13213774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Electronic memory devices, such as memristors, charge trap memory, and floating-gate memory, have been developed over the last decade. The use of polymers in electronic memory devices enables new opportunities, including easy-to-fabricate processes, mechanical flexibility, and neuromorphic applications. This review revisits recent efforts on polymer-based electronic memory developments. The versatile contributions of polymers for emerging memory devices are classified, providing a timely overview of such unconventional functionalities with a strong emphasis on the merits of polymer utilization. Furthermore, this review discusses the opportunities and challenges of polymer-based memory devices with respect to their device performance and stability for practical applications.
Collapse
Affiliation(s)
| | | | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 1342, Korea; (S.L.); (S.K.)
| |
Collapse
|
6
|
Zhou PK, Zong LL, Song KY, Yang ZC, Li HH, Chen ZR. Embedding Azobenzol-Decorated Tetraphenylethylene into the Polymer Matrix to Implement a Ternary Memory Device with High Working Temperature/Humidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50350-50357. [PMID: 34647456 DOI: 10.1021/acsami.1c14686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new high-density memories that can work in harsh environments such as high temperature and humidity will be significant for some special occasions such as oil and geothermal industries. Herein, a facial strategy for implementing a ternary memory device with high working temperature/humidity was executed. In detail, an asymmetric aggregation-induced-emission active molecule (azobenzol-decorated tetraphenylethylene, i.e., TPE-Azo) was embedded into flexible poly(ethylene-alt-maleic anhydride) (PEM) to prepare a TPE-Azo@PEM composite, which served as an active layer to fabricate the FTO/TPE-Azo@PEM/Ag device. This device can demonstrate excellent ternary memory performances with a current ratio of 1:104.2:101.6 for "OFF", "ON1", and "ON2" states. Specially, it can exhibit good environmental endurance at high working temperature (350 °C) and humidity (RH = 90%). The ternary memory mechanism can be explained as the combination of aggregation-induced current/conductance and conformational change-induced charge transfer in the TPE-Azo molecule, which was verified by Kelvin probe force microscopy, UV-vis spectra, X-ray diffraction, and single-crystal structural analysis. This strategy can be used as a universal method for the construction of high-density multilevel memristors with good environmental tolerance.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lu-Lu Zong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai-Yue Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen-Cong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Rong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
7
|
Ryu W, Xiang L, Jin KS, Kim HJ, Kim HC, Ree M. Newly Found Digital Memory Characteristics of Pyrrolidone- and Succinimide-Based Polymers. Macromol Rapid Commun 2021; 42:e2100186. [PMID: 33987942 DOI: 10.1002/marc.202100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Indexed: 11/10/2022]
Abstract
This study reports for the first time the excellent nonvolatile and volatile digital memory characteristics of polymers bearing 2-pyrrolidone and succinimide moieties. A series of new polymers is synthesized from poly(ethylene-alt-maleic anhydride) and four alcohol derivatives with and without 2-pyrrolidone and succinimide moieties. All polymers, including polyvinylpyrrolidone, are found to be thermally stable up to 195 °C or higher, and characterized regarding their molecular orbital energy levels, bandgap, and resistive digital memory behaviors. Excitingly, the polymers bearing either 2-pyrrolidone or succinimide moiety demonstrate p-type digital memory behaviors with high ON/OFF current ratios and long reliabilities. Nonvolatile digital memory performance is achieved over the film thickness range of 10-80 nm, whereas volatile digital memory is demonstrated over a much narrower range of film thickness. All digital memory performances can be originated from the 2-pyrrolidone and succinimide moieties possessing high affinity and stabilization power to charges via charge traps and transformations based on a hopping conduction process. Hence, these new polymers are suitable for the production of high-performance p-type nonvolatile and volatile digital memory devices. Moreover, 2-pyrrolidone and succinimide can be used as new and economical electroactive building blocks for the development of advanced digital memory materials.
Collapse
Affiliation(s)
- Wonyeong Ryu
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Li Xiang
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kyeong Sik Jin
- PLS-II Beamline Division, Pohang Accelerator Laboratory, Pohang, 37673, Republic of Korea
| | - Hyun-Joong Kim
- Ceko Corporation, Surface Technology Institute, 519 Dunchon-daero, Jungwon-gu, Seongnam, 13216, Republic of Korea
| | - Hong-Chul Kim
- Ceko Corporation, Surface Technology Institute, 519 Dunchon-daero, Jungwon-gu, Seongnam, 13216, Republic of Korea
| | - Moonhor Ree
- Ceko Corporation, Surface Technology Institute, 519 Dunchon-daero, Jungwon-gu, Seongnam, 13216, Republic of Korea
| |
Collapse
|