1
|
Li G, Li Z, Hu H, Chen B, Wang Y, Mao Y, Li H, Zhang B. Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins. BIOSENSORS 2025; 15:37. [PMID: 39852088 PMCID: PMC11764172 DOI: 10.3390/bios15010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance. Innovative structural configurations, such as layered and encapsulated designs, optimize triboelectric efficiency and enhance environmental adaptability. Applications span healthcare, human-machine interfaces, and wearable electronics, demonstrating the immense potential for tactile sensing and energy harvesting. Despite significant progress, challenges remain in scalability, long-term durability, and multifunctional integration. Future research should focus on advanced material development, scalable fabrication, and intelligent system integration to unlock the full potential of self-healing TENGs. This review provides a comprehensive overview of current achievements and future directions, underscoring the pivotal role of self-healing TENGs in artificial skin technology.
Collapse
Affiliation(s)
- Guoliang Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Zongxia Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Haojie Hu
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Baojin Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Wang
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Haidong Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Baosen Zhang
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| |
Collapse
|
2
|
Zhu Q, Sun E, Zhao Z, Wu T, Meng S, Ma Z, Shoaib M, Ur Rehman H, Cao X, Wang N. Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2024; 16:1304. [PMID: 38794497 PMCID: PMC11125245 DOI: 10.3390/polym16101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In advancing the transition of the energy sector toward heightened sustainability and environmental friendliness, biopolymers have emerged as key elements in the construction of triboelectric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The development of these TENG devices is of significant importance to the next generation of renewable and sustainable energy technologies based on carbon-neutral materials. This paper introduces the working principles, material sources, and wide-ranging applications of biopolymer-based triboelectric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging from natural sources to microbial and chemical synthesis, showcasing their significant potential in enhancing TENG performance and expanding their application scope, while emphasizing their notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement and application of biopolymer-based TENG technology. We hope this review will inspire the further development of BP-TENG towards more efficient energy conversion and broader applications.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Tong Wu
- National Institute of Metrology, Beijing 100029, China;
| | - Shuchang Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Zimeng Ma
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Muhammad Shoaib
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Hafeez Ur Rehman
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
5
|
Chou S, Lu H, Liu T, Chen Y, Fu Y, Shieh Y, Lai Y, Chen S. An Environmental-Inert and Highly Self-Healable Elastomer Obtained via Double-Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202815. [PMID: 36453583 PMCID: PMC9839881 DOI: 10.1002/advs.202202815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Indexed: 06/17/2023]
Abstract
Due to the ongoing development of portable/mobile electronics, sources to power have received widespread attention. Compared to chemical batteries as power sources, triboelectric nanogenerators (TENGs) possess lots of advantages, including the ability to harvest energy via human motions, flexible structures, environment-friendliness, and long-life characteristics. Although many self-healable TENGs are reported, the achievement of a muscle-like elasticity and the ability to recover from inevitable damage under extreme conditions (such as a high/low temperature and/or humidity) remain a challenge. Herein, a "double-terminal aromatic disulfide" on a structure with zwitterions as branched chains is reported to engineer the high-efficient self-healable elastomer for application in a flexible TENG. The as-designed material exhibits a repeatable elastic recovery (at 250% elongation) and a self-healing efficiency with an ultimate tensile stress of 96% over 2 h, representing an improvement on previously reported disulfide-based elastomers. The elastomer can autonomously recover by 50% even at a subzero temperature of -30 °C within 24 h. The elastomer-based TENG, as a self-driven sensor for detecting human behavior, is demonstrated to exhibit stable outputs and self-healing in the temperature range of -30 to 60 °C, and so is expected to promote the development of self-powered electronics for next-generation human-machine communications.
Collapse
Affiliation(s)
- Syun‐Hong Chou
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Hong‐Wei Lu
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
| | - Ta‐Chung Liu
- Department of Biomedical EngineeringNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| | - Yi‐Ting Chen
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
| | - Yen‐Lin Fu
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Yung‐Hsin Shieh
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ying‐Chih Lai
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
- Innovation and Development Center of Sustainable Agriculturei‐Center for Advanced Science and TechnologyNational Chung Hsing UniversityTaichung40227Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung City406040Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu300044Taiwan
- School of DentistryCollege of Dental MedicineKaohsiung Medical UniversityKaohsiung City80708Taiwan
| |
Collapse
|
6
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
7
|
Shen J, Li B, Yang Y, Yang Z, Liu X, Lim KC, Chen J, Ji L, Lin ZH, Cheng J. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens Bioelectron 2022; 216:114595. [DOI: 10.1016/j.bios.2022.114595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 01/28/2023]
|
8
|
Zhao K, Lv H, Meng J, Song Z, Meng C, Liu M, Zhang D. Triboelectrification-Induced Electricity in Self-Healing Hydrogel for Mechanical Energy Harvesting and Ultra-sensitive Pressure Monitoring. ACS OMEGA 2022; 7:18816-18825. [PMID: 35694505 PMCID: PMC9178770 DOI: 10.1021/acsomega.2c01743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Triboelectric nanogenerators (TENGs) have shown huge application potential in the fields of micro-nano energy harvesting and multifunctional sensing. However, the damage of triboelectric material is one of the challenges for their practical applications. Herein, we fabricated a flexible TENG employing self-healing hydrogel and fluorinated ethylene propylene film as triboelectric materials for mechanical energy harvesting and pressure monitoring. The prepared hydrogel not only has excellent flexibility, transparency, and self-healing property but also exhibits good mechanical property without plastic deformation and damage under a large stretchable strain of 200%. The output electric signals of TENGs are as high as 33.0 V and 3 μA under a contact frequency of 0.40 Hz and a pressure of 2.9 N, respectively, which can charge a capacitor of 0.22 μF to 24.3 V within 300 s. Note that the voltage retention rate of TENGs after self-healing is up to 88.0%. Moreover, hydrogel-based TENGs can act as a wearable pressure sensor for monitoring human motion, exhibiting a high sensitivity of 105.9 mV/N or 1.73 nA/N under a contact frequency of 0.40 Hz. This research provides a reference roadmap for designing TENGs and self-powered pressure sensors with flexibility, self-healing, and robustness.
Collapse
Affiliation(s)
- Kun Zhao
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Haoran Lv
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Jingke Meng
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhenhua Song
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Cheng Meng
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Maocheng Liu
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, P. R. China
| | - Ding Zhang
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1366. [PMID: 35458075 PMCID: PMC9032723 DOI: 10.3390/nano12081366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Implantable biomedical devices (IMDs) play essential roles in healthcare. Subject to the limited battery life, IMDs cannot achieve long-term in situ monitoring, diagnosis, and treatment. The proposal and rapid development of triboelectric nanogenerators free IMDs from the shackles of batteries and spawn a self-powered healthcare system. This review aims to overview the development of IMDs based on triboelectric nanogenerators, divided into self-powered biosensors, in vivo energy harvesting devices, and direct electrical stimulation therapy devices. Meanwhile, future challenges and opportunities are discussed according to the development requirements of current-level self-powered IMDs to enhance output performance, develop advanced triboelectric nanogenerators with multifunctional materials, and self-driven close-looped diagnosis and treatment systems.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
10
|
Sun W, Luo N, Liu Y, Li H, Wang D. A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10498-10507. [PMID: 35179862 DOI: 10.1021/acsami.2c00881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increasing demand for carbon neutrality, the development of renewable and recycle green energy has attracted wide attention from researchers. A novel self-healing triboelectric nanogenerator (TENG) was constructed by applying a linear silicone-modified polyurethane (PU) coating as a triboelectric layer, which was obtained by reacting hydroxypropyl silicone oil and hexamethylene diisocyanate under the catalysis of Sn. The linear self-healing coating as the friction electrode could effectively alleviate the damages of TENG devices during long-term energy harvesting. When the triboelectric layer of the TENG device shows abrasion, the broken silicone-modified polyurethane polymer chains would gradually be cross-linked again through hydrogen bonding to achieve a self-healing effect. The entire self-healing process of the friction coating could be completed in 30 min at room temperature. The PU-based self-healing TENG exhibits an evident and stable output performance with a short-circuit current of 31.9 μA and output voltage of 517.5 V after multiple cutting-healing cycles, which could light 480 commercial LEDs. Besides, a self-powered cathodic protection system supplied by the self-healing TENG was constructed, which could transfer negative triboelectric charges to the protected metal surface to achieve an anti-corrosion effect by harvesting mechanical energy. Due to the self-healing characteristics of the TENG device as the power supply part, this intelligent system possesses great application potential in the long-term corrosion protection of multiple metal application industries, such as the marine industry.
Collapse
Affiliation(s)
- Weixiang Sun
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ning Luo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Yubo Liu
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Daoai Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
11
|
Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9126-9137. [PMID: 35157422 DOI: 10.1021/acsami.1c23176] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels that combine the integrated attributes of being adhesive, self-healable, deformable, and conductive show great promise for next-generation soft robotic/energy/electronic applications. Herein, we reported a dual-network polyacrylamide (PAAM)/poly(acrylic acid) (PAA)/graphene (GR)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (MAGP) conductive hydrogel composed of dual-cross-linked PAAM and PAA as well as PEDOT:PSS and GR as a conducting component that combines these features. A wearable strain sensor is fabricated by sandwiching the MAGP hydrogels between two dielectric carbon nanotubes (CNTs)/poly(dimethylsiloxane) (PDMS) layers, which can be utilized to monitor delicate and vigorous human motion. In addition, the hydrogel-based sensor can act as a deformable triboelectric nanogenerator (D-TENG) for harvesting mechanical energy. The D-TENG demonstrates a peak output voltage and current of 141 V and 0.8 μA, respectively. The D-TENG could easily light 52 yellow-light-emitting diodes (LEDs) simultaneously and demonstrated the capability to power small electronics, such as a hygrometer thermometer. This work provides a potential approach for the development of deformable energy sources and self-powered strain sensors.
Collapse
Affiliation(s)
- Li Dong
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Mingxu Wang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jiajia Wu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Chunhong Zhu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute for Fiber Engineering (IFES), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jian Shi
- Faculty of Systems Science and Technology, Akita Prefectural University, 84-4 Aza Ebinokuchi Tsuchiya, Yurihonjo, Akita 015-0055, Japan
| | - Hideaki Morikawa
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute for Fiber Engineering (IFES), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
12
|
Zheng Y, Omar R, Hu Z, Duong T, Wang J, Haick H. Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomater Sci Eng 2021; 9:2087-2102. [PMID: 34961316 DOI: 10.1021/acsbiomaterials.1c01106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sustainable operation of wearable sensors plays an important role in continuous and longtime health monitoring. Conventional batteries, which are bulky and rigid, do not satisfy these requirements and, rather, cause additional economic burdens and environmental problems by regular replacement of power sources. This article provides a review on an alternative solution in the form of self-powered devices that can harvest energy from the surrounding environment to support the operation of the wearable sensor. The Review starts with an introduction of the self-powered triboelectric nanosensors (TENSs) and its two independent modules: the energy harvester and the sensing module. The Review continues with the TENS-related bioinspired designs for wearable applications, while providing a bird's-eye view of their characteristics and applications. The ongoing challenges and prospects for providing personal healthcare with self-powered TENS are presented and discussed.
Collapse
Affiliation(s)
- Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhipeng Hu
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tuan Duong
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.,School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an 710126, P. R. China
| |
Collapse
|
13
|
Singh S, Tripathi RK, Gupta MK, Dzhardimalieva GI, Uflyand IE, Yadav B. 2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study. J Colloid Interface Sci 2021; 600:572-585. [PMID: 34034119 DOI: 10.1016/j.jcis.2021.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
This work demonstrates an easy and cost-effective synthesis of PANI-PPY conducting nanoflakes (NFs) with a self-healing capability. Scanning electron microscopic (SEM) analysis shows the minimum width of NFs as 30 nm, while HRTEM analysis confirms the shape, size, and semi-crystalline nature of the polymer. These PANI-PPY NFs were used to fabricate a contact separation mode triboelectric nanogenerator (TENG) based self-powered photosensor which gave the maximum output voltage (149 V), maximum output current (16 µA), current density 0.56 µAcm-2, and power density 83.56 µWcm-2. Detailed literature survey shows the comparative study of PANI-PPY NF's with other photo-sensing materials. This literature review highlights the tremendous ability of PANI-PPY to self-restore and ultra-fast self-powering nature. This work also demonstrates a very easy and cost-effective method to develop polymeric nanomaterials via temperature-assisted polymerization, which need only a stirrer with a hot plate. Theoretical analysis (DFT calculations using Gaussian 09 and Gauss view 05) shows a consistent increase in stability when the number of molecules in the polymer chains analyzed was increased. The developed self-healing triboelectric nanogenerators exhibited stable performance before and after healing.
Collapse
Affiliation(s)
- Shakti Singh
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Ravi Kant Tripathi
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Manoj Kumar Gupta
- CSIR-Avanced Materials and Processes Research Institute, Bhopal 462026, India
| | - Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Academician Semenov Avenue 1, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University, B. Sadovaya Str. 105/42, Rostov-on-Don 344006, Russian Federation
| | - BalChandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
14
|
Li P, Kang Z, Rao F, Lu Y, Zhang Y. Nanowelding in Whole-Lifetime Bottom-Up Manufacturing: From Assembly to Service. SMALL METHODS 2021; 5:e2100654. [PMID: 34927947 DOI: 10.1002/smtd.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The continuous miniaturization of microelectronics is pushing the transformation of nanomanufacturing modes from top-down to bottom-up. Bottom-up manufacturing is essentially the way of assembling nanostructures from atoms, clusters, quantum dots, etc. The assembly process relies on nanowelding which also existed in the synthesis process of nanostructures, construction and repair of nanonetworks, interconnects, integrated circuits, and nanodevices. First, many kinds of novel nanomaterials and nanostructures from 0D to 1D, and even 2D are synthesized by nanowelding. Second, the connection of nanostructures and interfaces between metal/semiconductor-metal/semiconductor is realized through low-temperature heat-assisted nanowelding, mechanical-assisted nanowelding, or cold welding. Finally, 2D and 3D interconnects, flexible transparent electrodes, integrated circuits, and nanodevices are constructed, functioned, or self-healed by nanowelding. All of the three nanomanufacturing stages follow the rule of "oriented attachment" mechanisms. Thus, the whole-lifetime bottom-up manufacturing process from the synthesis and connection of nanostructures to the construction and service of nanodevices can be organically integrated by nanowelding. The authors hope this review can bring some new perspective in future semiconductor industrialization development in the expansion of multi-material systems, technology pathway for the refined design, controlled synthesis and in situ characterization of complex nanostructures, and the strategies to develop and repair novel nanodevices in service.
Collapse
Affiliation(s)
- Peifeng Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Feng Rao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Nanomanufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
15
|
Yang D, Ni Y, Kong X, Li S, Chen X, Zhang L, Wang ZL. Self-Healing and Elastic Triboelectric Nanogenerators for Muscle Motion Monitoring and Photothermal Treatment. ACS NANO 2021; 15:14653-14661. [PMID: 34523330 DOI: 10.1021/acsnano.1c04384] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to wearing and unpredictable damage, the working lifetime of triboelectric nanogenerators (TENGs) is largely limited. In this work, we prepared a single-electrode multifunctional TENG (MF-TENG) that exhibits fast self-healing, human health monitoring capability, and photothermal properties. The device consists of a thin self-healing poly(vinyl alcohol)-based hydrogel sandwiched between two self-healing silicone elastomer films. The MF-TENG exhibits a short-circuit current, short-circuit transfer charge, and open-circuit voltage of 7.98 μA, 78.34 nC, and 38.57 V, respectively. Furthermore, owing to the repairable networks of the dynamic imine bonds in the charged layer and the borate ester bonds in the electrodes, the prepared device could recover its original state after mechanical damage within 10 min at room temperature. The MF-TENG can be attached to different human joints for self-powered monitoring of personal health information. Additionally, the MF-TENG under near-infrared laser irradiation can provide a photothermal therapy for assisting the recovery of human joints motion. It is envisaged that the proposed MF-TENG can be applied to the fields of wearable electronics and health-monitoring devices.
Collapse
Affiliation(s)
- Dan Yang
- Beijing Key Lab of Special Elastomeric Composite Materials, Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Yufeng Ni
- Beijing Key Lab of Special Elastomeric Composite Materials, Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China
| | - Xinxin Kong
- Beijing Key Lab of Special Elastomeric Composite Materials, Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China
| | - Shuyao Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xiangyu Chen
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Liqun Zhang
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhong Lin Wang
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| |
Collapse
|
16
|
Yang M, Liu J, Liu D, Jiao J, Cui N, Liu S, Xu Q, Gu L, Qin Y. A Fully Self-Healing Piezoelectric Nanogenerator for Self-Powered Pressure Sensing Electronic Skin. RESEARCH 2021; 2021:9793458. [PMID: 33959721 PMCID: PMC8063864 DOI: 10.34133/2021/9793458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
As an important way of converting mechanical energy into electric energy, a piezoelectric nanogenerator (PENG) has been widely applied in energy harvesting as well as self-powered sensors in recent years. However, its robustness and durability are still severely challenged by frequent and inevitable mechanical impacts in real application environments. Herein, a fully self-healing PENG (FS-PENG) as a self-powered pressure sensing electronic skin is reported. The self-healing piezoelectric composite and self-healing Ag NW electrode fabricated through mixing piezoelectric PZT particles and conductive Ag NWs into self-healing polydimethylsiloxane (H-PDMS) are assembled into the sandwich structure FS-PENG. The FS-PENG could not only effectively convert external stimulation into electrical signals with a linear response to the pressure but also retain the excellent self-healing and stable sensing property after multiple cycles of cutting and self-healing process. Moreover, a self-healing pressure sensor array composed of 9 FS-PENGs was attached on the back of the human hand to mimic the human skin, and accurate monitoring of the spatial position distribution and magnitude of the pressure was successfully realized.
Collapse
Affiliation(s)
- Maosen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Jinmei Liu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Dong Liu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Jingyi Jiao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Nuanyang Cui
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, Lanzhou University, Gansu 730000, China
| | - Qi Xu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, Lanzhou University, Gansu 730000, China
| |
Collapse
|
17
|
Wu JP, Liang W, Song WZ, Zhou LN, Wang XX, Ramakrishna S, Long YZ. An acid and alkali-resistant triboelectric nanogenerator. NANOSCALE 2020; 12:23225-23233. [PMID: 33206085 DOI: 10.1039/d0nr06341j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the development of technology, environmental problems have become more and more acute and the use of electronic devices in harsh environments has gradually attracted attention. For example, the friction layer of triboelectric nanogenerators (TENGs) may be contaminated and corroded in harsh environments (such as acidic, alkaline or oily environments), resulting in damage or destruction of the TENGs. In this study, we use electrospinning followed by a sintering process to prepare a super-hydrophobic sintered polyvinyl alcohol-polytetrafluoroethylene (S-PVA-PTFE) composite membrane and general industrial oil-absorbing paper to construct a TENG. The maximum power density of the TENG is 261 mW m-2, it can light up 100 blue LEDs, and can power a variety of small electronic devices. Moreover, after 72 h of soaking the friction layer in a strong acid solution followed by a strong alkali solution, the performance of the TENG has no obvious change. The TENG can work stably in an oily working environment. The TENG provides a novel approach for self-powered sensors that work in harsh environments.
Collapse
Affiliation(s)
- Jun-Peng Wu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Xie T, Vogt BD. A Virtual Special Issue on Self-Healing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49277-49280. [PMID: 33143431 DOI: 10.1021/acsami.0c18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
19
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
20
|
Tat T, Libanori A, Au C, Yau A, Chen J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens Bioelectron 2020; 171:112714. [PMID: 33068881 DOI: 10.1016/j.bios.2020.112714] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Biomedical sensors have been essential in improving healthcare outcomes over the past 30 years, though limited power source access and user wearability restraints have prevented them from taking a constant and active biomedical sensing role in our daily lives. Triboelectric nanogenerators (TENGs) have demonstrated exceptional capabilities and versatility in delivering self-powered and wear-optimized biomedical sensors, and are paving the way for a novel platform technology able to fully integrate into the developing 5G/Internet-of-Things ecosystem. This novel paradigm of TENG-based biomedical sensors aspires to provide ubiquitous and omnipresent real-time biomedical sensing for us all. In this review, we cover the remarkable developments in TENG-based biomedical sensing which have arisen in the last octennium, focusing on both in-body and on-body biomedical sensing solutions. We begin by covering TENG as biomedical sensors in the most relevant, mortality-associated clinical fields of pneumology and cardiology, as well as other organ-related biomedical sensing abilities including ambulation. We also include an overview of ambient biomedical sensing as a field of growing interest in occupational health monitoring. Finally, we explore TENGs as power sources for third party biomedical sensors in a number of fields, and conclude our review by focusing on the future perspectives of TENG biomedical sensors, highlighting key areas of attention to fully translate TENG-based biomedical sensors into clinically and commercially viable digital and wireless consumer and health products.
Collapse
Affiliation(s)
- Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andy Yau
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|