1
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Liu J, Zhang Q, Hu N, Jiang Z, Kan Q, Kang G. Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10822-10831. [PMID: 38381141 DOI: 10.1021/acsami.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Hydrogel coatings exhibit versatile applications in biomedicine, flexible electronics, and environmental science. However, current coating methods encounter challenges in simultaneously achieving strong interfacial bonding, robust hydrogel coatings, and the ability to coat substrates with controlled thickness. This paper introduces a novel approach to grow a double-network (DN) tough hydrogel coating on various substrates. The process involves initial substrate modification using a silane coupling agent, followed by the deposition of an initiator layer on its surface. Subsequently, the substrate is immersed in a DN hydrogel precursor, where the coating grows under ultraviolet (UV) illumination. Precise control over the coating thickness is achieved by adjusting the UV illumination duration and the initiator quantity. The experimental measurement of adhesion reveals strong bonding between the DN hydrogel coating and diverse substrates, reaching up to 1012.9 J/m2 between the DN hydrogel coating and a glass substrate. The lubricity performance of the DN hydrogel coating is experimentally characterized, which is dependent on the coating thickness, applied pressure, and sliding velocity. The incorporation of 3D printing technology into the current coating method enables the creation of intricate hydrogel coating patterns on a flat substrate. Moreover, the hydrogel coating's versatility is demonstrated through its effective applications in oil-water separation and antifogging glasses, underscoring its wide-ranging potential. The robust DN hydrogel coating method presented here holds promise for advancing hydrogel applications across diverse fields.
Collapse
Affiliation(s)
- Yuhong Li
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Qifang Zhang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Nan Hu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Zhouhu Jiang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianhua Kan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Guozheng Kang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
3
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Xu R, Mu X, Hu Z, Jia C, Yang Z, Yang Z, Fan Y, Wang X, Wu Y, Lu X, Chen J, Xiang G, Li H. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO 2 nanosheets. NANO RESEARCH 2022; 16:5247-5255. [PMID: 36532602 PMCID: PMC9734535 DOI: 10.1007/s12274-022-5153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.
Collapse
Affiliation(s)
- Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zunhan Hu
- Department of Stomatology, Kunming Medical University, Kunming, 650500 China
| | - Chongzhi Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Yang
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhongliang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiping Fan
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaoyu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Strategic Support Force Medical Center, Beijing, 100101 China
| | - Yuefeng Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaotong Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jihua Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
5
|
Wu Y, Nie Y, Long Z, Si P, Zhang D. Coacervation-Based Method for Constructing a Multifunctional Strain-Stiffening Crystalline Polyvinylamine Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31354-31362. [PMID: 35771154 DOI: 10.1021/acsami.2c08838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain-stiffening hydrogels are essential in the development of ionic skin, as human skin possesses a strain-stiffening property for self-protection. Semicrystalline polymers such as poly(vinyl alcohol) (PVA) have been widely investigated to fabricate strain-stiffening hydrogels via freeze-thaw cycling or chemical cross-linking but with limited adjustable properties. Compared with PVA, polyvinylamine (PVAm) has a higher reactive activity, making it easier to achieve multifunctionalities including strain-stiffening in a PVAm hydrogel. However, the amine moieties in the backbone tend to be ionized and form strong ionic hydrogen bonds with water, resulting in difficulties in forming crystalline hydrogels by conventional methods. Herein, a one-pot method to induce crystallinity and achieve multifunctional hydrogel is devised via coacervation of PVAm. Different from a published coacervation method to fabricate hydrogels with various properties via noncovalent interactions between different chemicals, coacervation occurs between PVAm to form aggregated and loose PVAm in our devised system. Such a strategy lowers the amine-water binding energy in the polymer-dense phase to achieve crystallinity and subsequently the strain-stiffening property; meanwhile, self-healability, self-adhesion, and ionic conductivity can be realized in the polymer-loose phase. The obtained hydrogel integrates stretchability (∼1300% elongation), toughness (227 kPa), the strain-stiffening property (∼10 times increase), self-adhesion (90 J m-2), self-healability (∼80% healing efficiency in toughness), and ionic conductivity (0.22 mS m-1). This convenient strategy will open a new horizon to design multifunctional skin-mimic materials.
Collapse
Affiliation(s)
- Yun Wu
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Yiping Nie
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Pengxiang Si
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Dan Zhang
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| |
Collapse
|
6
|
Lou C, Liu E, Cheng T, Li J, Song H, Fan G, Huang L, Dong B, Liu X. Highly Stretchable and Self-Adhesive Elastomers Based on Polymer Chain Rearrangement for High-Performance Strain Sensors. ACS OMEGA 2022; 7:5825-5835. [PMID: 35224343 PMCID: PMC8867587 DOI: 10.1021/acsomega.1c05789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Polydimethylsiloxane (PDMS) has been widely used in many fields. However, the polymerization process of the siloxane chain is highly complex, and it is challenging to enhance the mechanical properties of PDMS elastomers significantly. We found that adding a small amount of polyoxyethylene lauryl ether (Brij-35) into siloxane polymers can result in B-PDMS elastomers with high tensile properties and strong adhesion. It is worth noting that this is the first study to improve the mechanical properties of PDMS using Brij-35. Here, we intensely studied a variety of process conditions that influence the cross-linking of PDMS, emphasizing the modification mechanism of the polymer chain. The hydroxyl groups in Brij-35 and the platinum catalyst in PDMS form a complex, which inhibits the cross-linking process of PDMS, not only forming a heterogeneous cross-linking network in the B-PDMS but also disentangling the strongly wound siloxane polymer chain, thereby rearranging the PDMS polymer chains. Furthermore, in order to prepare a strain sensor based on the B-PDMS elastomer under safe and convenient conditions, we prepared laser-scribed graphene powder (LSGP) by laser-scribing of graphene oxide (GO) films, and the LSGP and carbon nanotubes (CNTs) endowed the B-PDMS elastomers with excellent electrical properties. The sensor could firmly adhere to the skin and generate a high-quality response to a variety of human motions, and it could drive the robotic hand to grasp and lift objects accurately. The high-performance strain sensors based on B-PDMS have broad applications in medical sensing and biopotential measurement.
Collapse
Affiliation(s)
- Cunguang Lou
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| | - Enjie Liu
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| | - Tong Cheng
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| | - Jun Li
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| | - Hongzan Song
- College
of Chemistry & Environmental Science, Hebei University, Baoding 071000, P. R. China
| | - Guangwei Fan
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| | - Lei Huang
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Medical School, Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bin Dong
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
- Affiliated
hospital of Hebei University, Hebei University, Baoding 071000, P. R. China
| | - Xiuling Liu
- College
of Electronic Information Engineering & Hebei Key Laboratory of
Digital Medical Engineering, Hebei University, Baoding 071000, P. R. China
| |
Collapse
|
7
|
Hwangbo H, Jeon SJ. Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0934-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Fu F, Wang J, Tan Y, Yu J. Super-Hydrophilic Zwitterionic Polymer Surface Modification Facilitates Liquid Transportation of Microfluidic Sweat Sensors. Macromol Rapid Commun 2021; 43:e2100776. [PMID: 34825435 DOI: 10.1002/marc.202100776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/16/2022]
Abstract
The transportation of sweat in an epidermal sweat sensor is critical for the monitoring of biochemical compositions of human sweat. However, it is still a challenge to engineer microfluidic devices with super-wetting channels for such epidermal sweat sensors. Herein, a zwitterionic poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) modified microfluidic device with super-wetting and good liquid transport ability via an azo coupling reaction of PMPC onto the surface of polydimethylsiloxane microfluidic devices is reported. The obtained PMPC-modified microfluidic device can be integrated with flexible electrochemical sensor to measure the ion compositions of human sweat in real-time. The super-hydrophilic zwitterionic polymer surface modification can greatly facilitate the transportation of body fluids in microfluidic sensors for the detection of various biomarkers. Such microfluidic sensors have great potential for next-generation personalized healthcare.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jilei Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yurong Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
9
|
Wu Z, Jin Y, Li G, Zhang M, Du J. Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silane-Modified MWCNTs. Macromol Rapid Commun 2021; 43:e2100663. [PMID: 34822206 DOI: 10.1002/marc.202100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Indexed: 01/01/2023]
Abstract
3D printing of conductive polymers is an attractive technique for achieving high flexibility, wearability, and sensing characteristics without geometrical limitations. However, there is an urgent need to integrate printability, conductivity, and sensing capability. Herein, a conductive polymer ink for 3D printing that combines the desirable features of high electrical conductivity, flexible stretchability, and strain-sensing monitoring is prepared. The ink matrix is polydimethylsiloxane and synergistically enhanced by acetylene carbon black (ACB) and multi-walled carbon nanotubes (MWCNTs) (silane or un-silane-modified). The inks are screened step-by-step to explore their printability, rheology, mechanical properties, and electrical performance upon loading. The formation of an electrically conductive network, electrical properties upon tensile load, and strain sensing stability under cyclic stretching are investigated intensively. It is demonstrated that conductive polymers filled by ACB and silane-modified, MWCNTs (MWCNTs-MTES) possess superior printability, stretchability, conductivity, and strain sensing behaviors. Finally, a flexible wearable strain-sensing skin patch is printed, and it successfully records joint motion signals on human fingers, wrists, and elbows with good stability and repeatability. Those results show the extent of potential applications in healthcare and motion monitoring fields. This work provides an efficient and simple route to achieve comfortably wearable and high-performance strain sensors.
Collapse
Affiliation(s)
- Zhi Wu
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Yuan Jin
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Guangyong Li
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Minghua Zhang
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Jianke Du
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
10
|
Cai P, Wang C, Gao H, Chen X. Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007977. [PMID: 34197013 DOI: 10.1002/adma.202007977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Indexed: 06/13/2023]
Abstract
The knowledge of mechanics of materials has been extensively implemented in developing functional materials, giving rise to recent advances in soft actuators, flexible electronics, mechanical metamaterials, tunable mechanochromics, regenerative mechanomedicine, etc. While conventional mechanics of materials offers passive access to mechanical properties of materials in existing forms, a paradigm shift is emerging toward proactive programming of materials' functionality by leveraging the force-geometry-property relationships. Here, such a rising field is coined as "mechanomaterials". To profile the concept, the design principles in this field at four scales is first outlined, namely the atomic scale, the molecular scale, the manipulation of nanoscale materials, and the microscale design of structural materials. A variety of techniques have been recruited to deliver the multiscale programming of functional mechanomaterials, such as strain engineering, capillary assembly, topological interlocking, kirigami, origami, to name a few. Engineering optical and biological functionalities have also been achieved by implementing the fundamentals of mechanochemistry and mechanobiology. Nonetheless, the field of mechanomaterials is still in its infancy, with many open challenges and opportunities that need to be addressed. The authors hope this review can serve as a modest spur to attract more researchers to further advance this field.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Huajian Gao
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
11
|
Wu X, Liu S, Chen K, Wang F, Feng C, Xu L, Zhang D. 3D printed chitosan-gelatine hydrogel coating on titanium alloy surface as biological fixation interface of artificial joint prosthesis. Int J Biol Macromol 2021; 182:669-679. [PMID: 33857509 DOI: 10.1016/j.ijbiomac.2021.04.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
To improve the fixation of the prosthesis-bone interface and to prevent postoperative infection, a novel antimicrobial hydrogel coating is designed as the biological fixation interface of the artificial joint prosthesis. Antimicrobial chitosan (CS) and gelatine (GT) were used as bioinks to print a CS-GT hydrogel coating with reticulated porous structure on the titanium alloy substrate by 3D printing technology. The experimental results show that the 7CS-10GT hydrogel coating has a macro-grid structure and honeycomb micro-network structure, excellent hydrophilicity (35.64°), high mechanical strength (elastic modulus 0.92 MPa) and high bonding strength (3.36 MPa) with the titanium alloy substrate. In addition, the antimicrobial effect of 7CS-10GT hydrogel against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is enhanced after immersion in nano‑silver. Moreover, the 7CS-10GT hydrogel displays good cell compatibility and supports proliferation of NIH-3 T3 cells. In summary, the 3D printed CS-GT antimicrobial hydrogel coating provides an ideal microenvironment for cell adhesion and bone growth due to the dual-scale porous network structure, good hydrophilicity and biocompatibility, thus promoting rapid fixation of the bone interface. This technology opens a new possibility for this biological fixation interface in artificial joint replacement.
Collapse
Affiliation(s)
- Xiaofang Wu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Siyu Liu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kai Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Fengyan Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunao Feng
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Linmin Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Dekun Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
12
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|