1
|
Wang S, Liu Y, Sun S, Gui Q, Liu W, Long W. Living material-derived intelligent micro/nanorobots. Biomater Sci 2025; 13:1379-1397. [PMID: 39927456 DOI: 10.1039/d4bm01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/nanorobots (LMNRs) are self-propelled devices that combine living materials with synthetic materials. By harnessing energy from external physical fields or biological sources, LMNRs can move autonomously and perform various biomedical functions, such as drug delivery, crossing biological barriers, medical imaging, and disease treatment. This review, from a biomimetic strategy perspective, summarized the latest advances in the design and biomedical applications of LMNRs. It provided a comprehensive overview of the living materials used to construct LMNRs, including mammalian cells, plants, and microorganisms while highlighting their biological properties and functions. Lastly, the review discussed the major challenges in this field and offered suggestions for future research that may help facilitate the clinical application of LMNRs in the near future.
Collapse
Affiliation(s)
- Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangjiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qinyi Gui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Ruiz-González N, Esporrín-Ubieto D, Kim ID, Wang J, Sánchez S. Micro- and Nanomotors: Engineered Tools for Targeted and Efficient Biomedicine. ACS NANO 2025; 19:8411-8432. [PMID: 39996616 PMCID: PMC11912581 DOI: 10.1021/acsnano.4c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Over the past two decades, nanotechnology has made significant progress toward the development and applications of micromotors (MMs) and nanomotors (NMs). Characterized by their capability to self-propel and swim in fluids, they have emerged as promising tools in various fields, particularly in biomedicine. This Review presents an overview of the current state of MMs and NMs, their motion in viscous media and complex environments, their interaction with biological barriers, and potential therapeutical applications. We identify the choice of appropriate administration routes to reach their target location as a key aspect of the success of MMs and NMs in biomedical applications. Looking ahead, we envision NMs playing a key role in treating diverse medical disorders, as recent proof-of-concept in vivo studies demonstrate their distinct capabilities and versatility. However, addressing regulatory, scalability, biocompatibility, and safety concerns remains imperative for the successful translation of NMs into clinical trials and industrial-scale production. This work provides a guideline for researchers, guiding them through the current landscape, challenges, and prospects of using MMs and NMs in biomedicine, thereby encouraging their responsible development and positioning in the future of nanomedicine. Furthermore, we outline critical areas for further research, including studies on biocompatibility, safety, and methods to overcome physical obstacles.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat
de Física, Universitat de Barcelona
(UB). C. Martí I Franques, 1-11, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joseph Wang
- Department
of Nanoengineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudies Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
4
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
5
|
Wu W, Wang Y, Yang H, Chen H, Wang C, Liang J, Song Y, Xu S, Sun Y, Wang L. Antibacterial and Biofilm Removal Strategies Based on Micro/Nanomotors in the Biomedical Field. ChemMedChem 2024; 19:e202400349. [PMID: 38965060 DOI: 10.1002/cmdc.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxin Wang
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Haiyue Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junge Liang
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yiran Song
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Xu
- Emergency Department, Harbin First Hospital, Harbin, 150010, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
6
|
Si L, Zhang S, Guo H, Luo W, Feng Y, Du X, Mou F, Ma H, Guan J. Swarming Magnetic Fe 3O 4@Polydopamine-Tannic Acid Nanorobots: Integrating Antibiotic-Free Superficial Photothermal and Deep Chemical Strategies for Targeted Bacterial Elimination. RESEARCH (WASHINGTON, D.C.) 2024; 7:0438. [PMID: 39086398 PMCID: PMC11289052 DOI: 10.34133/research.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Micro/nanorobots (MNRs) are envisioned to provide revolutionary changes to therapies for infectious diseases as they can deliver various antibacterial agents or energies to many hard-to-reach infection sites. However, existing MNRs face substantial challenges in addressing complex infections that progress from superficial to deep tissues. Here, we develop swarming magnetic Fe3O4@polydopamine-tannic acid nanorobots (Fe3O4@PDA-TA NRs) capable of performing targeted bacteria elimination in complicated bacterial infections by integrating superficial photothermal and deep chemical strategies. The Fe3O4@PDA-TA nanoparticles (NPs), serving as building blocks of the nanorobots, are fabricated by in situ polymerization of dopamine followed by TA adhesion. When driven by alternating magnetic fields, Fe3O4@PDA-TA NPs can assemble into large energetic microswarms continuously flowing forward with tunable velocity. Thus, the swarming Fe3O4@PDA-TA NRs can be navigated to achieve rapid broad coverage of a targeted superficial area from a distance and rapidly eradicate bacteria residing there upon exposure to near-infrared (NIR) light due to their efficient photothermal conversion. Additionally, they can concentrate at deep infection sites by traversing through confined, narrow, and tortuous passages, exerting sustained antibacterial action through their surface TA-induced easy cell adhesion and subsequent membrane destruction. Therefore, the swarming Fe3O4@PDA-TA NRs show great potential for addressing complex superficial-to-deep infections. This study may inspire the development of future therapeutic microsystems for various diseases with multifunction synergies, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| | - Yuqin Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Xinkang Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science,
Wuhan University of Technology, Wuhan, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu Y, Zhang L, Ouyang F, Xue C, Zhao X, Wang T, Pei Z, Shuai Q. Thermal-Accelerated Urease-Driven Bowl-Like Polydopamine Nanorobot for Targeted Photothermal/Photodynamic Antibiotic-Free Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2304086. [PMID: 38520218 DOI: 10.1002/adhm.202304086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The problem of antibiotic resistance seriously affects the treatment of bacterial infections, so there is an urgent need to develop novel antibiotic-independent antimicrobial strategies. Herein, a urease-driven bowl-like mesoporous polydopamine nanorobot (MPDA@ICG@Ur@Man) based on single-wavelength near-infrared (NIR) remote photothermal acceleration to achieve antibiotic-free phototherapy(photothermal therapy, PTT, plus photodynamic therapy, PDT) is first reported. The smart nanorobots can perform active movement by decomposing urea to produce carbon dioxide and ammonia. Particularly, the elevated local temperature during PTT can increase urease activity to enhance the autonomous movement and thus increase the contact between the antimicrobial substance and bacteria. Compared with a nanomotor propelled by urea only, the diffusion coefficient (De) of photothermal-accelerated nanorobots is increased from 1.10 to 1.26 µm2 s-1. More importantly, urease-driven bowl-like nanorobots with photothermal enhancement can specifically identify Escherichia coli (E. coli) and achieve simultaneous PTT/PDT at a single wavelength with 99% antibactericidal activity in vitro. In a word, the urease-driven bowl-like nanorobots guided by photothermal-accelerated strategy could provide a novel perspective for increasing PTT/PDT antibacterial therapeutic efficacy and be promising for various antibiotic-free sterilization applications.
Collapse
Affiliation(s)
- Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Feng Ouyang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Chenglong Xue
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiaoyu Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Tao Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
8
|
Wang W, Luo H, Wang H. Recent advances in micro/nanomotors for antibacterial applications. J Mater Chem B 2024; 12:5000-5023. [PMID: 38712692 DOI: 10.1039/d3tb02718j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Currently, the rapid spread of multidrug-resistant bacteria derived from the indiscriminate use of traditional antibiotics poses a significant threat to public health worldwide. Moreover, established bacterial biofilms are extremely difficult to eradicate because of their high tolerance to traditional antimicrobial agents and extraordinary resistance to phagocytosis. Hence, it is of universal significance to develop novel robust and efficient antibacterial strategies to combat bacterial infections. Micro/nanomotors exhibit many intriguing properties, including enhanced mass transfer and micro-mixing resulting from their locomotion, intrinsic antimicrobial capabilities, active cargo delivery, and targeted treatment with precise micromanipulation, which facilitate the targeted delivery of antimicrobials to infected sites and their deep permeation into sites of bacterial biofilms for fast inactivation. Thus, the ideal antimicrobial activity of antibacterial micro/nanorobots makes them desirable alternatives to traditional antimicrobial treatments and has aroused extensive interest in recent years. In this review, recent advancements in antibacterial micro/nanomotors are briefly summarized, focusing on their synthetic methods, propulsion mechanism, and versatile antibacterial applications. Finally, some personal insights into the current challenges and possible future directions to translate proof-of-concept research to clinic application are proposed.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hangyu Luo
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Han Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Ussia M, Urso M, Oral CM, Peng X, Pumera M. Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water. ACS NANO 2024; 18:13171-13183. [PMID: 38717036 PMCID: PMC11112980 DOI: 10.1021/acsnano.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
The forefront of micro- and nanorobot research involves the development of smart swimming micromachines emulating the complexity of natural systems, such as the swarming and collective behaviors typically observed in animals and microorganisms, for efficient task execution. This study introduces magnetically controlled microrobots that possess polymeric sequestrant "hands" decorating a magnetic core. Under the influence of external magnetic fields, the functionalized magnetic beads dynamically self-assemble from individual microparticles into well-defined rotating planes of diverse dimensions, allowing modulation of their propulsion speed, and exhibiting a collective motion. These mobile microrobotic swarms can actively capture free-swimming bacteria and dispersed microplastics "on-the-fly", thereby cleaning aquatic environments. Unlike conventional methods, these microrobots can be collected from the complex media and can release the captured contaminants in a second vessel in a controllable manner, that is, using ultrasound, offering a sustainable solution for repeated use in decontamination processes. Additionally, the residual water is subjected to UV irradiation to eliminate any remaining bacteria, providing a comprehensive cleaning solution. In summary, this study shows a swarming microrobot design for water decontamination processes.
Collapse
Affiliation(s)
- Martina Ussia
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Mario Urso
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Cagatay M. Oral
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Xia Peng
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Advanced
Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, Taichung 40402, Taiwan
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro
50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Preetam S. Nano revolution: pioneering the future of water reclamation with micro-/nano-robots. NANOSCALE ADVANCES 2024; 6:2569-2581. [PMID: 38752135 PMCID: PMC11093266 DOI: 10.1039/d3na01106b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Earth's freshwater reserves are alarmingly limited, with less than 1% readily available. Factors such as industrialisation, population expansion, and climate change are compounding the scarcity of clean water. In this context, self-driven, programmable micro- and nano-scale synthetic robots offer a potential solution for enhancing water monitoring and remediation. With the aid of these innovative robots, diffusion-limited reactions can be overcome, allowing for active engagement with target pollutants, such as heavy metals, dyes, nano- and micro-plastics, oils, pathogenic microorganisms, and persistent organic pollutants. Herein, we introduced and reviewed recent influential and advanced studies on micro-/nano-robots (MNR) carried out over the past decade. Typical works are categorized by propulsion modes, analyzing their advantages and drawbacks in detail and looking at specific applications. Moreover, this review provides a concise overview of the contemporary advancements and applications of micro-/nano-robots in water-cleaning applications.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology Daegu-42988 South Korea
- Institute of Advanced Materials, IAAM Gammalkilsvägen 18 Ulrika 59053 Sweden
| |
Collapse
|
11
|
Huang J, Liu Y, Wu J, Dong F, Liu C, Luo J, Liu X, Wang N, Wang L, Xu H. An extracellular matrix-mimicking magnetic microrobot for targeted elimination of circulating cancer cells. NANOSCALE 2024; 16:624-634. [PMID: 38086673 DOI: 10.1039/d3nr03799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cancer cells disseminate through the bloodstream, leading to metastasis in distant sites within the body. One promising strategy to prevent metastasis is to eliminate circulating tumor cells. However, this remains challenging due to the lack of an active and targeted biomedical tool for efficient cancer cell elimination. Here, we developed a magnetic microrobot by using natural materials derived from the extracellular matrix (ECM) to mimic the ligand-receptor interaction between cancer cells and the ECM, offering targeted elimination of cancer cells. The ECM-mimicking microrobot is designed with a biodegradable hydrogel matrix, incorporating a cancer cell ligand and magnetic microparticles for cancer cell capture and active locomotion. This microrobot was fabricated based on an interface-shearing method, enabling controllable magnetic response and size scalability (30 μm-500 μm). The presented ECM-mimicking microrobot can actively approach and capture single cancer cells and cell clusters under the control of specific magnetic fields. The experiment was conducted in a blood vessel-mimicking simulator. The microrobot demonstrates an outstanding elimination efficacy of 92.3% on MDA-MB-231 cancer cells and a stable transport capability of the captured cells over long distances to a designed recycling site, inhibiting cell metastasis. This magnetic ECM-mimicking microrobot based on a bioinspired binding mechanism represents a promising candidate for the efficient elimination of cancer cells and other biological waste in the blood.
Collapse
Affiliation(s)
- Jing Huang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Chu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Jiawei Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Xiangchao Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Haifeng Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Truong VK, Hayles A, Bright R, Luu TQ, Dickey MD, Kalantar-Zadeh K, Vasilev K. Gallium Liquid Metal: Nanotoolbox for Antimicrobial Applications. ACS NANO 2023; 17:14406-14423. [PMID: 37506260 DOI: 10.1021/acsnano.3c06486] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The proliferation of drug resistance in microbial pathogens poses a significant threat to human health. Hence, treatment measures are essential to surmount this growing problem. In this context, liquid metal nanoparticles are promising. Gallium, a post-transition metal notable for being a liquid at physiological temperature, has drawn attention for its distinctive properties, high antimicrobial efficacy, and low toxicity. Moreover, gallium nanoparticles demonstrate anti-inflammatory properties in immune cells. Gallium can alloy with other metals and be prepared in various composites to modify and tailor its characteristics and functionality. More importantly, the bactericidal mechanism of gallium liquid metal could sidestep the threat of emerging drug resistance mechanisms. Building on this rationale, gallium-based liquid metal nanoparticles can enable impactful and innovative strategic pathways in the battle against antimicrobial resistance. This review outlines the characteristics of gallium-based liquid metals at the nanoscale and their corresponding antimicrobial mechanisms to provide a comprehensive yet succinct overview of their current antimicrobial applications. In addition, challenges and opportunities that require further research efforts have been identified and discussed.
Collapse
Affiliation(s)
- Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Richard Bright
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Trong Quan Luu
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
13
|
de la Asunción-Nadal V, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Photoresponsive MoS 2 and WS 2 microflakes as mobile biocide agents. NANOSCALE 2023; 15:9675-9683. [PMID: 37009994 DOI: 10.1039/d3nr00349c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fuel-free strategy for the eradication of Escherichia coli and Staphylococcus aureus biofilms using WS2 and MoS2 photophoretic microflakes is described. The microflakes were prepared by liquid-phase exfoliation of the materials. Under electromagnetic irradiation at 480 or 535 nm, the microflakes experience a fast collective behavior at speeds of over 300 μm s-1 due to photophoresis. Simultaneously to their motion, reactive oxygen species are generated. The fast microflake schooling into multiple moving swarms results in a highly efficient "collision" platform that disrupts the biofilm, enhancing radical oxygen species' contact with the bacteria for their inactivation. As such, removal biofilm mass rates of over 90% and 65% are achieved using the MoS2 and WS2 microflakes in the treatment of Gram-negative E. coli and Gram-positive S. aureus biofilms after 20 min. Much lower removal biofilm mass rates (30%) are obtained under static conditions, revealing the crucial role of microflake movement and radical generation in the active eradication of biofilms. Much higher removal efficiencies are observed in biofilm deactivation as compared with the use of free antibiotics, which are not able to destroy the densely packed biofilms. The new moving microflakes hold considerable promise for the treatment of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Víctor de la Asunción-Nadal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, Madrid, E-28805, Spain.
| | - Javier Bujalance-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, Madrid, E-28805, Spain.
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, Madrid, E-28805, Spain.
- Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E-28805, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, Madrid, E-28805, Spain.
- Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E-28805, Spain
| |
Collapse
|
14
|
Smart micro- and nanorobots for water purification. NATURE REVIEWS BIOENGINEERING 2023; 1:236-251. [PMID: 37064655 PMCID: PMC9901418 DOI: 10.1038/s44222-023-00025-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.
Collapse
|
15
|
Lv X, Wang L, Mei A, Xu Y, Ruan X, Wang W, Shao J, Yang D, Dong X. Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206220. [PMID: 36470671 DOI: 10.1002/smll.202206220] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bacterial biofilm-related infectious diseases severely influence human health. Under typical situations, pathogens can colonize inert or biological surfaces and form biofilms. Biofilms are functional aggregates that coat bacteria with extracellular polymeric substances (EPS). The main reason for the failure of biofilm infection treatment is the low permeability and enrichment of therapeutic agents within the biofilm, which results from the particular features of biofilm matrix barriers such as negatively charged biofilm components and highly viscous compact EPS structures. Hence, developing novel therapeutic strategies with enhanced biofilm penetrability is crucial. Herein, the current progress of nanotechnology methods to improve therapeutic agents' penetrability against biofilm matrix, such as regulating material morphology and surface properties, utilizing the physical penetration of nano/micromotors or microneedle patches, and equipping nanoparticles with EPS degradation enzymes or signal molecules, is first summarized. Finally, the challenges, perspectives, and future implementations of engineered delivery systems to manage biofilm infections are presented in detail.
Collapse
Affiliation(s)
- Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Anqing Mei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yan Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaohong Ruan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
16
|
Peng J, Xie S, Huang K, Ran P, Wei J, Zhang Z, Li X. Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds. J Mater Chem B 2022; 10:4189-4202. [PMID: 35575383 DOI: 10.1039/d2tb00555g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biofilm infection is regarded as a major contributing factor to the failure of burn treatment and a persistent inflammatory state delays healing and leads to the formation of chronic wounds. Herein, self-propelled nanomotors (NMs) are proposed to enhance biofilm infiltration, bacterial destruction, and endotoxin clearance to accelerate the healing of infected burn wounds. Janus nanoparticles (NPs) were prepared through partially coating Fe3O4 NPs with polydopamine (PDA) layers, and then polymyxin B (PMB) and thiolated nitric oxide (SNO) donors were separately grafted onto the Janus NPs to obtain IO@PMB-SNO NMs. In response to elevated glutathione (GSH) levels in biofilms, NO generation from one side of the Janus NPs leads to self-propelled motion and deep infiltration into biofilms. The local release of NO could destroy bacteria inside the biofilm, which provides a non-antibiotic antibiofilm approach without the development of drug resistance. In addition to intrinsic antibacterial effects, the PMB grafts preferentially bind with bacteria and the active motion enhances lipopolysaccharide (LPS) clearance and then significantly attenuates the production of inflammatory cytokines and reactive oxide species by macrophages. Partial-thickness burn wounds were established on mice and infected with P. aeruginosa, and NM treatment almost fully destroyed the bacteria in the wounds. IO@PMB-SNO NMs absorb LPS and remove it from the wounds under a magnetic field, which downregulates the interleukin-6 and tumor necrosis factor-α levels in tissues. The infected wounds were completely healed with the deposition and arrangement of collagen fibers and the generation of skin features similar to those of normal skin. Thus, IO@PMB-SNO NMs achieved multiple-mode effects, including GSH-triggered NO release and self-propelled motion, the NO-induced non-antibiotic elimination of biofilms and bacteria, and PMB-induced endotoxin removal. This study offers a feasible strategy, with integrated antibiofilm and anti-inflammatory effects, for accelerating the healing of infected burn wounds.
Collapse
Affiliation(s)
- Jiawen Peng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Shuang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Kun Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Junwu Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
17
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
18
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kiverin A. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38877-38885. [PMID: 34351762 DOI: 10.1021/acsami.1c09912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micromotors are fascinating objects that are able to move autonomously and perform various complex tasks related to drug delivery, chemical processes, and environmental remediation. Among the types of micromotors, droplet-based micromotors are characterized by a wide range of functional properties related to the capability of encapsulation and deformation and the possibility of using them as microreactors. Relevant problems of micromotor utilization in the chemical processes include intensification of mixing and locomotion of passive objects. In this paper, the technique for preparation of superfast active droplets, which can be used as micromotors for effective locomotion of passive droplets in the oil-in-water emulsion, is demonstrated. The possibility of passive droplet locomotion in the emulsion is determined by a relation between the diameters of active and passive droplets. If the diameter of active droplets is larger than the diameter of passive droplets, the agglomerates form spontaneously in the emulsion and move in a straight line. In the case of the opposite relation between diameters, the agglomerates consisting of active and passive droplets rotate intensively. This makes it impossible to move the passive droplets to a given distance. Such micromotors can achieve unprecedentedly high velocities of motion and can be used to intensify mixing on the microscales.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
19
|
Vilela D, Blanco-Cabra N, Eguskiza A, Hortelao AC, Torrents E, Sanchez S. Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14964-14973. [PMID: 33769023 PMCID: PMC8478280 DOI: 10.1021/acsami.1c00986] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.
Collapse
Affiliation(s)
- Diana Vilela
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Nuria Blanco-Cabra
- Bacterial
infections: antimicrobial therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Ander Eguskiza
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Ana C. Hortelao
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Eduard Torrents
- Bacterial
infections: antimicrobial therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
- Microbiology
Section, Department of Genetics, Microbiology and Statistics Faculty
of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Samuel Sanchez
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
21
|
Yuan K, Jurado-Sánchez B, Escarpa A. Dual-Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angew Chem Int Ed Engl 2021; 60:4915-4924. [PMID: 33216439 DOI: 10.1002/anie.202011617] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Graphene oxide/PtNPs/Fe2 O3 "dual-propelled" catalytic and fuel-free rotary actuated magnetic Janus micromotors modified with the lanbiotic Nisin are used for highly selective capture/inactivation of gram-positive bacteria units and biofilms. Specific interaction of Nisin with the Lipid II unit of Staphylococcus Aureus bacteria in connection with the enhanced micromotor movement and generated fluid flow result in a 2-fold increase of the capture/killing ability (both in bubble and magnetic propulsion modes) as compared with free peptide and static counterparts. The high stability of Nisin along with the high towing force of the micromotors allow for efficient operation in untreated raw media (tap water, juice and serum) and even in blood and in flowing blood in magnetic mode. The high selectivity of the approach is illustrated by the dramatically lower interaction with gram-negative bacteria (Escherichia Coli). The double-propulsion (catalytic or fuel-free magnetic) mode of the micromotors and the high biocompatibility holds considerable promise to design micromotors with tailored lanbiotics that can response to the changes that make the bacteria resistant in a myriad of clinical, environmental remediation or food safety applications.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28871, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28871, Madrid, Spain
| |
Collapse
|
22
|
Yuan K, Jurado‐Sánchez B, Escarpa A. Dual‐Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry Physical Chemistry, and Chemical Engineering University of Alcala Alcala de Henares 28871 Madrid Spain
- Institute of Pharmaceutical Analysis College of Pharmacy Jinan University Guangzhou China
| | - Beatriz Jurado‐Sánchez
- Department of Analytical Chemistry Physical Chemistry, and Chemical Engineering University of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio” University of Alcala 28871 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry Physical Chemistry, and Chemical Engineering University of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio” University of Alcala 28871 Madrid Spain
| |
Collapse
|
23
|
Bunea AI, Taboryski R. Recent Advances in Microswimmers for Biomedical Applications. MICROMACHINES 2020; 11:E1048. [PMID: 33261101 PMCID: PMC7760273 DOI: 10.3390/mi11121048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for e.g., cargo transport and drug delivery, artificial insemination, sensing, indirect manipulation of cells and other microscopic objects, imaging, and microsurgery. Pioneered only two decades ago, research studies on the use of microswimmers in biomedical applications are currently progressing at an incredibly fast pace. Given the recent nature of the research, there are currently no clinically approved microswimmer uses, and it is likely that several years will yet pass before any clinical uses can become a reality. Nevertheless, current research is laying the foundation for clinical translation, as more and more studies explore various strategies for developing biocompatible and biodegradable microswimmers fueled by in vivo-friendly means. The aim of this review is to provide a summary of the reported biomedical applications of microswimmers, with focus on the most recent advances. Finally, the main considerations and challenges for clinical translation and commercialization are discussed.
Collapse
Affiliation(s)
- Ada-Ioana Bunea
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Ørsted Plads 347, 2800 Lyngby, Denmark;
| | | |
Collapse
|