1
|
Li W, Ni Z, Akdim O, Liu T, Zhu B, Kuang P, Yu J. Dual Active Site Engineering in Porous NiW Bimetallic Alloys for Enhanced Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503742. [PMID: 40348592 DOI: 10.1002/adma.202503742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Utilizing dual active sites in electrocatalysts creates a synergistic effect, enabling the independent optimization of H2O dissociation and intermediate adsorption/desorption, which in turn enhances the efficiency of the hydrogen evolution reaction (HER). Herein, a porous NiW bimetallic alloy electrocatalyst using a dynamic H2 bubble template (DHBT) strategy is fabricated. This electrocatalyst capitalizes on the synergistic effect of dual active sites, achieving industrial-level current densities of 500 and 1000 mA cm-2 for HER in 1.0 M KOH, with low overpotentials of 198 and 264 mV, respectively. It also demonstrates excellent stability over a 200 h test. Theoretical studies reveal that alloying Ni with W shifts the d-band center (εd) of the W 5d orbital downward, which enhances *OH intermediate desorption and promotes H2O adsorption and dissociation at the W site, leading to increased active site availability. Meanwhile, this shift provides more accessible H* intermediates, further enhancing H2 production at the Ni2W1 hollow site. When the porous NiW bimetallic alloy electrocatalyst is implemented in a solar-driven water splitting system, it achieves a high solar-to-hydrogen (STH) conversion efficiency of 16.59%. This work underscores the effectiveness of dual active site electrocatalysts for sustainable H2 production.
Collapse
Affiliation(s)
- Weijie Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Zhenrui Ni
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ouardia Akdim
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
2
|
Zhang Z, Tan D, Wang J, Zhang D, Kong Q, Kong W, Yin X, Feng YY. Co 2P-NiMoN/NF Heterostructure Nanorod Arrays as Efficient Bifunctional Electrocatalysts for Urea Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15480-15491. [PMID: 40035379 DOI: 10.1021/acsami.4c22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Electrolysis of water represents an effective method for the generation of high-purity hydrogen. Nevertheless, the anodic oxygen evolution reaction (OER) exhibits slow kinetics, which leads to a high electrolytic potential and induces excessive energy consumption. In this work, nickel foam-supported 3D phosphide/bimetal nitride (Co2P-NiMoN/NF) nanorod array catalyst is prepared by calcination of NiMoO4, followed by phosphatization of Co(OH)2. The heterostructure catalyst exhibits excellent catalytic activity for cathodic hydrogen evolution reaction (HER: η100 = 98 mV, η1000 = 297 mV) and anodic OER (η100 = 277 mV, η1000 = 382 mV) of water electrolysis in alkaline electrolyte, indicating its feasibility as a bifunctional catalyst for overall water splitting (OWS). Additionally, at a current density of 100 mA cm-2, the associated oxidation potential is decreased by roughly 160 mV when the anodic OER is replaced with the urea oxidation process (UOR), which has a far lower thermodynamic equilibrium potential. Density functional theory (DFT) calculations reveal that the heterointerface between Co2P and NiMoN enriches the density of electronic states near the Fermi level, thereby enhancing electron transfer and promoting charge redistribution. This modulation precisely tunes the adsorption strengths of reactants during the reaction process, ultimately boosting the electrocatalytic performance. A current density of 100 mA cm-2 can be attained at a cell voltage of 1.51 V when Co2P-NiMoN/NF is used as the anode and cathode in the urea electrolysis cell. Notably, this cell potential is significantly lower compared to that of the water electrolysis cell (1.65 V), as well as the previously published values. The findings demonstrate that the Co2P-NiMoN/NF heterostructure can be used as a bifunctional catalyst for water and urea electrolysis and demonstrate an efficient strategy for the energy-efficient production of hydrogen through substituting UOR for OER at the anode of water electrolysis.
Collapse
Affiliation(s)
- Zixuan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Dongxing Tan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jing Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Dan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qingkun Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Weiqing Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xianfang Yin
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yuan-Yuan Feng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
3
|
Tiwari DK, Ghosh TK, Gopinathan AV, Gangavarapu RR. Ball-milled Ni@Mo 2C/C nanocomposites as efficient electrocatalysts for urea oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36030-1. [PMID: 39928086 DOI: 10.1007/s11356-025-36030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Urea oxidation reaction (UOR) has been identified as a promising method for hydrogen production and the remediation of urea-rich wastewater by electrochemical techniques. In the present work, Ni/C and Ni@Mo2C(x)/C electrocatalysts (x = 0.1, 0.2, 0.4, and 0.6 mol fraction of Mo2C in Ni@Mo2C) are prepared by ball milling method followed by annealing at 800 °C for 2 h under nitrogen atmosphere. Electrooxidation of urea is carried out using these electrocatalysts in an alkaline solution. Among them, the Ni@Mo2C(0.4)/C catalyst shows a maximum current density of 96.5 mA cm-2 at 1.7 V (versus RHE) in 1 M KOH and 0.33 M urea electrolyte. The Ni@Mo2C(0.4)/C catalyst exhibits better catalytic activity, low overpotential, and charge transfer resistance with extremely low Tafel slope compared to other compositions for UOR. The synergistic electronic effect between Ni and Mo2C components is responsible for generating active sites and facilitating the catalytic activity of UOR. The Ni@Mo2C(x)/C electrocatalysts are promising for treating urea-rich wastewaters and for use as a substitute for suppressing OER in water-splitting reactions.
Collapse
Affiliation(s)
- Dilip Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Tapan Kumar Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Ranga Rao Gangavarapu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
4
|
Wang Y, Qian G, Yu H, Xie Z, Li L, Lu M, Chen C, Min D, Chen J, Tsiakaras P. Superhydrophilicity and Electronic Modulation on Self-Supported Lignin-Derived Carbon Coupled with NiO@MoNi 4 for Enhancing Urea Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410044. [PMID: 39692182 DOI: 10.1002/smll.202410044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Developing highly efficient biomass-derived carbon-based electrocatalysts remains challenging for urea electrolysis because most of these electrocatalysts show powder morphology, which can lead to Ostwald ripening during the reaction process, and its reaction mechanism should be further verified. Herein, self-supported lignin-derived carbon coupling NiO@MoNi4 heterojunction (NiO@MoNi4/C) possesses superhydrophilic properties and electronic modulation, boosting the performance of urea electrolysis. Electrochemical results show that an indirect oxidation step for urea oxidation reaction (UOR) and Volmer-Heyrovsky mechanism for hydrogen evolution reaction (HER) occurs on the surface of NiO@MoNi4/C. It displays low potentials for UOR (E10/500/1000 = 1.28/1.41/1.47 V) and for HER (E-10/-500/-1000 = -38/-264/-355 mV) in 1.0 M KOH + 0.5 M urea electrolyte solution. The good activity is ascribed to the self-supported lignin-derived carbon and heterojunction, which increases the number of active sites, optimizes electronic structure, and improves electron transfer. Benefiting from the self-supported lignin-derived carbon, NiO@MoNi4/C demonstrates corrosion resistance and superhydrophilicity, which avoids Ostwald ripening and accelerates gas-liquid transfer, thus, maintaining for 100 h at ±1000/±1500 mA cm-2 during the UOR and HER test. This work provides a good catalyst for urea electrolysis and presents a promising way for preparing lignin-derived carbon-based catalysts while expanding the application of lignin-based biomass carbon materials.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Guangfu Qian
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Hui Yu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Zehan Xie
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Liancen Li
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Minsheng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Jinli Chen
- State Key Laboratory of Materials Processing & Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos, 38834, Greece
| |
Collapse
|
5
|
Sanati S, Cordes DB, Slawin AMZ, Qian J, Abazari R. Highly Conductive Non-Calcined 2D Cu 0.3Co 0.7 Bimetallic-Organic Framework for Urea Electrolysis in Simulated Seawater. Inorg Chem 2025; 64:510-518. [PMID: 39705333 DOI: 10.1021/acs.inorgchem.4c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Global clean energy demands can be effectively addressed using the promising approach of hydrogen energy generation combined with less energy consumption. Hydrogen can be generated, and urea-rich wastewater pollution can be mitigated in a low-energy manner using the urea oxidation reaction (UOR). This paper seeks to assemble a unique electrocatalyst of a pristine 2D MOF, [Co(HBTC)(DMF)]n (Co-MUM-3), from 1,3,5-benzenetricarboxylate (BTC) to oxidize urea in simulated seawater. Ni foam (NF)-based working electrodes were fabricated by incorporating a series of heterometallic CuCo-MUM-3 frameworks (Cu0.1Co0.9-MUM-3, Cu0.2Co0.8-MUM-3, Cu0.3Co0.7-MUM-3, and Cu0.4Co0.6-MUM-3), after which their application in the urea oxidation reaction was examined. A very low required overpotential [1.26 V vs reversible hydrogen electrode (RHE) in 1 M KOH + 0.5 M NaCl (simulated seawater) + 0.33 M urea] and a Tafel slope of 112 mV dec-1 could be observed for the Cu0.3Co0.7-MUM-3 electrocatalyst, ensuring the achievement of urea electro-oxidation and hydrogen evolution reactions at a corresponding 10 mA cm-2 electrocatalytic current density. A relatively lower overpotential will be evident compared to other reported pristine MOFs, outperforming the commercial catalyst RuO2 (1.41 V at 10 mA cm-2, 131 mV dec-1) and ensuring considerable stability at significantly high current densities for a minimum of 72 h.
Collapse
Affiliation(s)
- Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, U.K
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, U.K
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| |
Collapse
|
6
|
Aladeemy SA, Arunachalam P, Amer MS, Al-Mayouf AM. Electrochemically embedded heterostructured Ni/NiS anchored onto carbon paper as bifunctional electrocatalysts for urea oxidation and hydrogen evolution reaction. RSC Adv 2025; 15:14-25. [PMID: 39758907 PMCID: PMC11698127 DOI: 10.1039/d4ra07418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Developing high-efficiency, cost-effective, and long-term stable nanostructured catalysts for electrocatalytic water splitting remains one of the most challenging aspects of hydrogen fuel production. Urea electrooxidation reaction (UOR) can produce hydrogen energy from nitrogen-rich wastewater, making it a more sustainable and cheaper source of hydrogen. In this study, we have developed Ni/NiS hybrid structures with cauliflower-like morphology on carbon paper electrodes through the application of dimethylsulfoxide solvents. These electrodes serve as highly efficient and long-lasting electrocatalysts for the hydrogen evolution reactions (HER) and UOR. In particular, the Ni/NiS cauliflower-like morphology is confirmed via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Furthermore, electrochemical characterization of the Ni/NiS@CP catalyst showed a 1.35 V onset potential versus RHE for the UOR in 1.0 M KOH and superior electrocatalytic performance compared to bare Ni@CP. Additionally, the Ni/NiS@CP catalyst also exhibits a low overpotential of 125 mV at 10 mA cm-2 for HER in 0.5 M H2SO4 with excellent durability, which is apparently lower than bare Ni@/CP (397 mV). Based on the results obtained, the synthesized Ni/NiS@CP catalyst may be a promising electrode candidate for handling urea-rich wastewater and generating hydrogen.
Collapse
Affiliation(s)
- Saba A Aladeemy
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Prabhakarn Arunachalam
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Mabrook S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah M Al-Mayouf
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
7
|
Long G, Chen L, Chen X, Liu H, Xiong W, Sun X, Hao F. Interface engineering in Ni(OH) 2/NiOOH heterojunction to enhance energy-efficient hydrogen production via urea electrolysis. J Colloid Interface Sci 2024; 680:880-889. [PMID: 39546908 DOI: 10.1016/j.jcis.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Electrochemical urea electrolysis has merged as a promising alternative to conventional water splitting methods for hydrogen fuel production due to its cost-effectiveness and superior energy efficiency. The utilization of heterostructures has been proposed as a viable strategy to improve the efficiency of the urea oxidation reaction (UOR) by augmenting the quantity of active sites and optimizing the electronic structure. In this study, a Ni(OH)2/NiOOH heterojunction, referred to as H-Ni, was synthesized via a straightforward hydrothermal synthesis method. The notable performance of H-Ni in UOR is ascribed to the synergistic interaction between Ni(OH)2 and NiOOH, which constitute the principal components of the catalyst. Density functional theory (DFT) calculations reveal that the H-Ni composite is capable of modulating the d-band center, thereby enhancing the adsorption and desorption of reaction intermediates and decreasing the Gibbs free energy (ΔG) associated with the rate-determining step (RDS) of the UOR. Experimental results from catalytic performance tests indicate that the H-Ni-140 catalyst attains a current density of 10 mA·cm-2 in a 1.0 M KOH electrolyte containing 0.33 M urea at a relatively low potential of 1.341 V versus reversible hydrogen electrode (RHE), thereby highlighting its superior electrocatalytic performance. Furthermore, the catalyst requires only a cell voltage of 1.78 V to achieve a current density of 100 mA·cm-2, which is approximately 120 mV lower than that required for water electrolysis. This work presents a straightforward methodology for the cost-effective development of heterojunction catalysts.
Collapse
Affiliation(s)
- Gang Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lei Chen
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xuhui Chen
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hao Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wei Xiong
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Xiujuan Sun
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fang Hao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
8
|
Adhikari S, Steinmann SN, Arunachalam M, Kang SH, Kim DH. Unraveling the Oxidation Kinetics Through Electronic Structure Regulation of MnCo 2O 4.5@Ni 3S 2 p-n Junction for Urea-Assisted Electrocatalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311548. [PMID: 38850179 DOI: 10.1002/smll.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Indexed: 06/10/2024]
Abstract
A promising strategy to boost electrocatalytic performance is via assembly of hetero-nanostructured electrocatalysts that delivers the essential specific surface area and also active sites by lowering the reaction barrier. However, the challenges associated with the intricate designs and mechanisms remain underexplored. Therefore, the present study constructs a p-n junction in a free-standing MnCo2O4.5@Ni3S2 on Ni-Foam. The space-charge region's electrical characteristics is dramatically altered by the formed p-n junction, which enhances the electron transfer process for urea-assisted electrocatalytic water splitting (UOR). The optimal MnCo2O4.5@Ni3S2 electrocatalyst results in greater oxygen evolution reactivity (OER) than pure systems, delivering an overpotential of only 240 mV. Remarkably, upon employing as UOR electrode the required potential decreases to 30 mV. The impressive performance of the designed catalyst is attributed to the enhanced electrical conductivity, greater number of electrochemical active sites, and improved redox activity due to the junction interface formed between p-MnCo2O4.5 and n-Ni3S2. There are strong indications that the in situ formed extreme-surface NiOOH, starting from Ni3S2, boosts the electrocatalytic activity, i.e., the electrochemical surface reconstruction generates the active species. In conclusion, this work presents a high-performance p-n junction design for broad use, together with a viable and affordable UOR electrocatalyst.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Stephan N Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, Lyon, F-69364, France
| | - Maheswari Arunachalam
- Department of Chemistry Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soon Hyung Kang
- Department of Chemistry Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
9
|
Huo J, Ge R, Liu Y, Li Y, Liao T, Yang J, Zhang J, Li S, Fei B, Li W. Heterointerface manipulation in the architecture of Co-Mo 2C@NC boosts water electrolysis. J Colloid Interface Sci 2024; 655:963-975. [PMID: 37953134 DOI: 10.1016/j.jcis.2023.10.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Heterostructures with tunable electronic properties have shown great potential in water electrolysis for the replacement of current benchmark precious metals. However, constructing heterostructures with sufficient interfaces to strengthen the synergistic effect of multiple species still remains a challenge due to phase separation. Herein, an efficient electrocatalyst composed of a nanosized cobalt/Mo2C heterostructure anchored on N-doped carbon (Co-Mo2C@NC) was achieved by in situ topotactic phase transformation. With the merits of high conductivity, hierarchical pores, and strong electronic interaction between Co and Mo2C, the Co-Mo2C@5NC-4 catalyst shows excellent activity with a low overpotential for the hydrogen evolution reaction (HER, 89 mV@10 mA cm-2 in alkaline medium; 143 mV@10 mA cm-2 in acidic medium) and oxygen evolution reaction (OER, 356 mV@10 mA cm-2 in alkaline medium), as well as high stability. Furthermore, this catalyst in an electrolyzer shows efficient activity for overall water splitting and long-term durability. Theoretical calculations reveal the optimized adsorption-desorption behaviour of hydrogen intermediates on the generated cobalt layered hydroxide (Co LDH)/Mo2C interfaces, resulting in boosting alkaline water electrolysis. This work proposes a new interface-engineering perspective for the construction of high-activity heterostructures for electrochemical conversion.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Riyue Ge
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Yang Liu
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Ying Li
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Australia
| | - Jack Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jiujun Zhang
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Sean Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Fei
- School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Wenxian Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Huang J, Feng M, Peng Y, Huang C, Yue X, Huang S. Encapsulating Ni Nanoparticles into Interlayers of Nitrogen-Doped Nb 2 CT x MXene to Boost Hydrogen Evolution Reaction in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206098. [PMID: 36507610 DOI: 10.1002/smll.202206098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Design and development of low-cost and highly efficient non-precious metal electrocatalysts for hydrogen evolution reaction (HER) in an acidic medium are key issues to realize the commercialization of proton exchange membrane water electrolyzers. Ni is regarded as an ideal alternative to substitute Pt for HER based on the similar electronic structure and low price as well. However, low intrinsic activity and poor stability in acid restrict its practical applications. Herein, a new approach is reported to encapsulate Ni nanoparticles (NPs) into interlayer edges of N-doped Nb2 CTx MXene (Ni NPs@N-Nb2 CTx ) by an electrochemical process. The as-prepared Ni NPs@N-Nb2 CTx possesses Pt-like onset potentials and can reach 500 mA cm-2 at overpotentials of only 383 mV, which is much higher than that of N-Nb2 CTx supported Ni NPs synthesized by a wet-chemical method (w- Ni NPs/N-Nb2 CTx ). Furthermore, it shows high durability toward HER with a large current density of 300 mA cm-2 for 24 h because of the encapsulated structure against corrosion, oxidation as well as aggregation of Ni NPs in an acidic medium. Detailed structural characterization and density functional theory calculations reveal that the stronger interaction boosts the HER.
Collapse
Affiliation(s)
- Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interface Sci 2023; 629:33-43. [DOI: 10.1016/j.jcis.2022.08.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
12
|
Bhaduri SN, Ghosh D, Chatterjee S, Biswas R, Banerjee R, Bhaumik A, Biswas P. Ni(II)-Incorporated Porphyrin-Based Conjugated Porous Polymer Derived from 2,6-Diformyl-4-methylphenol as a Catalyst for the Urea Oxidation Reaction. Inorg Chem 2022; 61:18390-18399. [DOI: 10.1021/acs.inorgchem.2c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata700 032, West Bengal, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Rumeli Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata700 032, West Bengal, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| |
Collapse
|
13
|
Zhuo X, Jiang W, Yu T, Qian G, Chen J, Yang H, Yin S. Crystalline-Amorphous Ni 3S 2-NiMoO 4 Heterostructure for Durable Urea Electrolysis-Assisted Hydrogen Production at High Current Density. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46481-46490. [PMID: 36194841 DOI: 10.1021/acsami.2c11238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing bifunctional catalysts with good performance at a high current density for the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER) can effectively relieve the severe environmental and energy pressures. Herein, amorphous NiMoO4 decorated Ni3S2 grown on nickel foam (Ni3S2-NiMoO4/NF) is prepared to accelerate UOR and HER. The crystalline-amorphous heterostructure could regulate the interfacial electron structure to reduce the electron density near Ni3S2 for optimizing UOR and HER. The decoration of NiMoO4 enhances its anti-poisoning ability for CO-intermediate species to show good stability at high current densities. Meanwhile, the nano-/microstructure with high hydrophilicity improves mass transfer and the accessibility of electrolyte. Driving high current densities of ±1000 mA cm-2, it merely needs 1.38 V (UOR) and -263 mV (HER). For urea electrolysis, it can deliver 1000 mA cm-2 at 1.73 V and stably operate at 500 mA cm-2 for 120 h. Therefore, this study provides new ideas for durable urea electrolysis-assisted H2 production.
Collapse
Affiliation(s)
- Xiaoyan Zhuo
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, 100 Daxue Road, Nanning530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Wenjie Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Guangfu Qian
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Haifeng Yang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, 100 Daxue Road, Nanning530004, China
| | - Shibin Yin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, 100 Daxue Road, Nanning530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning530004, China
| |
Collapse
|
14
|
Anuratha KS, Rinawati M, Wu TH, Yeh MH, Lin JY. Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172970. [PMID: 36080007 PMCID: PMC9457967 DOI: 10.3390/nano12172970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 05/27/2023]
Abstract
Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
Collapse
Affiliation(s)
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tzu-Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jeng-Yu Lin
- Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan
| |
Collapse
|
15
|
Jin M, Zhang X, Niu S, Wang Q, Huang R, Ling R, Huang J, Shi R, Amini A, Cheng C. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm -2. ACS NANO 2022; 16:11577-11597. [PMID: 35952364 DOI: 10.1021/acsnano.2c02820] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depletion of fossil fuels and rapidly increasing environmental concerns have urgently called for the utilization of clean and sustainable sources for future energy supplies. Hydrogen (H2) is recognized as a prioritized green resource with little environmental impact to replace traditional fossil fuels. Electrochemical water splitting has become an important method for large-scale green production of hydrogen. The hydrogen evolution reaction (HER) is the cathodic half-reaction of water splitting that can be promoted to produce pure H2 in large quantities by active electrocatalysts. However, the unsatisfactory performance of HER electrocatalysts cannot follow the extensive requirements of industrial-scale applications, including working efficiently and stably over long periods of time at high current densities (⩾1000 mA cm-2). In this review, we study the crucial issues when electrocatalysts work at high current densities and summarize several categories of strategies for the design of high-performance HER electrocatalysts. We also discuss the future challenges and opportunities for the development of HER catalysts.
Collapse
Affiliation(s)
- Mengtian Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shuzhang Niu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runqing Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruihua Ling
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqi Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, New South Wales 2751, Australia
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen 518055, China
| |
Collapse
|
16
|
Liu C, Wang X, Kong Z, Zhang L, Xin Z, She X, Sun J, Yang D, Li D. Electrostatic Interaction in Amino Protonated Chitosan-Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22151-22160. [PMID: 35507679 DOI: 10.1021/acsami.2c03443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the face of the increasingly serious rapid depletion of fossil fuels, exploring alternative energy conversion technologies may be a promising choice to alleviate this crisis. Transition metal carbides (TMCs)/carbon composites are considered as prospective electrocatalysts due to their high catalytic activities and structural stability. In this work, we report the simple synthesis of TMCs/N-doping carbon aerogels (TMCs/NCAs, including Fe3C/NCA, Mo3C2/NCA, and Fe3C-Mo2C/NCA) for the oxygen reduction reaction (ORR) using protonated chitosan/metal complex anion-chelated aerogels. Among them, the Fe3C/NCA composite possesses efficient ORR activity (similar to Pt/C), and the Fe3C/NCA-assembled Zn-air battery exhibits high power densities of about 250 mW cm-2. The density functional theory calculation reveals that the presence of graphite-N, pyridine-N, and carbon defects in the carbon framework effectively reduces the free energy of ORR occurring in Fe3C. This work provides a simple and extensible strategy for the preparation of TMCs from chitosan, which is expected to be extended to other metal carbides.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoxia Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhenyu Kong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhefeng Xin
- Baoshan Hengfeng Textile Technology Company Limited, Baoshan 678000, China
| | - Xilin She
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jin Sun
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongjiang Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
17
|
Li T, Yin J, Sun D, Zhang M, Pang H, Xu L, Zhang Y, Yang J, Tang Y, Xue J. Manipulation of Mott-Schottky Ni/CeO 2 Heterojunctions into N-Doped Carbon Nanofibers for High-Efficiency Electrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106592. [PMID: 35122468 DOI: 10.1002/smll.202106592] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Designing affordable and efficient bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has remained a long-lasting target for the progressing hydrogen economy. Utilization of metal/semiconductor interface effect has been lately established as a viable implementation to realize the favorable electrocatalytic performance due to the built-in electric field. Herein, a typical Mott-Schottky electrocatalyst by immobilizing Ni/CeO2 hetero-nanoparticles onto N-doped carbon nanofibers (abbreviated as Ni/CeO2 @N-CNFs hereafter) has been developed via a feasible electrospinning-carbonization tactic. Experimental findings and theoretic calculations substantiate that the elaborated constructed Ni/CeO2 heterojunction effectively triggers the self-driven charge transfer on heterointerfaces, leading to the promoted charge transfer rate, the optimized chemisorption energies for reaction intermediates and ultimately the expedited reaction kinetics. Therefore, the well-designed Ni/CeO2 @N-CNFs deliver superior HER and OER catalytic activities with overpotentials of 100 and 230 mV at 10 mA cm-2 , respectively, in alkaline solution. Furthermore, the Ni/CeO2 @N-CNFs-equipped electrolyzer also exhibits a low cell voltage of 1.56 V to attain 10 mA cm-2 and impressive long-term durability over 55 h. The innovative manipulation of electronic modulation via Mott-Schottky establishment may inspire the future development of economical electrocatalysts for diverse sustainable energy systems.
Collapse
Affiliation(s)
- Tongfei Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Jingwen Yin
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongmei Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 45001, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems and Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
18
|
Pan M, Chen W, Qian G, Yu T, Wang Z, Luo L, Yin S. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Surface unsaturated WO x activating PtNi alloy nanowires for oxygen reduction reaction. J Colloid Interface Sci 2021; 607:1928-1935. [PMID: 34695741 DOI: 10.1016/j.jcis.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
PtNi alloy nanoparticles display promising catalytic activity for oxygen reduction reaction (ORR), while the Ostwald ripening of particles and the dissolution/migration of surface atoms greatly affect its stability thus restricting the application. Herein, the WOx-surface modified PtNi alloy nanowires (WOx-PtNi NWs) exhibiting enhanced ORR catalytic property is reported, which has high aspect ratio with the diameter of only 2 ∼ 3 nm. It is found that the WOx-PtNi NWs shows a volcano relationship between the ORR activity and the content of WOx. The WOx-(0.25)-PtNi NWs has the best performance among all the synthesized catalysts. Its mass activity (0.85 A mg-1Pt) is reduced by only 23.89% after 30k cycles durability test, which is much more stable than that of PtNi NWs (0.33 A mg-1Pt, 45.94%) and Pt/C (0.14 A mg-1Pt, 57.79%). Hence this work achieves an effective regulation of the ORR activity for PtNi alloy NWs by the synergistic effect of WOx on Pt.
Collapse
|
20
|
Zhuo X, Jiang W, Qian G, Chen J, Yu T, Luo L, Lu L, Chen Y, Yin S. Ni 3S 2/Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35709-35718. [PMID: 34308650 DOI: 10.1021/acsami.1c08148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urea electrolysis is a cost-effective method for urea-rich wastewater degradation to achieve a pollution-free environment. In this work, the Ni3S2/Ni heterostructure nanobelt arrays supported on nickel foam (Ni3S2/Ni/NF) are synthesized for accelerating the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). It only needs ultralow potentials of 1.30 V and -54 mV to achieve the current density of ±10 mA cm-2 for UOR and HER, respectively. Meanwhile, the overall urea oxidation driven by Ni3S2/Ni/NF only needs 1.36 V to achieve 10 mA cm-2, and it can remain at 100 mA cm-2 for 60 h without obvious activity attenuation. The superior performance could be attributed to the heterostructure between Ni3S2 and Ni, which can promote electron transfer and form electron-poor Ni species to optimize urea decomposition and hydrogen production. Moreover, the nanobelt self-supported structure could expose abundant active sites. This work thus provides a feasible and cost-effective strategy for urea-rich wastewater degradation and hydrogen production.
Collapse
Affiliation(s)
- Xiaoyan Zhuo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Guangfu Qian
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Lihai Lu
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexing Road, Nanning 530007, China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexing Road, Nanning 530007, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
21
|
Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interface Sci 2021; 605:779-789. [PMID: 34371423 DOI: 10.1016/j.jcis.2021.07.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
Urea electro-oxidation reaction (UOR) has been a promising strategy to replace oxygen evolution reaction (OER) by urea-mediated water splitting for hydrogen production. Naturally, rational design of high-efficiency and multifunctional electrocatalyst towards UOR and hydrogen evolution reaction (HER) is of vital significance, but still a grand challenge. Herein, an innovative 3D Ru-modified NiFe metal-organic framework (MOF) nanoflake array on Ni foam (Ru-NiFe-x/NF) was elaborately designed via spontaneous galvanic replacement reaction (GRR). Notably, the adsorption capability of intermediate species (H*) of catalyst is significantly optimized by Ru modification. Meanwhile, rich high-valence Ni active species can be acquired by self-driven electronic reconstruction in the interface, then dramatically accelerating the electrolysis of water and urea. Remarkably, the optimized Ru-NiFe-③/NF (1.6 at% of Ru) only requires the overpotential of 90 and 310 mV to attain 100 mA cm-2 toward HER and OER in alkaline electrolyte, respectively. Impressively, an ultralow voltage of 1.47 V is required for Ru-NiFe-③/NF to deliver a current density of 100 mA cm-2 in urea-assisted electrolysis cell with superior stability, which is 190 mV lower than that of Pt/C-NF||RuO2/NF couple. This work is desired to explore a facile way to exploit environmentally-friendly energy by coupling hydrogen evolution with urea-rich sewage disposal.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
22
|
Liu J, Wang Y, Liao Y, Wu C, Yan Y, Xie H, Chen Y. Heterostructured Ni 3S 2-Ni 3P/NF as a Bifunctional Catalyst for Overall Urea-Water Electrolysis for Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26948-26959. [PMID: 34078074 DOI: 10.1021/acsami.1c04325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea oxidation reaction (UOR) has been proposed to replace the formidable oxygen evolution reaction (OER) to reduce the energy consumption for producing hydrogen from electrolysis of water owing to its much lower thermodynamic oxidation potential compared to that of the OER. Therefore, exploring a highly efficient and stable hydrogen evolution and urea electrooxidation bifunctional catalyst is the key to achieve economical and efficient hydrogen production. In this paper, we report a heterostructured sulfide/phosphide catalyst (Ni3S2-Ni3P/NF) synthesized via one-step thermal treatment of Ni(OH)2/NF, which allows the simultaneous occurrence of phosphorization and sulfuration. The obtained Ni3S2-Ni3P/NF catalyst shows a sheet structure with an average sheet thickness of ∼100 nm, and this sheet is composed of interconnected Ni3S2 and Ni3P nanoparticles (∼20 nm), between which there are a large number of accessible interfaces of Ni3S2-Ni3P. Thus, the Ni3S2-Ni3P/NF exhibits superior performance for both UOR and hydrogen evolution reaction (HER). For the overall urea-water electrolysis, to achieve current densities of 10 and 100 mA cm-2, cell voltage of only 1.43 and 1.65 V is required using this catalyst as both the anode and the cathode. Moreover, this catalyst also maintains fairly excellent stability after a long-term testing, indicating its potential for efficient and energy-saving hydrogen production. The theoretical calculation results show that the Ni atoms at the interface are the most efficient catalytically active site for the HER, and the free energy of hydrogen adsorption is closest to thermal neutrality, which is only 0.16 eV. A self-driven electron transfer at the interface, making the Ni3S2 sides become electron donating while Ni3P sides become electron withdrawing, may be the reason for the enhancement of the UOR activity. Therefore, this work shows an easy treatment for enhancing the catalytic activity of Ni-based materials to achieve high-efficiency urea-water electrolysis.
Collapse
Affiliation(s)
- Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yigang Yan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang 310003, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
23
|
Xu Q, Yu T, Chen J, Qian G, Song H, Luo L, Chen Y, Liu T, Wang Y, Yin S. Coupling Interface Constructions of FeNi 3-MoO 2 Heterostructures for Efficient Urea Oxidation and Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16355-16363. [PMID: 33797219 DOI: 10.1021/acsami.1c01188] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea electrolysis has prospects for urea-containing wastewater purification and hydrogen (H2) production, but the shortage of cost-effective catalysts restricts its development. In this work, the tomentum-like FeNi3-MoO2 heterojunction nanosheets array self-supported on nickel foam (NF) as bifunctional catalyst is prepared by facile hydrothermal and annealing method. Only 1.29 V and -50.8 mV is required to obtain ±10 mA cm-2 for urea oxidation and hydrogen evolution reaction (UOR and HER), respectively, showing great bifunctional catalytic activity. For overall urea electrolysis, it only needs 1.37 V to reach 10 mA cm-2 and can last at 100 mA cm-2 for 70 h without obvious activity attenuation, showing outstanding durability. Coupling interface constructions of FeNi3-MoO2 heterostructures, novel morphology with a mesoporous and self-supporting structure could be the reason for this good performance. This work thus proposes a promising catalyst for boosting UOR and HER to realize efficient overall urea electrolysis.
Collapse
Affiliation(s)
- Qinglian Xu
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Guangfu Qian
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., 12 Kexing Road, Nanning 530007, China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., 12 Kexing Road, Nanning 530007, China
| | - Tengyu Liu
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Yizhe Wang
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
24
|
Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts 2021. [DOI: 10.3390/catal11010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electrooxidation of urea plays a substantial role in the elimination of urea-containing wastewater and industrial urea. Here, we report the electrodeposition of nickel hydroxide catalyst on commercial carbon paper (CP) electrodes from dimethyl sulphoxide solvent (Ni(OH)2-DMSO/CP) for urea electrooxidation under alkaline conditions. The physicochemical features of Ni(OH)2-DMSO/CP catalysts using scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the Ni(OH)2-DMSO/CP catalyst shows nanoparticle features, with loading of <1 wt%. The cyclic voltammetry and electrochemical impedance spectroscopy revealed that the Ni(OH)2-DMSO/CP electrode has a urea oxidation onset potential of 0.33 V vs. Ag/AgCl and superior electrocatalytic performance, which is a more than 2-fold higher activity in comparison with the counterpart Ni(OH)2 catalyst prepared from the aqueous electrolyte. As expected, the enhancement in electrocatalytic activity towards urea was associated with the superficial enrichment in the electrochemically active surface area of the Ni(OH)2-DMSO/CP electrodes. The results might be a promising way to activate commercial carbon paper with efficient transition metal electrocatalysts, for urea electrooxidation uses in sustainable energy systems, and for relieving water contamination.
Collapse
|